# Estimating experiment-wise error rates by permutation

ESP 2009 Bertram Müller-Myhsok

## Multipe testing problem in Genome-wide Analysis

- Many tests performed
- 100,000 SNPs
- 300,000 SNPs
- 500,000 SNPs
- 1,000,000 SNPs

## Multiple testing in GWA cont'd

- · Often several phenotypes
- · Often several genetic models
- · Example:
  - 10 phenotypes
  - -4 models
  - 500,000 SNPs

## Multiple testing in GWA cont'd

- Number of tests then:
   10 \* 4 \* 500,000 = 20 million = 2e+07
- Necessary significance level for experiment-wise p of 0.05 using Bonferroni: - 0.05 / 2e+07 = 2.5e-09

## But:

- · Tests are not necessarily independent
  - LD between SNPs
  - Correlation between phenotypes
  - Correlation between genotypes
- The effective number of tests is less
  than the number of tests performed

### LD: From Genotypes to Haplotypes

|    | BB   | Bb   | bb   |
|----|------|------|------|
| AA | AABB | AABb | Aabb |
| Aa | AaBB | AaBb | Aabb |
| аа | aaBB | aaBb | aabb |

Joint genotype AaBb

A++a or A++a B++b b++B

## Haplotypes

- For unrelated individuals Haplotypes can be reconstructed with 100% accuracy if:
  - All loci are homozygous
  - No more than 1 locus is heterozygous
- If more 2 or more loci are heterozygous then
  - The haplotypes are ambiguous
  - However usually one set (pair) of
  - haplotypes is more likely

## Haplotype Reconstruction

- Haplotype construction is not robust over large genetic distances
- · Beware of using "best" haplotype configuration
  - It is important to take account of uncertainty in phase assignment if haplotypes are to be used in subsequent analysis
- The ability to estimate accurate haplotype assignments is dependent on the size of data set.
  - Generally smaller data sets give less accurate results









Another measure of the strength of association is r.

 $r=D/(p_1p_2q_1q_2)^{1/2}$ 

X<sup>2</sup>=r<sup>2</sup>N (1 df)

For this example  $r = 0.06/(0.2 \cdot 0.8 \cdot 0.4 \cdot 0.6)^{1/2} = 0.3062$ 

X<sup>2</sup>=0.093746•100=9.376 p=0.0022

## LD

• If one haplotype is not observed |D'|=1

- Complete LD There is not a 100% correlation between the allele at one locus and the allele at the second locus

If two haplotypes are not observed r<sup>2</sup>=1.0

#### - Perfect LD

- There is 100% correlation between the allele at one locus and the allele at the second locus
  If r<sup>2</sup>=1.0 for two loci genotyping one locus provides as much information as genotyping both loci

## LD

- · D' provides information on historic recombination events
- r<sup>2</sup> provides information on the correlation of two loci - Better measure for association studies



## Linkage Disequilibrium

- With random mating (assumptions: large population with no mutation, migration or selection) linkage equilibrium is eventually obtained
- · The rate of decay will depend on the recombination fraction between loci.
- The greater the rate of recombination the quicker the decay.





## Three examples

Ex2: Two SNPs, SNP1 and SNP2, 1000 people genotyped

```
        A/A
        A/B
        B/B

        A/A
        375
        0
        0

        A/B
        176
        214
        106

        B/B
        0
        0
        129
```

Measures of LD: D' = 0.7357 r2 = 0.4650

| Three examples                                           |  |  |  |  |  |  |
|----------------------------------------------------------|--|--|--|--|--|--|
| Ex3:<br>Two SNPs, SNP1 and SNP2, 1000 people genotyped   |  |  |  |  |  |  |
| A/A A/B B/B<br>A/A 551 0 0<br>A/B 0 214 0<br>B/B 0 0 235 |  |  |  |  |  |  |
| Measures of LD: D' = 1.0000<br>r2 = 1.0000               |  |  |  |  |  |  |



| Permutation in principle                                                                         |                                         |                                                |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------|--|--|--|--|--|
| <ul><li>Predictor variables, e.g. SNPs</li><li>Outcome variable, e.g. affection status</li></ul> |                                         |                                                |  |  |  |  |  |
| Affection status<br>1<br>0<br>0<br>1<br>1<br>0                                                   | SNP1<br>A/B<br>A/A<br>B/B<br>B/B<br>A/B | SNP2<br>A/B<br>A/B<br>B/B<br>A/A<br>A/B<br>A/A |  |  |  |  |  |



| Original data and 9 replicates (permutations) |   |   |   |   |   |   |   |   |   |
|-----------------------------------------------|---|---|---|---|---|---|---|---|---|
| 1                                             | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 |
| 0                                             | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 |
| 0                                             | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| 1                                             | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 |
| 1                                             | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 |
| 1                                             | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
| 0                                             | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |



- Compute and store minimum of replicate-wise p-values
  -> test distribution of test statistic
  Compare p-value found against
- distribution of minimum p-values (equivalent to maximum of test statistic) – > correct for multiple testing















| Quantile of distributions |       |       |     |  |  |  |
|---------------------------|-------|-------|-----|--|--|--|
| 1%                        | 5%    | 10%   |     |  |  |  |
| 0.006                     | 0.027 | 0.055 | ex1 |  |  |  |
| 0.006                     | 0.029 | 0.060 | ex2 |  |  |  |
| 0.009                     | 0.049 | 0.100 | ex3 |  |  |  |
|                           |       |       |     |  |  |  |
|                           |       |       |     |  |  |  |



## Papers on the way

Am. J. Hum. Genet. 74:765–769, 2004

A Simple Correction for Multiple Testing for Single-Nucleotide Polymorphisms in Linkage Disequilibrium with Each Other

Dale R. Nyholt

## Papers on the way

Am. J. Hum. Genet. 75:424-435, 2004

Efficient Computation of Significance Levels for Multiple Associations in Large Studies of Correlated Data, Including Genomewide Association Studies

Frank Dudbridge and Bobby P. C. Koeleman

## Papers on the way

Hum Hered 2005;60:19-25

Evaluation of Nyholt's Procedure for Multiple Testing Correction

Daria Salyakina Shaun R. Seaman Brian L. Browning Frank Dudbridge Bertram Müller-Myhsok Genetic Epidemiology 32: 381-385 (2008)

#### Brief Report

Estimation of the Multiple Testing Burden for Genomewide Association Studies of Nearly All Common Variants

Itsik Pe'er,<sup>1</sup> Roman Yelensky,<sup>2–4</sup> David Altshuler,<sup>23,3–7</sup> and Mark J. Daly<sup>23,89</sup> <sup>1</sup>Opartment of Computer Science, Colombia University, New York <sup>2</sup>Centre for Human Geneir Research, Massachustetti Geneir Heingli, Bastu, Massachustts <sup>1</sup>Opartment of Madeault Bidegu, Massachustte Geneir Heingli, Bastu, Massachustts <sup>1</sup>Pitterna VII. Diesisier of Hehnik Science and Technology, Camirige, Massachustts <sup>1</sup>Diabets Unit, Massachustts Geneir Heingli, Bastu, Massachustts <sup>1</sup>Diabets Unit, Massachustts Geneira Heingli, Massachustts <sup>2</sup>Dapartment of Geneiric, Harrard Maltal Schol, Seston, Massachusetts <sup>1</sup>Dapartment of Malcine, Harrard Maltal Schol, Seston, Massachusetts







