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Chapter 1

Overview

GenABEL is an R library developed to facilitate Genome-Wide Association (GWA)
analysis of binary and quantitative traits. GenABEL is implemented as an R li-
brary. R is a free, open source language and environment for general-purpose
statistical analysis (available at http://www.r-project.org/). It implements
powerful data management and analysis tools. Though it is not strictly neces-
sary to learn everything about R to run GenABEL, it is highly recommended as
this knowledge will improve flexibility and quality of your analysis.

Originally GenABEL was developed to facilitate GWA analysis of quantita-
tive traits using data coming from extended families and/or collected form ge-
netically isolated populations. At the same time GenABEL implements a large
number of procedures used in analysis of population-based data; it supports
analysis of binary and quantitative tarits, and of survival (time-till-event) data.
Most up-to-date information about GenABEL can be found at the web-site http:
//mga.bionet.nsc.ru/nlru/GenABEL/.

GenABEL is a part of more extensive ABEL collection (http://mga.bionet.
nsc.ru/~yurii/ABEL/) of software supporting different kinds of GWA analyses.

This tutorial was originally written to serve as a set of exercises for the
”Advances in population-based studies of complex genetic disorders” (GE03)
course of the Netherlands Institute of Health Sciences (Nihes).

If you read this tutorial not as a part of the GE03 course, and you are eager
to start with you GWA analysis without reading all the not-so-strictly-necessary
staff, start directly from the section 5 (”5”).

Otherwise, you can start with R basics and simple association analyises using
few SNPs in section 2, ”2”. In the next section, 4 (”4”) you will learn how to
work with the gwaa.data-class, which is used to store GWA data in GenABEL
and will perform some simple large-scale analyses.

In the next section, 5 (”5”), you will do quality control of genetic data and
do association analysis under realistic conditions. This section is the core of this
tutorial.

The section 6 (”6”) is dedicated to analysis in presence of populational strat-
ification and analysis of family-based data.

Genetic data imputations are covered in section 8, ”8”.
The last section, 11 (”11”), is dedicated to analysis of haplotype association

and analysis of SNP interactions.
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Information on importing the data from different formats to GenABEL is given
in appendix A. Answers to exercises are provided in appendix B.

Experienced R users start directly with the section (4, ”4”).



Chapter 2

Introduction to R

In this section we will consider base R data types and operations, and tools for
analysis of qualitative and quantitative traits. Only basic R functionality – the
things which are crucial to know before we can proceed to genetic association
analysis – will be covered within this section. If you want to make most of your
data, though, we strongly recommend that you improve your knowledge of R
using books other than this. A number of excellent manuals (’An introduction
to R’, ’Simple R’, ’Practical Regression and Anova using R’, and others) is
available free of charge from the R project web-site (http://www.r-project.org).

In the first part of this chapter you will learn about the most important
R data types and will learn how to work with R data. Next, we will cover
exploratory data analysis. The chapter will end with introduction to regression
analysis.

2.1 Basic R data types and operations

On the contrast to many other statistical analysis package, analysis in R is not
based on graphic user interface, but is command line-based. When you first
start R, a command prompt appears. To get help and overview of R, type
help.start() on the command line and press enter. This will start internet
browser and open the main page of the R documentation.

Let us first use R as a powerful calculator. You can directly operate with
numbers in R. Try multiplying two by three:

> 2 * 3

[1] 6

Other standard arithmetic operations can be performed in similar manner:

> 2/3

[1] 0.6666667

(division)

> 2^3

7
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[1] 8

(power)

> 2 - 3

[1] -1

(subtraction)

> 2 + 3

[1] 5

(summation)1.
Mathematical functions, such as square roots, base-10 logarithm, and expo-

nentiation, are available in R as well:

> sqrt(5)

[1] 2.236068

> log10(2.24)

[1] 0.350248

> exp(0.35)

[1] 1.419068

Here, we have computed e to the power of base-10 logarithm of the square
root of the sum of two and three. After each operation performed, we have
rounded the result to the two digits after the floating point – just in order to
do less typing.

The arithmetic operations and functions can be nested and therefore we can
obtain the above result in one line, and without the 2nd-digit approximation:

> exp(log10(sqrt(2 + 3)))

[1] 1.418337

R functions include not only the standard mathematical ones, but also a
wide range of statistical function, for example, probability density functions of
many probability distributions. We will make extensive use of these at a later
stage, when computing significance and estimating statistical power.

For any function with name say ’fun’, help may be obtained by typing
’help(fun)’ on the command line.

R help pages have standard layout, documenting usage of the function, ex-
plaining function arguments, providing details of implementation and/or usage,
explaining the value returned by the function, and giving references and exam-
ples of the function use.

Exercise 1. Explore the help page for the Wilcoxon test and answer the ques-
tions:

1For complete list of arithmetic operations try help("+")
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1. When exact Wilcoxon test is computed by default?
2. If the default conditions for the exact test are not satisfied, what approx-

imation is used?

Most of the documented functions have examples of their usage at the end of
the ’help’ page, and these examples can be evaluated in R. Try ’example(wilcox.test)’.

If you do not know the exact name for the function you look for, try ’help.search("query")’,
where query is the keyword.

Exercise 2.Try to find out what are the functions to do
1. Fisher exact test
2. T-test

One of important R operations is assignment, which is done with ’<-’ oper-
ator. A (new) variable name should be provided on the left-hand side of this
operator and on the right-hand side, there must be either name of already ex-
isting variable or an expression. For example, we if want to assign value ’2’
to variable ’a’, and value ’3’ to the variable ’b’ we would use the assignment
operator:

> a <- 2

> b <- 3

Typing the variable name in R command line will return its’ value, e.g.

> b

[1] 3

Evaluation of the expression

> exp(log10(sqrt(a + b)))

[1] 1.418337

gives the expected result we have obtained above using numerical arguments.
While the variables ’a’ and ’b’ contain single numeric values, variables in

general can be multi-dimensional; an one-dimensional example of such is a vector
(array). Let us create an example vector and experiment with it:

> v <- c(1, 3, 5, 7, 11)

Here, ’c()’ is a function, which combines its arguments to make a vector. This
vector is then assigned to a variable named ’v’.

Now, let us try different operations with this vector:

> v + 1

[1] 2 4 6 8 12

It is easy to see that the result is a vector, which is obtained by adding one to
each element of the original vector v. Other arithmetic operations and mathe-
matical functions behave in the same way, e.g. the operation is performed for
each element of the vector, and the results are returned:
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> 1/v

[1] 1.0000000 0.3333333 0.2000000 0.1428571 0.0909091

> log(v)

[1] 0.000000 1.098612 1.609438 1.945910 2.397895

What happens if two vectors are supplied as function arguments? Let us
define a new vector

> ov <- c(1, 2, 3, 4, 5)

and add it to the vector v:

> v + ov

[1] 2 5 8 11 16

You can see that the summation was done element-wise, i.e. the first element
of the result vector is obtained as the sum of the first elements of v and ov, the
second is the sum of the second elements, and so forth.

Other arithmetic operations with two vectors are performed in the same
element-wise manner:

> v * ov

[1] 1 6 15 28 55

(multiplication)

> v^ov

[1] 1 9 125 2401 161051

(power).
The vector operations considered above returned a same-length vector as

output. There are others – statistical and summary – functions which evaluate
a vector as a whole and return a single value as output. For example, to obtain
a sum of vector’s elements, use

> sum(v)

[1] 27

Other examples of such functions involve length, returning number of ele-
ments of a vector, mean, returning the mean, var, returning the variance, etc.:

> length(v)

[1] 5

> mean(v)

[1] 5.4
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> var(v)

[1] 14.8

One of the basic, and probably most used, data operations in R is sub-setting.
This refers to an operations which help you deriving a subset of the data. Let

us create a short vector and play a bit with sub-setting. This vector will contain
5 simple character strings:

> a <- c("I am element 1", "I am element 2", "I am element 3",

+ "I am element 4", "I am element 5")

> a

[1] "I am element 1" "I am element 2" "I am element 3" "I am element 4"
[5] "I am element 5"

To find out what is the value of the i-th element of this vector, you can
sub-set it by a[i]. For example the 3rd elements is:

> a[3]

[1] "I am element 3"

You can also select a bigger sub-set, e.g. all elements from 2 to 4:

> a[c(2:4)]

[1] "I am element 2" "I am element 3" "I am element 4"

Here, operation c(2:4) stays for ’combine numbers from 2 to 4 into a vector’.
An equivalent result is obtained by

> a[c(2, 3, 4)]

[1] "I am element 2" "I am element 3" "I am element 4"

We can also easily get disjoint elements; e.g. if you want to retrieve elements
1, 3, and 5, you can do that with

> dje <- c(1, 3, 5)

> dje

[1] 1 3 5

> a[dje]

[1] "I am element 1" "I am element 3" "I am element 5"

One of very attractive features of R data objects is possibility to derive a sub-
set based on some condition. Let us consider two vectors, tmphgt, containing
the height of some subjects, and tmpids, containing their identification codes
(IDs):

> tmphgt <- c(150, 175, 182, 173, 192, 168)

> tmphgt
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[1] 150 175 182 173 192 168

> tmpids <- c("fem1", "fem2", "man1", "fem3", "man2", "man3")

> tmpids

[1] "fem1" "fem2" "man1" "fem3" "man2" "man3"

Imagine you need to derive the IDs of the people with height over 170 cm.
To do that, we need to combine several operations. First, we shoudl run the
logical function >170 on the height data:

> vec <- (tmphgt > 170)

> vec

[1] FALSE TRUE TRUE TRUE TRUE FALSE

This returns a logical vector whose elements are ’TRUE’, when a particular
element of the tmphgt satisfies the condition >170. The returned logical vector,
in turn, can be applied to sub-set any other vector of the same length2, including
itself. Thus if you need to see what are the heights in people, which are taller
than 170 cm, you can use

> tmphgt[vec]

[1] 175 182 173 192

As you can see, only the elements of tmphgt, for which the corresponding value
of vec was ’TRUE’, are returned. In the same manner, the logical vector vec can
be applied to select elements of the vector of IDs:

> tmpids[vec]

[1] "fem2" "man1" "fem3" "man2"

You can combine more than one logical condition to derive sub-sets. For
example, to see what are the IDs of people taller than 170 but shorter than 190
cm, you can use

> vec <- (tmphgt > 170 & tmphgt < 190)

> vec

[1] FALSE TRUE TRUE TRUE FALSE FALSE

> tmpids[vec]

[1] "fem2" "man1" "fem3"

A better3 way to do logical sub-setting assumes use of the which() function
on the top of the logical vector. This function reports which elements are TRUE.
To obtain above results you can run:

2 Actually, you can apply it to a longer vector too, and then the logical vector will be
”expanded” to total length by repeating the original vector head-to-tail. However, we will not
use this in our exercises.

3 Because it treats NAs for you
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> vec <- which(tmphgt > 170 & tmphgt < 190)

> vec

[1] 2 3 4

> tmpids[vec]

[1] "fem2" "man1" "fem3"

You can see that no vec contains a vector, whose elements are the indexes of
the elements of tmphgt for which the logical condition satisfies.

Sub-setting for 2D objects (matrices) is done in similar manner. Let us
construct a simple matrix and do several sub-setting operations on it:

> a <- matrix(c(11, 12, 13, 21, 22, 23, 31, 32, 33), nrow = 3,

+ ncol = 3)

> a

[,1] [,2] [,3]
[1,] 11 21 31
[2,] 12 22 32
[3,] 13 23 33

To obtain the element in the 2nd row and 2nd column, you can use

> a[2, 2]

[1] 22

To access the elemnt from the second row and third column, use

> a[2, 3]

[1] 32

Note that here, the row index (2) comes first, and the column index (3) comes
second.

To obtain the 2x2 set of elements contained in upper left corner, you can do

> a[1:2, 1:2]

[,1] [,2]
[1,] 11 21
[2,] 12 22

Or you can even get the variables, which reside in corners:

> a[c(1, 3), c(1, 3)]

[,1] [,2]
[1,] 11 31
[2,] 13 33

If one of the dimensions is not specified, complete vector is returned for this
dimension. For example, here we retrieve the first row
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1 2 3
1 1 4 7
2 2 5 8
3 3 6 9

Table 2.1: Vector representation of a matrix. Elements in the table are the
vector indices of the matrix elements.

> a[1, ]

[1] 11 21 31

...and the third column

> a[, 3]

[1] 31 32 33

...or columns 1 and 3:

> a[, c(1, 3)]

[,1] [,2]
[1,] 11 31
[2,] 12 32
[3,] 13 33

Other way to address elements of a matrix is to use one-dimensional index.
For example, if you want to access element in the 2nd row and 2nd column,
instead of

> a[2, 2]

[1] 22

you can use

> a[5]

[1] 22

This way of accessing the elements of a matrix is based on the fact, that each
matrix can be preseted as a vector, whose elements are numbered consequtively:
the element in the upper-left corner has index 1, the element in the second row
of the first column has index 2, and the last elemnt in the borrom-right corner
has the maximal value, as shown in Table 2.1.

As well as with vectors, you can sub-set matrices using logical conditions or
indexes. For example, if we want to see what elements of a are greater than 21,
we can run

> a > 21
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[,1] [,2] [,3]
[1,] FALSE FALSE TRUE
[2,] FALSE TRUE TRUE
[3,] FALSE TRUE TRUE

or, better

> which(a > 21)

[1] 5 6 7 8 9

Note that in the latter case, a vector whose elements give the 1-D indexes of the
matrix, is returned. This vector indicates the elemnts of matrix a, for which the
condition (a>21) is satisfied.

You can obtain the values of the matrix’s elements, for which the condition
isfulfilled, either by

> a[a > 21]

[1] 22 23 31 32 33

or

> a[which(a > 21)]

[1] 22 23 31 32 33

Once again, the latter method should be prefered. Consider an example,
where some elements of the matrix are missing (NA) – a situation which is
common in real data analysis. Let us replace the elemnt number 5 with NA
and perform sub-setting operations on the resulting matrix:

> a

[,1] [,2] [,3]
[1,] 11 21 31
[2,] 12 22 32
[3,] 13 23 33

> a[5] <- NA

> a

[,1] [,2] [,3]
[1,] 11 21 31
[2,] 12 NA 32
[3,] 13 23 33

> a[a > 21]

[1] NA 23 31 32 33

> a[which(a > 21)]

[1] 23 31 32 33
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You can see that when a[a>21] was used, not only the elements which are
greater than 21 were returned, but also NA was. As a rule, this is not what you
want, and which should be used unless you do want to make some use of the NA
elements.

In this section, we have generated a number of R data objects. Some of
these were numeric (e.g. vector of heights, tmphgt) and some were character,
or string (e.g. vector of study IDs, tmpids). Some times you need to figure
out what is the class of a certain object. This can be done using the class()
function. For example,

> tmphgt

[1] 150 175 182 173 192 168

> class(tmphgt)

[1] "numeric"

> tmpids

[1] "fem1" "fem2" "man1" "fem3" "man2" "man3"

> class(tmpids)

[1] "character"

What happens if we try to find out the class of

> a

[,1] [,2] [,3]
[1,] 11 21 31
[2,] 12 NA 32
[3,] 13 23 33

– an object, which contains a matrix?

> class(a)

[1] "matrix"

Results are expected – we find out that a is a matrix, which is correct. At
the same time, a matrix is an upper-level class, which contains a number of
elemnts, belonging to some lower-level (e.g. character/numeric) class. To see
what is the class of the matrix’s elements, try

> a[1, ]

[1] 11 21 31

> class(a[1, ])

[1] "numeric"
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which says that elemnts (at least of the first row) are numeric. Because all
elements of a matrix should have the same class, we can conclude that a is a
matrix containing numeric values.

At this point, it is worthwile inspecting what data objects were created
during our work. This can be done with the ls() command:

> ls()

[1] "a" "b" "dje" "ov" "tmphgt" "tmpids" "v" "vec"

Obviously, this ”list” command is very useful – you will soon find that it is
just too easy to forget the name of a variable which it took long time to create.
Some times you may wish to remove some of the data objects because you do
not need then anymore. You can remove an object using the rm() command,
where the names of objects to be deleted are listed as arguments. For example,
to remove tmphgt and tmpids variable you can use

> rm(tmphgt, tmpids)

If you now look up what data obejcts are still left in you workspace with the
ls() command

> ls()

[1] "a" "b" "dje" "ov" "v" "vec"

you find that you have successfully deleted tmphgt and tmpids.
At this point, you can exit R by typing q() on the command line and pressing

Enter.

Summary:

• You can get access to the top-level R documentation by help.start()
command. To search help for some keyword keywrd, you can use
help.search(keywrd) command. To get description of some function
fun, use help(fun).

• You can use R as a powerful calculator

• It is possible to get sub-sets of vectors and matrices by specifying index
value or a logical condition (of the same length as the vector / matrix)
between square brackets ([, ])

• When you obtain an element of a matrix with [i,j], i is the row and j
is the column of the matrix.

• Function which(A) returns index of the elements of A which are TRUE

• You can see objects available in your workspace by using the ls() com-
mand

• Unnecessary object (say, tmphgt) can be deleted from the workspace using
rm command, e.g. rm(tmphgt)

• You can leave R using the q() command
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Exercise 1.

In this exercise, you will explore few vectors representing different data on study subjects
described in srdta example data set supplied together with GenABEL . First, you need to load
GenABEL by typing

> library(GenABEL)

and load the data by

> data(srdta)

The vector containing study subjects sex can be accessed through srdta@gtdata@male; this
vector’s value is one when the corresponding person is male and zero otherwise. The vector
containing SNP names can be accessed via srdta@gtdata@snpnames, chromosome ID – through
srdta@gtdata@chromosome and map – through srdta@gtdata@map. Explore these vectors and
answer the questions.

1. What is the ID and sex of the first person in the data set?

2. Of the 22nd person?

3. How many males are observed among first hundred subjects?

4. How many FEMALES are among 4th hundred?

5. What is the male proportion in first 1000 people?

6. What is the FEMALE proportion in second 1000 (1001:2000) people?

7. What is name, chromosome and map position of 33rd maker?

8. What is distance between markers 25 and 26?

2.2 Data frames

A data frame is a class of R data, which, basically, is a data table. In such
tables, it is usually assumed that rows correspond to subjects (observations) and
columns correspond to variables (characteristics) measured on these subjects.
A nice feature of data frames is that columns (variables) have names, and the
data can be addressed by referencing to these names4.

We will explore R data frames using example data set assoc. Start R with
double-click on the file named assocbase.RData. You can see the names of the
loaded objects by using the ”list” command:

> ls()

[1] "assoc"

Thus, only one object is loaded. The class of this object is:

> class(assoc)

[1] "data.frame"

– a data frame.
The dimensionality of a data frame (or a matrix) can be determined by using

the dim() command:

> dim(assoc)

4This may also be true for matrices; more fundamental difference is though that a matrix
always contains variables of the same data type, e.g. character or numeric, while a data frame
may contain variables of different types
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[1] 250 7

Here, the first number corresponds to the number of rows (subjects) and the
second to the number of columns (variables). Thus, the data frame assoc
contains the data on 250 subjects, who are characterised by 7 variables each.

Let us now figure out what are the names of the 7 variables present in the
data frame. To see what are the variable names, use the command names():

> names(assoc)

[1] "subj" "sex" "aff" "qt" "snp4" "snp5" "snp6"

These variables correspond to the personal identifier (ID, variable subj),
sex, affection status, quantitative trait qt and several SNPs. Each variable can
have its own type (numeric, character, logic), but all variables must have the
same length – thus forming a matrix-like data structure.

A variable from a data frame (say, fram), which has some name (say, nam)
can be accessed through fram$nam. This will return a conventional vector,
containing the values of the variable. For example to see the affection status
(aff) in the data frame assoc, use

> assoc$aff

[1] 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
[26] 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 NA 0 0 0 0 0 0
[51] 1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
[76] 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 NA 0 0 0 0
[101] 1 0 0 1 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0
[126] 1 0 0 0 1 0 0 0 1 0 1 NA 1 0 0 0 0 0 0 0 0 0 1 0 0
[151] 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
[176] 0 0 1 1 NA 0 0 0 0 1 1 1 1 0 NA 1 0 0 0 0 0 0 1 1 0
[201] 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0
[226] 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0

The aff (affected) variable here codes for a case/control status, conventi-
nally, the cases are coded as ”1” and controls as ”0”. You can also see several
”NA”s, which stays for missing observation.

Exercise 2.

Investigate types of the variables presented in data frame assoc. For each variable, write
down the class.

Data frame may be thought of as a matrix which is a collection of (potentily
different-type) vectors. All sub-setting operations discussed before for matrices
are applicable to a data frame, while all operations dicussed for vectors are
applicable to data frame’s variables.

Thus, as any particular variable present in a data frame is a conventional
vector, its elements can be accessed using the vector’s indices. For example, if
you would like to know what are the ID, sex and affection status for the person
with index 75, you can request

> assoc$subj[75]

[1] 1409



20 CHAPTER 2. INTRODUCTION TO R

> assoc$sex[75]

[1] 1

> assoc$aff[75]

[1] 0

Alternatively, using the matrix-style of sub-setting, you can see all the data
for person 75:

> assoc[75, ]

subj sex aff qt snp4 snp5 snp6
75 1409 1 0 1.014664 A/B B/A B/B

In the same manner as with matrices, you can get data for e.g. subjects 5
to 15 by

> assoc[5:15, ]

subj sex aff qt snp4 snp5 snp6
5 1533 0 0 0.1009220 A/B B/A B/A
6 2466 1 0 -0.1724321 A/B A/A A/A
7 2425 0 0 -0.3378473 B/B A/A A/A
8 1068 0 0 -1.7112925 A/A B/B <NA>
9 198 1 0 -0.4815822 A/B B/A B/A
10 1496 1 0 1.2281232 A/A B/B B/B
11 909 0 0 0.5993945 A/B B/A B/A
12 1213 0 0 1.9792190 A/A B/B B/B
13 181 1 0 1.5435921 A/A B/B B/B
14 1783 0 0 -1.6242738 A/B B/A B/A
15 1914 0 0 -0.5160331 A/A B/B B/B

The result is actually a new data frame containing data only on people with
index from 5 to 15:

> x <- assoc[5:15, ]

> class(x)

[1] "data.frame"

> dim(x)

[1] 11 7

As well as with matrices and vectors, it is possible to sub-set elements of a
data frame based on (a combination of) logical conditions. For example, if you
are interested in people who have the qt values over 1.4, you can find out what
are the indices of these people

> vec <- which(assoc$qt > 1.4)

> vec
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[1] 12 13 33 41 54 68 72 76 89 106 118 142 156 161 175 181 193 219 241

and then show the compelte data with

> assoc$subj[vec]

[1] 1213 181 1737 1319 516 1355 186 1426 1284 822 2129 212 1443 704 1648
[16] 1628 562 858 698

At the same time, if you only want to check what are the IDs of these people,
try

> assoc$subj[vec]

[1] 1213 181 1737 1319 516 1355 186 1426 1284 822 2129 212 1443 704 1648
[16] 1628 562 858 698

Or, if we are interested to find what are the IDs and what are the SNP
genotypes of these people, we can try

> assoc[vec, c(1, 5, 6, 7)]

subj snp4 snp5 snp6
12 1213 A/A B/B B/B
13 181 A/A B/B B/B
33 1737 A/A B/B B/B
41 1319 A/A B/A B/A
54 516 A/B B/A B/A
68 1355 A/A B/B B/B
72 186 A/A B/A B/A
76 1426 A/B B/A B/A
89 1284 A/A B/B B/B
106 822 A/B B/A B/A
118 2129 A/B B/A B/A
142 212 A/B B/A B/A
156 1443 A/A B/B B/B
161 704 A/B B/A B/A
175 1648 A/B B/A B/A
181 1628 A/B B/A B/A
193 562 A/A B/B B/B
219 858 A/B B/A B/A
241 698 B/B A/A A/A

here, we select people identified by vec in the first dimension (subjects), and by
c(1,5,6,7) we select first, fifth, sixth and seventh column (variable).

The same result can be obtained using variables’ names insted of the vari-
ables’ indices. To remind you the variables’ names:

> names(assoc)

[1] "subj" "sex" "aff" "qt" "snp4" "snp5" "snp6"

And now make a vector of the variables’ names of interest and filter the data
based on it:
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> namstoshow <- c("subj", "snp4", "snp5", "snp6")

> assoc[vec, namstoshow]

subj snp4 snp5 snp6
12 1213 A/A B/B B/B
13 181 A/A B/B B/B
33 1737 A/A B/B B/B
41 1319 A/A B/A B/A
54 516 A/B B/A B/A
68 1355 A/A B/B B/B
72 186 A/A B/A B/A
76 1426 A/B B/A B/A
89 1284 A/A B/B B/B
106 822 A/B B/A B/A
118 2129 A/B B/A B/A
142 212 A/B B/A B/A
156 1443 A/A B/B B/B
161 704 A/B B/A B/A
175 1648 A/B B/A B/A
181 1628 A/B B/A B/A
193 562 A/A B/B B/B
219 858 A/B B/A B/A
241 698 B/B A/A A/A

A more convenient way to access data presented in a data frame is through
”attaching” it to the R search path by

> attach(assoc)

After that, the variables can be accessed directly, e.g.

> subj[75]

[1] 1409

instead of assoc$subj[75].
While it is possible to explore the data presented in a data frame using

the sub-setting operations and screen output, and modify certain data elements
using the assignment (”<-”) operation, you can also explore and modify the data
contained in a data frame5 by using fix() command (e.g. try fix(assoc)).
However, normally this is not necessary.

With attached data frames, a possible complication is that later on you may
have several data frames which contain the variables with the same names. The
variable which will be used when you directly use the name would be the one
from the data frame attached last. You can use detach() function to remove a
certain data frame from the search path, e.g. after

> detach(assoc)

we can not use direct reference to the name (try subj[75]) anymore, but have
to use the full path instead:

5and also a matrix
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> assoc$subj[75]

[1] 1409

Summary:

• The list of available objects can be viewed with ls(); a class of some
object obj can be interrogated with class(obj).

• Simple summary statistics for numeric variables can be generated by using
summary function

• Histogram for some variable var can be generated by hist(var)

• A variable with name name from a data frame frame, can be accessed
through frame$name.

• You can attach the data frame to the search path by attach(frame).
Then the variables contained in this data frame may be accessed directly.
To detach the data frame (because, e.g., you are now interested in other
data frame), use detach(frame).

Exercise 3.

Load the srdta data object supplied with GenABEL by loading the package with li-

brary(GenABEL) and then loading the data with data(srdta). The srdta object contains
a data frame with phenotypes. This data frame may be accessed through srdta@phdata.
Explore this data frame and answer the questions

1. What is the value of the 4th variable for the subject number 75?

2. What is the value of variable 1 for person 75? Check what is the value of this variable
for the first ten people. Can you guess what first variable is?

3. What is the sum of variable 2? Can you guess what data variable 2 contains?

2.3 Exploratory analysis of qualitative and quan-
titative traits

Let us now attach the data frame asscoc

> attach(assoc)

and explore it.
Let us first check how many of the subjects are males. In the sex variable,

males are coded with ”1” and females with ”0”. Therefore to see the numer of
males, you can use

> sum(sex == 1)

[1] 129

and to determine what is male sex proportion you can use
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> sum(sex == 1)/length(sex)

[1] 0.516

This way to compute the proportion would only work correctly if there are no
missing observations (lenght() returns the total length of a variable, including
NAs).

Because of the way the males are coded, the same answer is reached by

> mean(sex)

[1] 0.516

However, that would not have worked if the sex was coded differently, e.g.
with ”1” for males and ”2” for females.

Let us now try to find out the mean of the quantitative trait qt. By defini-
tion, the mean of a variable, say x (with i-th element denoted as xi) is

x̄ =
ΣNi=1xi
N

where N is the number of measurements.
If we try to find out the mean of qt by direct use of this formula, we first

need to find out the sum of the qt’s elements. The sum() function of R precisely
does the operation we need. However, if we try it

> sum(qt)

[1] NA

this returns ”NA”. The problem is that the qt variable contains ”NA”s (try qt
to see these) and by default the ”NA” is returned. We can, however, instruct
the sum() function to remove ”NA”s from consideration:

> sum(qt, na.rm = T)

[1] -26.4733

where na.rm=T tells R that missing variables should be be removed (NonAvail-
able.ReMove=True)6.

We can now try to compute the mean with

> sum(qt, na.rm = T)/length(qt)

[1] -0.1058932

This result, however, is not correct. The length() function returns the total
length of a vector, which includes ”NA”s as well. Thus we need to compute the
number of the qt’s elements, which are not missing.

For this, we can use R function is.na(). This function returns TRUE if sup-
plied argument is missing (NA) and FALSE otherwise. Let us apply this function
to the vector assoc$qt:

6The same argument works for a number of R statistical functions such as mean, median,
var, etc
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> is.na(qt)

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
[25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[37] TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
[49] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
[133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[157] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[217] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

Indeed, the 7 missing elements are correctly identified. However, we are
interested in elements which are not missing. To get these, we can use the
logical function NOT (!), which changes all FALSE to TRUE and visa versa:

> !is.na(qt)

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[13] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
[25] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[37] FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
[49] TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[61] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[73] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[85] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[97] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[109] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[121] TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
[133] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[145] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[157] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
[169] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[181] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[193] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
[205] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[217] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[229] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[241] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
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Thus the number of elements which are not missing7 is

> sum(!is.na(qt))

[1] 243

Finally, we can compute the mean of the qt with

> sum(qt, na.rm = T)/sum(!is.na(qt))

[1] -0.1089436

While this way of computing the mean is enlightening in the sense of how
to treat the missing values, the same correct result should be normally achieved
by supplying the na.rm=T argument to the mean() function:

> mean(qt, na.rm = T)

[1] -0.1089436

The function table(x) produces a frequency table for the variable x. Thus,
we can use

> table(sex)

sex
0 1

121 129

which, again, tells us that there are 129 males and 121 females in this data set.
This function excludes missing observations form consideration.

Tables of other qualitative variables, such as affection and SNPs, can be
generated in the same manner.

As with arithmetic operations and mathematical functions, most of the R
operations can be combined within a single line. Let us try to combine logical
conditions and the table() command to check the distribution of number of
affected in men and women separately:

> table(aff[which(sex == 1)])

0 1
95 31

> table(aff[which(sex == 0)])

0 1
95 24

On R command line pressing the ”up-arrow” button makes the last typed

command re-appear (pressing it one more time will bring you to the one

before the last, so on). This is very handy when you have to repeat the same

analysis of different variables

7A hidden trick here is that arithmetic operations treat TRUE as one and FALSE as zero
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Exercise 4.

Explore qualitative variables presented in assoc

1. How many affected and unaffected are present in the data set?

2. What is the proportion of affected?

3. What is the distribution of snp4 (how many different genotype classes are present and
what are the counts)?

Contingency tables for pairs of variables (cross-tables) can be generated in R
using the table command we have used in previous section to explore frequency
distributions. For example, if you want cross-tabulate sex and affection status
in the data frame assoc, you can use

> table(sex, aff)

aff
sex 0 1
0 95 24
1 95 31

Here, the first variable (sex) is presented in rows and the second (affection
status) in columns.

As is usually the case with R, the output may be saved as a new object (of
class ’table’, which is a variety of a matrix):

> a <- table(sex, aff)

> class(a)

[1] "table"

> a

aff
sex 0 1
0 95 24
1 95 31

and this object may be analysed further.
For example, we can easily get the number of affected male with

> a[2, 2]

[1] 31

Alternatively, we can analyse the resulting contingency table a with more
complex functions. If we want to see proportions in this table, we can use

> prop.table(a)

aff
sex 0 1
0 0.38775510 0.09795918
1 0.38775510 0.12653061

Needless to say, this is equivalent to
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> prop.table(table(assoc$sex, assoc$aff))

0 1
0 0.38775510 0.09795918
1 0.38775510 0.12653061

In the above table, we see what proportion of people belong to four dif-
ferent classes (affected male, affected female, unaffected male and unaffected
female). We may be though interested in the proportion of males in affected
and unaffected. This may be achieved by

> prop.table(a, 2)

aff
sex 0 1
0 0.5000000 0.4363636
1 0.5000000 0.5636364

saying us that 56.4% of affected are male.
Alternatively, we may be interested in proportion of affected among males/females.

To answer this question, run

> prop.table(a, 1)

aff
sex 0 1
0 0.7983193 0.2016807
1 0.7539683 0.2460317

saying us that 56.4% of male are affected.
Other useful contingency table analysis function is fisher.test, which im-

plements the Fisher Exact Test of independence:

> fisher.test(a)

Fisher's Exact Test for Count Data

data: a
p-value = 0.4457
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.676759 2.482869
sample estimates:
odds ratio
1.290313

Exploration of genetic data within base R, though possible, may be a bit
of a pain. For example, we can easily generate contingency table of SNP5 vs
affected status:

> a <- table(aff, snp5)

> a
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snp5
aff A/A B/A B/B
0 31 88 68
1 8 26 17

We can also look up what is the proportion of affected among different genotypic
groups

> prop.table(a, 2)

snp5
aff A/A B/A B/B
0 0.7948718 0.7719298 0.8000000
1 0.2051282 0.2280702 0.2000000

showing that proportion of cases is similar in ’A/A’ and ’A/B’ genotypic groups
and somewhat decreased in ’B/B’. It is easy to test if this affection is statistically
independent of genotype by

> chisq.test(a)

Pearson's Chi-squared test

data: a
X-squared = 0.2511, df = 2, p-value = 0.882

which gives (insignificant) genotypic association test on two degrees of freedom.
However, testing Hardy-Weinberg equilibrium, testing allelic effects, and

even computation of allelic frequency is not so straightforward. Such specific ge-
netic tests are implemented in special R libraries, such as genetics and GenABEL
and will be covered in later sections of this document.

At this moment we will switch to exploratory analysis of quantitative traits.
We will make use of the srdta data supplied with GenABEL . As you can re-
member from an exercise, the library is loaded with library(GenABEL) and the
data are loaded with data(srdta): Then the phenotypic data frame may be
accessed through srdta@phdata.

Exercise 5.

Explore srdta@phdata. How many observations and variables are presented in the data
frame? What are the classes of these variables?

As it was mentioned before, the function summary() generates a summary
statistics for an object. For example, to see summary for trait qt1, we can use

> summary(srdta@phdata$qt1)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
-4.6000 -0.9500 -0.3100 -0.2981 0.3800 3.2000 3.0000

summary is quite useful function which may operate in different ways for

objects of different classes. Try summary(srdta@phdata).
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Histogram of srdta@phdata$qt1
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Figure 2.1: Histogram of qt1

With R, it is also easy to explore the data graphically. For example, the
histogram for qt1 may be generated by

> hist(srdta@phdata$qt1)

(resulting histogram is shown at figure 2.1)
In similar manner, scatter-plots may be generated. To see relation between

qt1 and qt3, you can run

> plot(srdta@phdata$qt1, srdta@phdata$qt3)

(resulting plot is shown at figure 2.2)
The mean, median, minimum and maximum of the distribution of the trait

may be found out using functions mean, median, min and max, respectively. The
variance and standard deviation can be computed with var and sd.

To compute correlation between two variables (or all variables in a ma-
trix/data frame), use cor.

In GenABEL , there is a special function designed to facilitate phenotypic
quality control. This function takes names of variables and a data frame as
an input, and returns summary statistics, list of outliers (using False Discovery
Rate) and graphs.

For example, to do QC of sex, age and qt3, try

> check.trait(c("sex", "age", "qt3"), srdta@phdata)
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Figure 2.2: Scatter-plot of qt1 against qt3
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Figure 2.3: Quality control graph for sex, age, qt3

--------------------------------
Trait sex has 2500 measurements
Missing: 0 ( 0 %)
Mean = 0.51 ; s.d. = 0.5
NO outliers discovered for trait sex
--------------------------------
Trait age has 2500 measurements
Missing: 0 ( 0 %)
Mean = 50.0378 ; s.d. = 7.060125
NO outliers discovered for trait age
--------------------------------
Trait qt3 has 2489 measurements
Missing: 11 ( 0.44 %)
Mean = 2.60859 ; s.d. = 1.101154
NO outliers discovered for trait qt3

The corresponding graph is depicted at figure ??.

Before you start with the exercise: if a function returns unexpected results,

and you are confident that syntax was right, checking help page is always a

good idea!
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Exercise 6.

Explore phdata slot of srdta

1. How many people has age over 65 years?

2. What is the sex distribution (proportion of males) in the people over 65 years old?

Exercise 7.

Explore variables in phdata slot of srdta

1. What is the mean, median, minimum and maximum age in the sample?

2. Compare the distribution of qt3 in people younger and older than 65 years. Use function
sd(A) to get standard deviation of A.

3. Produce distributions of different traits. Do you see something special?

4. What is correlation between qt3 and age?

2.4 Regression analysis

While contingency tables, bi-plots and correlation are powerful tools to analyse
relations between pairs of variable, a more general framework allowing investiga-
tion of relation of an outcome to multiple predictors is regression. In R, function
lm implements linear regression modelling, and function glm implements gen-
eralised linear regression. In this section, we will use these two functions to
analyse quantitative an binary outcomes.

You can do linear regression to check if trait qt2 has relation with sex and
age by

> a <- lm(srdta@phdata$qt2 ~ srdta@phdata$age + srdta@phdata$sex)

The results of analysis are stored in object ’a’, which has class ’lm’ and
contains may sub-objects:

> class(a)

[1] "lm"

> names(a)

[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "xlevels" "call" "terms" "model"

At this moment you do not need to understand all these sub-objects; the
meaningful summary of analysis is produced with

> summary(a)

Call:
lm(formula = srdta@phdata$qt2 ~ srdta@phdata$age + srdta@phdata$sex)

Residuals:
Min 1Q Median 3Q Max

-5.6498 -1.7953 -1.0328 -0.3148 883.0808
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.55892 4.41667 -0.353 0.724
srdta@phdata$age 0.14022 0.08668 1.618 0.106
srdta@phdata$sex 1.30377 1.22393 1.065 0.287

Residual standard error: 30.59 on 2497 degrees of freedom
Multiple R-squared: 0.001518, Adjusted R-squared: 0.0007181
F-statistic: 1.898 on 2 and 2497 DF, p-value: 0.1501

You can see that qt2 is not associated with age or sex.
As before, to make easy access to your data (basically, to avoid typing

srdta@phdata before every trait name, you may attach the data to the search
path:

> attach(srdta@phdata)

Then,the above expression to run linear regression analysis simplifies to:

> summary(lm(qt2 ~ age + sex))

Call:
lm(formula = qt2 ~ age + sex)

Residuals:
Min 1Q Median 3Q Max

-5.6498 -1.7953 -1.0328 -0.3148 883.0808

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.55892 4.41667 -0.353 0.724
age 0.14022 0.08668 1.618 0.106
sex 1.30377 1.22393 1.065 0.287

Residual standard error: 30.59 on 2497 degrees of freedom
Multiple R-squared: 0.001518, Adjusted R-squared: 0.0007181
F-statistic: 1.898 on 2 and 2497 DF, p-value: 0.1501

with the same results.
Analysis of binary outcomes may be performed using glm function, using

binomial family for the error distribution and the link function. For example,
to figure out if your binary trait (bt) is associated with sex and age, you need
to tell that this is binary trait:

> a <- glm(bt ~ age + sex, family = "binomial")

> summary(a)

Call:
glm(formula = bt ~ age + sex, family = "binomial")

Deviance Residuals:
Min 1Q Median 3Q Max
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-1.992 -1.091 -0.444 1.094 1.917

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.639958 0.330519 -14.038 < 2e-16 ***
age 0.088860 0.006463 13.749 < 2e-16 ***
sex 0.379593 0.084138 4.512 6.44e-06 ***
---
Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 3450.5 on 2488 degrees of freedom
Residual deviance: 3216.5 on 2486 degrees of freedom
(11 observations deleted due to missingness)

AIC: 3222.5

Number of Fisher Scoring iterations: 4

There is strong association between bt and sex and age. If you want to
characterise the strength of association to a binary trait with Odds Ratios,
take the exponents of the regression coefficient. For example, the odds ratio
associated with male is

> exp(0.3796)

[1] 1.461700
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Chapter 3

Introduction to genetic
association analysis in R

When analyzing several (dozens of) SNPs, facilities of base R are sufficient
and efficient for data storage and analysis. Few specific test, such as these
of Hardy-Weinberg Equilibrium (HWE) and Linkage Disequilibrium (LD), are
implemented in different libraries, e.g. genetics and GenABEL .

In this section, we will describe library genetics and will make use of it to
guide you through simple genetic analysis exercise using a small example data
set. In the last part, you will investigate a bigger data set as based on the
knowledge obtained in the first part, and will answer the questions.

3.1 Characterisation of genetic data

3.2 Exploring genetic data with library genetics

Library genetics was written by Gregory R. Warnes to facilitate analysis of
genetic data in R. This library

• Implements genetic analysis tests, such as test for Hardy-Weinberg equi-
librium and Linkage disequilibrium.

• Implements new data classes, such as genotype, haplotype and LD.data.frame.

• Modifies default R functions, such as summary and plot to correctly anal-
yse and present these new classes.

• Facilitates export of the data from R to the formats supported by such
genetic analysis packages as GenePop and QTDT.

Start R by double-click on the file ge03d1p1.RData. Load library genetics,
which we will need for testing HWE and computations of LD by

> library(genetics)

The file you have loaded contains single data frame assocg. Let us briefly
explore it:

37
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> class(assocg)

[1] "data.frame"

> names(assocg)

[1] "subj" "sex" "aff" "qt" "snp4" "snp5" "snp6"

> dim(assocg)

[1] 250 7

You can see that assocg looks remarkably similar to the previously explored
data frame assoc (section 2.2, page 18). Indeed, they are almost equivalent.
Let us present the data for the subjects 5 to 15 and compare this output to that
presented on page 20:

> assocg[5:15, ]

subj sex aff qt snp4 snp5 snp6
1533 1533 0 0 0.1009220 A/B B/A B/A
2466 2466 1 0 -0.1724321 A/B A/A A/A
2425 2425 0 0 -0.3378473 B/B A/A A/A
1068 1068 0 0 -1.7112925 A/A B/B <NA>
198 198 1 0 -0.4815822 A/B B/A B/A
1496 1496 1 0 1.2281232 A/A B/B B/B
909 909 0 0 0.5993945 A/B B/A B/A
1213 1213 0 0 1.9792190 A/A B/B B/B
181 181 1 0 1.5435921 A/A B/B B/B
1783 1783 0 0 -1.6242738 A/B B/A B/A
1914 1914 0 0 -0.5160331 A/A B/B B/B

The data are identical. However, the SNP data presented in the new data frame
have special class genotype, as implemented in genetics library:

> class(assocg$snp4)

[1] "genotype" "factor"

Previously, the SNP genotypes were coded as characters. This new way of
presentation allows library genetics to recognise the SNP data as genetic and
analyse them accordingly.

Let us attach the assocg data frame and explore what data analysis advan-
tages are achieved by application of library genetics.

> attach(assocg)

As we noted in section 2.2, testing Hardy-Weinberg equilibrium, testing al-
lelic effects, and even computation of allelic frequency is not so straightforward
in base R. These tests, are, however, easy with library genetics. To see the
allelic frequencies and other summary statistics for a SNP, you can use

> summary(snp4)
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Number of samples typed: 243 (97.2%)

Allele Frequency: (2 alleles)
Count Proportion

A 323 0.66
B 163 0.34
NA 14 NA

Genotype Frequency:
Count Proportion

B/B 29 0.12
A/B 105 0.43
A/A 109 0.45
NA 7 NA

Heterozygosity (Hu) = 0.4467269
Poly. Inf. Content = 0.3464355

To check these characteristics in controls and cases separately, you can use

> summary(snp4[aff == 0])

Number of samples typed: 190 (97.9%)

Allele Frequency: (2 alleles)
Count Proportion

A 255 0.67
B 125 0.33
NA 8 NA

Genotype Frequency:
Count Proportion

B/B 22 0.12
A/B 81 0.43
A/A 87 0.46
NA 4 NA

Heterozygosity (Hu) = 0.4426469
Poly. Inf. Content = 0.3440288

> summary(snp4[aff == 1])

Number of samples typed: 53 (94.6%)

Allele Frequency: (2 alleles)
Count Proportion

A 68 0.64
B 38 0.36
NA 6 NA
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Genotype Frequency:
Count Proportion

B/B 7 0.13
A/B 24 0.45
A/A 22 0.42
NA 3 NA

Heterozygosity (Hu) = 0.4643306
Poly. Inf. Content = 0.3541731

Let us check if HWE holds for the SNPs described in this data frame. We
can do exact test for HWE by

> HWE.exact(snp4)

Exact Test for Hardy-Weinberg Equilibrium

data: snp4
N11 = 109, N12 = 105, N22 = 29, N1 = 323, N2 = 163, p-value = 0.666

If you want to check HWE using controls only, you can do it by

> HWE.exact(snp4[aff == 0])

Exact Test for Hardy-Weinberg Equilibrium

data: snp4[aff == 0]
N11 = 87, N12 = 81, N22 = 22, N1 = 255, N2 = 125, p-value = 0.6244

Let us check if the there is LD between snp4 and snp5:

> LD(snp4, snp5)

Pairwise LD
-----------

D D' Corr
Estimates: 0.2009042 0.9997352 0.8683117

X^2 P-value N
LD Test: 354.3636 0 235

The output shows results of the test for significance of LD, and estimates of the
magnitude of LD (D′ and correlation, r). To obtain r2, you can either square
the correlation manually

> 0.8683117 * 0.8683117

[1] 0.7539652

or simply ask LD() to report it by

> LD(snp4, snp5)$"R^2"
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[1] 0.7539652

The latter command is possible because the LD() function actually computes
more things than it reports. This is quite common for R functions. You can
apply names() function to the analysis objects to see (at least part of) what
was actually computed. Try

> ld45 <- LD(snp4, snp5)

and check what are the sub-objects contained in this analysis object

> names(ld45)

[1] "call" "D" "D'" "r" "R^2" "n" "X^2"

[8] "P-value"

Any of these variables can be accessed through object$var syntax, e.g. to
check D′ we can use

> ld45$"D'"

[1] 0.9997352

To check LD for more that two SNPs, we can compute an LD analysis object
by

> ldall <- LD(data.frame(snp4, snp5, snp6))

and later check

> ldall$"P-value"

snp4 snp5 snp6
snp4 NA 0 0
snp5 NA NA 0
snp6 NA NA NA

to see significance,

> ldall$"D'"

snp4 snp5 snp6
snp4 NA 0.9997352 0.8039577
snp5 NA NA 0.9997231
snp6 NA NA NA

for D′ and

> ldall$"R^2"

snp4 snp5 snp6
snp4 NA 0.7539652 0.5886602
snp5 NA NA 0.8278328
snp6 NA NA NA

for r2.
You can also present e.g. r2 matrix as a plot by
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Figure 3.1: r2 plot for snp4, snp5 and snp6

> image(ldall$"R^2")

A more neat way to present it requires specification of the set of threshold
(break points) and colors to be used (you do not need to try this example if you
do not want):

> image(ldall$"R^2", breaks = c(0.5, 0.6, 0.7, 0.8, 0.9, 1), col = heat.colors(5))

Resulting plot is shown at figure 3.1.

For any R command, you can get help by typing help(command). Try

help(image) if you are interested to understand what are ”breaks” and ”col”;

or try help(heat.colors) to figure this color schema out.

Similar to our HWE checks, we may want to compute (and compare) LD in
cases and controls separately:

> ldcases <- LD(data.frame(snp4, snp5, snp6)[aff == 1, ])

> ldcases$"R^2"

snp4 snp5 snp6
snp4 NA 0.7615923 0.6891558
snp5 NA NA 0.8943495
snp6 NA NA NA
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Figure 3.2: r2 plot for snp4, snp5 and snp6. Above diagonal: LD in cases;
below: controls

> ldcontr <- LD(data.frame(snp4, snp5, snp6)[aff == 0, ])

> ldcontr$"R^2"

snp4 snp5 snp6
snp4 NA 0.7512458 0.5616395
snp5 NA NA 0.8075894
snp6 NA NA NA

and even present it results for cases and controls on the same graph (you do not
need to produce this graph, which is presented at the figure 3.2):

> image(ldcases$"R^2", breaks = c(0.5, 0.6, 0.7, 0.8, 0.9, 1),

+ col = heat.colors(5))

> image(t(ldcontr$"R^2"), breaks = c(0.5, 0.6, 0.7, 0.8, 0.9, 1),

+ col = heat.colors(5), add = T)

3.3 Genetic association analysis

3.4 Example association analysis

Now, after we have described genetic and phenotypic data separately, we are
ready to test association between these two. In previous sections, we showed
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that association between a binary trait and genotype may be analysed using
contingency tables (functions table, prop.table, fisher.test, etc.). The
association between a quantitative trait and genotype may be done using cor-
relations, T-test, etc.

However, a more flexible analysis is possible when using regression modelling.
First, we will investigate relation between the quantitative trait qt and the SNPs
by using linear regression

> mg <- lm(qt ~ snp4)

The lm command fits linear regression model to the data and returns an analysis
object. The summary of analysis may be generated with

> summary(mg)

Call:
lm(formula = qt ~ snp4)

Residuals:
Min 1Q Median 3Q Max

-2.63700 -0.62291 -0.01225 0.58922 3.05561

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.081114 0.092517 -0.877 0.382
snp4A/B -0.108366 0.132079 -0.820 0.413
snp4B/B -0.006041 0.201820 -0.030 0.976

Residual standard error: 0.9659 on 240 degrees of freedom
(7 observations deleted due to missingness)

Multiple R-squared: 0.003049, Adjusted R-squared: -0.005259
F-statistic: 0.367 on 2 and 240 DF, p-value: 0.6932

From the summary output, it is clear that the model assumes arbitrary (esti-
mated) effects of the genotypes AA, AB and BB. Neither effect of AB nor BB
is significant in this case. The global test on two degrees of freedom (bottom of
the output) is also not significant.

If you want to include some covariate into your model, e.g. sex, you can
easily do that by adding the term to the formula:

> summary(lm(qt ~ sex + snp4))

Call:
lm(formula = qt ~ sex + snp4)

Residuals:
Min 1Q Median 3Q Max

-2.664422 -0.624169 -0.008752 0.597045 3.080857

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.110298 0.115260 -0.957 0.340
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sex 0.053018 0.124493 0.426 0.671
snp4A/B -0.104429 0.132628 -0.787 0.432
snp4B/B -0.002452 0.202340 -0.012 0.990

Residual standard error: 0.9676 on 239 degrees of freedom
(7 observations deleted due to missingness)

Multiple R-squared: 0.003805, Adjusted R-squared: -0.0087
F-statistic: 0.3043 on 3 and 239 DF, p-value: 0.8223

You can also allow for interaction by using the ”*” operator

> summary(lm(qt ~ sex * snp4))

Call:
lm(formula = qt ~ sex * snp4)

Residuals:
Min 1Q Median 3Q Max

-2.570485 -0.645961 -0.002641 0.610938 3.019696

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.20579 0.13834 -1.487 0.138
sex 0.22649 0.18647 1.215 0.226
snp4A/B 0.05222 0.19024 0.274 0.784
snp4B/B 0.18071 0.28576 0.632 0.528
sex:snp4A/B -0.30191 0.26566 -1.136 0.257
sex:snp4B/B -0.35508 0.40531 -0.876 0.382

Residual standard error: 0.9684 on 237 degrees of freedom
(7 observations deleted due to missingness)

Multiple R-squared: 0.01041, Adjusted R-squared: -0.01047
F-statistic: 0.4984 on 5 and 237 DF, p-value: 0.7773

Note that both main effects of sex and snp4, and also effects of interaction are
estimated in this model.

Of interest in genetic studies may be three other models: additive, dominant
and recessive.

The additive model assumes that the difference between mean trait’s values
between ’AA’ and ’BB’ is twice the difference between ’AA’ and ’BB’, that is
the mean value of the trait for heterozygous genotypes is right in between the
two homozygotes. To test additive model, we first need to recode the predictor
(genotype) as a numeric factor to be used as covariate. This can be easy done
with function as.numeric:

> add4 <- as.numeric(snp4) - 1

We can check if recoding was done correctly by producing the table

> table(snp4, add4)
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add4
snp4 0 1 2
A/A 109 0 0
A/B 0 105 0
B/B 0 0 29

Now to test the additive model run

> summary(lm(qt ~ add4))

Call:
lm(formula = qt ~ add4)

Residuals:
Min 1Q Median 3Q Max

-2.54813 -0.62104 -0.02754 0.60584 3.00652

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.10476 0.08710 -1.203 0.230
add4 -0.03563 0.09133 -0.390 0.697

Residual standard error: 0.9651 on 241 degrees of freedom
(7 observations deleted due to missingness)

Multiple R-squared: 0.0006313, Adjusted R-squared: -0.003516
F-statistic: 0.1522 on 1 and 241 DF, p-value: 0.6968

The model assuming dominant action of the ’A’ allele means that the means
of genotypes ’AA’ and ’AB’ are the same. This is equivalent to the model of
recessive action of ’B’ allele. To code SNP4 according to this model, we can use
function replace:

> dom4 <- add4

> dom4[dom4 == 2] <- 1

> table(snp4, dom4)

dom4
snp4 0 1
A/A 109 0
A/B 0 105
B/B 0 29

To test association with a binary outcome, we will use function glm with
binomial family:

> summary(glm(aff ~ snp4, family = "binomial"))

Call:
glm(formula = aff ~ snp4, family = "binomial")

Deviance Residuals:
Min 1Q Median 3Q Max
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-0.7433 -0.7204 -0.6715 -0.6715 1.7890

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.3749 0.2386 -5.761 8.35e-09 ***
snp4A/B 0.1585 0.3331 0.476 0.634
snp4B/B 0.2297 0.4952 0.464 0.643
---
Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 254.91 on 242 degrees of freedom
Residual deviance: 254.58 on 240 degrees of freedom
(7 observations deleted due to missingness)

AIC: 260.58

Number of Fisher Scoring iterations: 4

To make a test of global significance of the SNP effect, you can use

> anova(glm(aff ~ snp4, family = "binomial"), test = "Chisq")

Analysis of Deviance Table

Model: binomial, link: logit

Response: aff

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 242 254.908
snp4 2 0.329 240 254.579 0.848

In the manner similar to that described for quantitative traits, additive and
dominance/recessive models can be tested by proper coding of the genotypic
variable, e.g. to test the additive model, use

> summary(glm(aff ~ as.numeric(snp4), family = "binomial"))

Call:
glm(formula = aff ~ as.numeric(snp4), family = "binomial")

Deviance Residuals:
Min 1Q Median 3Q Max

-0.7548 -0.7139 -0.6747 -0.6747 1.7842

Coefficients:
Estimate Std. Error z value Pr(>|z|)
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(Intercept) -1.4913 0.4164 -3.581 0.000342 ***
as.numeric(snp4) 0.1272 0.2268 0.561 0.574994
---
Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 254.91 on 242 degrees of freedom
Residual deviance: 254.60 on 241 degrees of freedom
(7 observations deleted due to missingness)

AIC: 258.60

Number of Fisher Scoring iterations: 4

Now you have learned all commands necessary to answer the questions of
the next section.

Exit R by typing q() command (do not save image) and and proceed to the
self exercise.

3.5 Exercise

Start R by double-click over the file ge03d1p2.RData. Explore the data frame
present and answer the questions.

Exercise 1 How many SNPs are described in this data frame?

Exercise 2 What is the frequency (proportion) of snp1 allele A? What is its
frequency in these affected (aff==1)?

Exercise 3 How many cases and controls are present?

Exercise 4 If all subjects are used to test HWE, are there any SNPs out of
HWE at nominal P ≤ 0.05? Which ones?

Exercise 5 If only controls are used to test the SNPs which are out of HWE
in total sample, are these still out of HWE?

Exercise 6 Which SNP pairs are in strong LD (r2 ≥ 0.8)?

Exercise 7 For SNPs in strong LD, what is r2 for separate samples of cases
and controls?

Exercise 8 Is there significant association between affection status and sex?
What is P -value for association?

Exercise 9 Is association between the disease and qt significant?

Exercise 10 Which SNPs are associated with the quantitative trait qt at nom-
inal P ≤ 0.05? Use 2 d.f. test.

Exercise 11 Test each SNP for association with the affection status, using 2
d.f. test. Which SNPs are significantly associated at nominal P ≤ 0.05? How
can you describe the model of action of the significant SNPs?
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Exercise 12 For the SNPs selected in previous question, test association using
additive model. Which SNPs are still associated?

Exercise 13 If you adjust the analysis under additive model (question 12) for
significant covariates which you discovered in questions 8 and 9, are these find-
ings still significant?

Exercise 14 Test association between aff and snp5 and snp10, allowing for the
SNPs interaction effect. Use arbitrary (not an additive) model. Do you observe
significant interaction? How can you describe the model of concert action of
snp5 and snp10?
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Chapter 4

Introduction to GenABEL

In this section, you will become familiar with the GenABEL library, designed for
GWA analysis. Compared to genetics package, it provides specific facilities
for storage and manipulation of large amounts of data, very fast tests for GWA
analysis, and special functions to analyse and graphically present the results of
GWA analysis (thus ”analysis of analysis”).

Start R and load GenABEL library using command

> library(GenABEL)

After that, load the data with the command

> data(srdta)

4.1 General description of gwaa.data-class

The object you have loaded, srdta, belongs to the gwaa.data class. This is a
special class developed to facilitate GWA analysis.

In GWA analysis, different types of data are used. These include the pheno-
typic and genotypic data on the study participants and chromosome and location
of every SNP. For every SNP, it is desirable to know the details of coding (what
are alleles? – A, T, G, C? – and what is the strand – ’+’ or ’-’, ’top’ or ’bot’?
– this coding is for).

One could attempt to store all phenotypes and genotypes together in a single
table, using, e.g. one row per study subject; than the columns will correspond
to study phenotypes and SNPs. For a typical GWA data set, this would lead
to a table of few thousands rows and few hundreds of thousands of columns.
Such a format is generated when one downloads HapMap data for a region. To
store GWA data in such tables internally, within R, proves to be inefficient. In
GenABEL, special data class, gwaa.data-class is used to store GWA data. The
structure of this data class is shown at the figure 4.1.

An object of some class has ”slots” which may contain actual data or objects
of other classes. The information stored at a particular slot of an object can
be accessed by command object@slot.

At the first level, a gwaa.data-class object has slot phdata, which contains
all phenotypic information in a data frame (data.frame-class object). The
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object
gwaa.data-class
All GWA data

object@gtdata
snp.data-class
All genetic data

object@phdata
data.frame-class
Phenotypic data

object@gtdata@nids
integer
# of people in study

object@gtdata@male
vector of integer
Sex (1=male, 0=female)

object@gtdata@idnames
vector of character
IDs of study participants

object@gtdata@nsnps
integer
# of SNPs in study

object@gtdata@snpnames
vector of character
IDs of study SNPs

object@gtdata@chromosome
vector of character
Chromosome label (1, 2, ... X)

object@gtdata@map
vector of double
SNPs map positions

object@gtdata@gtps
snp.mx-class
Genotypic data in compressed format

object@gtdata@coding
snp.coding-class
SNP allele coding (”AG”, “AC”, ...) 

object@gtdata@strand
snp.strand-class
SNP allele strand (”+”, “-”)

Figure 4.1: Structure of gwaa.data-class. In every box, first line contains the
object and slot names, second line describes the class of this object, and third
line describes what information is contained.
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rows of this data frame correspond to study subjects, and the columns corre-
spond to the variables. There are two default variables, which are always present
in phdata. The first of these is ”id”, which contains study subject identification
code. This identification code can be arbitrary character, but every person must
be coded with an unique ID. The second default variable is ”sex”, where males
are coded with ones (”1”) and females are coded with zero (”0”). It is important
to understand that this data frame is not supposed to be directly modified by
the user. In particular, it is extremely important to remember that one should
not directly add subjects to the table, change the values of ”id” and ”sex”, and
change the order of subjects in phdata unless this one is really understands the
way GenABEL works. One also should not run such data manipulation functions
as merge, cbind and rbind – exactly because they may change the number of
subjects or interfere with the order. On the other hand, it is OK to add more
variables to the data frame through direct computations, for example, if one
wishes to add computed body mass index, it is OK to run the command like

obj@phdata$bmi <- obj@phdata$weight/((obj@phdata$height)2̂)
To add many variables to phdata, special GenABEL function add.phdata

should be used.
The other slot of an object of gwaa.data-class is slot gtdata, which con-

tains all GWA genetic information in an object of class snp.data class (figure
4.1). This class, in turn, has slots nids, containing the number of study sub-
jects, idnames, containing all ID names of these subjects, nsnps, containing
the number of SNPs typed, snpnames, containing the SNP names, chromosome,
containing the name of the chromosome the SNPs belong to and slot map with
map position of SNPs, and slot male, containing the sex code for the subjects
(1=male, 0=female). The latter is identical to the ”sex” variable contained in
the phdata, but is duplicated here because many operations with purely genetic
data, in particular these concerning analysis of sex chromosomes, depend on
the sex. The strand information is presented in the slot strand. GenABEL codes
strand as ”+” (forward), ”-” (reverse) or ”u” (unknown). Of cause, if you prefer
top/bottom coding, this information may be stored in the same form – you will
just need to remember that ”+” corresponds to e.g. ”top”, and ”-” to ”bottom”
strand. The allelic coding is presented in slot coding. Coding for every al-
lele is presented with a pair of characters, for example ”AG”. Thus, for such
polymorphism, you may expect ”AA”, ”AG” and ”GG” genotypes to be found
in population. The order (that is ”AG” vs ”GA”) is important – the first allele
reported is the one which will be used as a reference in association analysis, and
thus the effects are reported for the second allele. To avoid memory overheads,
the strand and coding information is internally stored as snp.strand-class and
snp.coding-class. Information can be converted to human-readable format
using as.character function.

If, for example, you would like to know, how many SNPs were included in
the study (slot nsnps of the slot gtdata of srdta), you need to run command

> srdta@gtdata@nsnps

[1] 833

Thus, 833 SNPs were typed in the study. You can access information stored in
any slot in this manner.
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You may want to read the general GenABEL man page using help(GenABEL).
To see help on gwaa.data-class, you can use help("gwaa.data-class") (mind
the quotation marks!).

Summary:

• An object of some class has ”slots” which may contain actual data or
objects of other classes. The information stored at a particular slot of an
object can be accessed by command object@slot.

• GenABEL uses special data class, gwaa.data-class, to store GWA data.

Exercise 8.

Explore srdta.

1. How many people are included in the study?

2. How many of these are males?

3. How many are females?

4. What is male proportion?

Exercise 9.

Explore slot containing map (map) and slot containing SNP names (snpnames) of the
gtdata slot of srdta.

1. What are names of markers located after 2,490,000 b.p.?

2. Between 1,100,000 and 1,105,000 b.p.?

4.2 Sub-setting and coercing gwaa.data

It is possible to sub-set the object, which stores the GWA data in the manner
similar to the described above. Very primitively, you may think of an object
of class gwaa.data as a matrix whose rows correspond to study subjects and
columns correspond to SNPs studied (though the actual object is a way more
complicated). For example, if we would like to investigate what is the content
of srdta for the first 5 people and 3 SNPs, we can run

> ssubs <- srdta[1:5, 1:3]

> class(ssubs)

[1] "gwaa.data"
attr(,"package")
[1] "GenABEL"

> ssubs

id sex age qt1 qt2 qt3 bt
1 p1 1 43.4 -0.58 4.46 1.43 0
2 p2 1 48.2 0.80 6.32 3.90 1
3 p3 0 37.9 -0.52 3.26 5.05 1



4.2. SUB-SETTING AND COERCING GWAA.DATA 55

4 p4 1 53.8 -1.55 888.00 3.76 1
5 p5 1 47.5 0.25 5.70 2.89 1
@nids = 5
@nsnps = 3
@nbytes = 2
@idnames = p1 p2 p3 p4 p5
@snpnames = rs10 rs18 rs29
@chromosome = 1 1 1
@coding = 08 0b 0c
@strand = 01 01 02
@map = 2500 3500 5750
@male = 1 1 0 1 1
@gtps =
40 40 40
40 40 00

As you can see, by sub-setting we obtained a smaller object of gwaa.data-
class, with all its slots. Most of the information is straightforward and does
not need further explanation.

There are though three slots which are not human-readable, i.e. @cod-
ing, @strand, and @gtps. These are coded using new classes based in R raw
data type; these can be converted in human-readable format using a variety of
’as.*’ functions. For example, to see human-readable information on coding and
strand, let us try

> as.character(ssubs@gtdata@coding)

rs10 rs18 rs29
"TG" "GA" "GT"

This tells what alleles are observed in the three SNPs, and which alleles will be
used as a reference in association analysis.

To see the strand, use

> as.character(ssubs@gtdata@strand)

rs10 rs18 rs29
"+" "+" "-"

The slot gtps contains the SNP data, and is not readable, because the
information is compressed (each element contains data on up to four genotypes).
To get human-readable information, an object of class snp.data-class (e.g.
srdta@gtdata) can be coerced to a character using the same as.character()
function:

> as.character(ssubs@gtdata)

rs10 rs18 rs29
p1 "T/T" "G/G" "G/G"
p2 "T/T" "G/G" NA
p3 "T/T" "G/G" NA
p4 "T/T" "G/G" NA
p5 "T/T" "G/A" "G/G"
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For @gtps conversion to other formats are possible as well. Other useful
coercion is to ”numeric”:

> as.numeric(ssubs@gtdata)

rs10 rs18 rs29
p1 0 0 0
p2 0 0 NA
p3 0 0 NA
p4 0 0 NA
p5 0 1 0

You can see that conversion to numeric data type uses information on both
underlying genotypes and coding. When coding is ”GA”, as is for the rs18
(the second SNP), homozygotes for the first allele, as specified by coding (”G”)
are converted to zeros (”0”), heterozygotes are converted to ones (”1”), and
homozygotes for the second allele (”A”) are converted to twos (”2”). Clearly,
when numerically converted data are used for association analysis, the effects
will be estimated for the second allele, while first will be used as a reference.

Genotypic data converted to standard R ”numeric” format can be used in
any further analysis. Homozygotes of one type are coded as ”0”, heterozygotes
are coded as ”1” and other type of homozygotes is coded as ”2”. You can think
of this as the number of allele of ”B” type.

Several useful genetic analysis libraries were developed for R. These include
genetics (analysis of linkage disequilibrium and many other useful functions)
and haplo.stats (analysis of association between traits and haplotypes). These
use there own genetic data formats.

One can translate GenABEL genetic data to the format used by ”genetics”
library by as.genotype():

> as.genotype(ssubs@gtdata)

rs10 rs18 rs29
p1 T/T G/G G/G
p2 T/T G/G <NA>
p3 T/T G/G <NA>
p4 T/T G/G <NA>
p5 T/T G/A G/G

To translate GenABEL data to the format used by ”haplo.stats” you can use
function as.hsgeno()

> as.hsgeno(ssubs@gtdata)

rs10.a1 rs10.a2 rs18.a1 rs18.a2 rs29.a1 rs29.a2
p1 1 1 1 1 1 1
p2 1 1 1 1 NA NA
p3 1 1 1 1 NA NA
p4 1 1 1 1 NA NA
p5 1 1 1 2 1 1
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Actually, most users will not need the latter function, as GenABEL provides a
functional interface to ”haplo.stats” (such GenABEL functions as scan.haplo()
and scan.haplo.2D()).

It is possible to select sub-sets of gwaa.data-class based not only on index
(e.g. first 10 people and SNP number 33), but also based on names.

For example, if we would like to retrieve phenotypic data on people with IDs
”p141”, ”p147” and ”p2000”, we can use

> srdta[c("p141", "p147", "p2000"), ]@phdata

id sex age qt1 qt2 qt3 bt
141 p141 0 47.2 0.51 5.23 2.17 0
147 p147 0 43.2 0.14 4.47 1.73 0
2000 p2000 0 43.1 -1.53 2.78 2.70 1

here, the first part of expression sub-sets srdta on selected IDs, and the sec-
ond tells which part of the retrieved sub-set we want to see. You can try
srdta[c("p141","p147","p2000"),], but be prepared to see long output, as
all information will be reported.

In similar manner, we can also select on SNP name. For example, if we are
interested to see information on SNPs ”rs10” and ”rs29” for above people, we
can run

> srdta[c("p141", "p147", "p2000"), c("rs10", "rs29")]

id sex age qt1 qt2 qt3 bt
141 p141 0 47.2 0.51 5.23 2.17 0
147 p147 0 43.2 0.14 4.47 1.73 0
2000 p2000 0 43.1 -1.53 2.78 2.70 1
@nids = 3
@nsnps = 2
@nbytes = 1
@idnames = p141 p147 p2000
@snpnames = rs10 rs29
@chromosome = 1 1
@coding = 08 0c
@strand = 01 02
@map = 2500 5750
@male = 0 0 0
@gtps =
40 40

To see the actual genotypes for the above three people and two SNPs, use

> as.character(srdta[c("p141", "p147", "p2000"), c("rs10", "rs29")])

rs10 rs29
p141 "T/T" "G/G"
p147 "T/T" "G/G"
p2000 "T/G" "G/T"

or
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> as.numeric(srdta[c("p141", "p147", "p2000"), c("rs10", "rs29")])

rs10 rs29
p141 0 0
p147 0 0
p2000 1 1

Exercise 10.

Explore genotypes for SNP ”rs114”.

1. What is the coding and which allele is the reference one?

2. What is the frequency of non-reference (”effective”) allele in total sample?

3. What is the frequency of effective allele in male?

4. What is the frequency of effective allele in female?

5. What is the frequency of the reference allele in total sample, males and females?

Summary:

• It is possible to obtain subsets of objects of gwaa.data-class and
snp.data-class using standard 2D sub-setting model [i,j], where i
corresponds to study subjects and j corresponds to SNPs.

• It is possible to provide ID and SNP names instead of indexes when sub-
setting an object of class gwaa.data-class.

• Function as.numeric() converts genotypic data from snp.data-class to
regular integer numbers, which can be used in analysis with R.

• Function as.character() converts genotypic data from snp.data-class
to character format.

• Function as.genotype() converts genotypic data from snp.data-class
to the format used by library genetics.

• Function as.hsgeno() converts genotypic data from snp.data-class to
the format used by library haplo.stats.

4.3 Exploring genetic data

Implementation of function summary() to snp.data class is very useful in genetic
data exploration and quality control (QC). Let us try application of this function
to the ssubs:

> a <- summary(ssubs)

> a

$phdata
id sex age qt1
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Length:5 Min. :0.0 Min. :37.90 Min. :-1.55
Class :character 1st Qu.:1.0 1st Qu.:43.40 1st Qu.:-0.58
Mode :character Median :1.0 Median :47.50 Median :-0.52

Mean :0.8 Mean :46.16 Mean :-0.32
3rd Qu.:1.0 3rd Qu.:48.20 3rd Qu.: 0.25
Max. :1.0 Max. :53.80 Max. : 0.80

qt2 qt3 bt
Min. : 3.26 Min. :1.430 Min. :0.0
1st Qu.: 4.46 1st Qu.:2.890 1st Qu.:1.0
Median : 5.70 Median :3.760 Median :1.0
Mean :181.55 Mean :3.406 Mean :0.8
3rd Qu.: 6.32 3rd Qu.:3.900 3rd Qu.:1.0
Max. :888.00 Max. :5.050 Max. :1.0

$gtdata
NoMeasured CallRate Q.2 P.11 P.12 P.22 Pexact Fmax Plrt

rs10 5 1.0 0.0 5 0 0 1 0.0000000 1.0000000
rs18 5 1.0 0.1 4 1 0 1 -0.1111111 0.7386227
rs29 2 0.4 0.0 2 0 0 1 0.0000000 1.0000000

Chromosome
rs10 1
rs18 1
rs29 1

In the first section, the summary is generated for phenotypic data. In the
second section, summary is generated for genotypic data. In this section, NoMea-
sured refers to the number of genotypes scores, CallRate to the proportion of
these, Q.2 is the frequency of the ’B’ allele. The counts in three genotypic classes
are provided next. Pexact refers to exact P-value for the test of Hardy-Weinberg
equilibrium.

As you’ve seen above, an object of the class gwaa.data-class or snp.data-
class is sub-settable in standard manner: [i,j], where i is an index of a study
subject and j is an index of a SNP. Importantly, i could be a list of indexes:

> vec <- which(srdta@phdata$age >= 65)

> vec

[1] 64 122 186 206 207 286 385 386 492 514 525 536 545 565 613
[16] 632 649 673 701 779 799 981 1008 1131 1186 1223 1281 1383 1471 1489
[31] 1501 1565 1584 1673 1679 1782 1821 1832 1866 1891 1953 2081 2085 2140 2224
[46] 2268 2291 2384 2420 2453

> summary(srdta@gtdata[vec, 1:3])

NoMeasured CallRate Q.2 P.11 P.12 P.22 Pexact Fmax
rs10 48 0.96 0.1354167 36 11 1 1.0000000 0.02131603
rs18 47 0.94 0.2765957 25 18 4 0.7245853 0.04298643
rs29 45 0.90 0.1555556 32 12 1 1.0000000 -0.01503759

Plrt Chromosome
rs10 0.8843626 1
rs18 0.7697067 1
rs29 0.9188943 1
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This shows summary of first three genotypes for people with age greater then or
equal to 65 y.o. The same result may be achieved by sub-setting using a vector
of logical values:

> vec <- (srdta@phdata$age >= 65)

> table(vec)

vec
FALSE TRUE
2450 50

> summary(srdta@gtdata[vec, 1:3])

NoMeasured CallRate Q.2 P.11 P.12 P.22 Pexact Fmax
rs10 48 0.96 0.1354167 36 11 1 1.0000000 0.02131603
rs18 47 0.94 0.2765957 25 18 4 0.7245853 0.04298643
rs29 45 0.90 0.1555556 32 12 1 1.0000000 -0.01503759

Plrt Chromosome
rs10 0.8843626 1
rs18 0.7697067 1
rs29 0.9188943 1

or a list with IDs of study subjects:

> vec1 <- srdta@gtdata@idnames[vec]

> vec1

[1] "p64" "p122" "p186" "p206" "p207" "p286" "p385" "p386" "p492"
[10] "p514" "p525" "p536" "p545" "p565" "p613" "p632" "p649" "p673"
[19] "p701" "p779" "p799" "p981" "p1008" "p1131" "p1186" "p1223" "p1281"
[28] "p1383" "p1471" "p1489" "p1501" "p1565" "p1584" "p1673" "p1679" "p1782"
[37] "p1821" "p1832" "p1866" "p1891" "p1953" "p2081" "p2085" "p2140" "p2224"
[46] "p2268" "p2291" "p2384" "p2420" "p2453"

> summary(srdta@gtdata[vec1, 1:3])

NoMeasured CallRate Q.2 P.11 P.12 P.22 Pexact Fmax
rs10 48 0.96 0.1354167 36 11 1 1.0000000 0.02131603
rs18 47 0.94 0.2765957 25 18 4 0.7245853 0.04298643
rs29 45 0.90 0.1555556 32 12 1 1.0000000 -0.01503759

Plrt Chromosome
rs10 0.8843626 1
rs18 0.7697067 1
rs29 0.9188943 1

Let us explore the object returned by summary function when applied to
snp.data class in more details:

> a <- summary(srdta@gtdata[vec1, 1:3])

> class(a)

[1] "data.frame"
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Thus, the object returned is a data.frame. Therefore it should have dimensions
and names:

> dim(a)

[1] 3 10

> names(a)

[1] "NoMeasured" "CallRate" "Q.2" "P.11" "P.12"
[6] "P.22" "Pexact" "Fmax" "Plrt" "Chromosome"

Indeed, we derived 8 characteristics (”NoMeasured”, ”CallRate”, ”Q.2”, ”P.11”,
”P.12”, ”P.22”, ”Pexact”, ”Chromosome”) for the first 3 SNPs.

Exercise 11.

Test if Hardy-Weinberg equilibrium holds for the first 10 SNPs

1. Total sample

2. In cases (bt is 1)

3. In controls (bt is 0)

Let us analyse the distribution of call rate in the whole study. For this, we
first need to obtain the vector of call rates:

> sumgt <- summary(srdta@gtdata)

> crate <- sumgt[, "CallRate"]

This vector may be presented by a histogram

> hist(crate)

which shows that most SNPs have call rate between 93 and 97% (figure 4.2).
As next step, you would like to produce a summary table, showing how many

markers had call rate lower than, say, 93%, between 93 and 95%, between 95
and 99% and more than 99%. You can use catable() command for that:

> catable(crate, c(0.93, 0.95, 0.99))

X<=0.93 0.93<X<=0.95 0.95<X<=0.99 X>0.99
No 0 415.000 418.000 0
Prop 0 0.498 0.502 0

Similar procedure may be applied to see deviation from HWE:

> hwp <- sumgt[, "Pexact"]

> catable(hwp, c((0.05/srdta@gtdata@nsnps), 0.01, 0.05, 0.1))

X<=6.00240096038415e-05 6.00240096038415e-05<X<=0.01 0.01<X<=0.05
No 2.000 7.000 23.000
Prop 0.002 0.008 0.028

0.05<X<=0.1 X>0.1
No 31.000 770.000
Prop 0.037 0.924
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Figure 4.2: Histogram of the call rate
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Figure 4.3: Histogram of the call rate

The first cut-off category will detect SNPs which are deviating from HWE
at the Bonferroni-corrected P-level.

However, for these data it will make more sense to table cumulative distri-
bution:

> catable(hwp, c((0.05/srdta@gtdata@nsnps), 0.01, 0.05, 0.1), cum = T)

X<=6.00240096038415e-05 X<=0.01 X<=0.05 X<=0.1 all X
No 2.000 9.000 32.000 63.000 833
Prop 0.002 0.011 0.038 0.076 1

If you would like to investigate the minor allele frequency (MAF) distribu-
tion, the same logic would apply. First, derive MAF with

> afr <- sumgt[, "Q.2"]

> maf <- pmin(afr, (1 - afr))

Next, generate histograms for frequency and MAF:

> par(mfcol = c(2, 1))

> hist(afr)

> hist(maf)

(shown at the figure 4.3) and then generate table describing frequency distribu-
tion:
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> catable(afr, c(0.01, 0.05, 0.1, 0.2, 0.5, 0.8, 0.9, 0.95, 0.99))

X<=0.01 0.01<X<=0.05 0.05<X<=0.1 0.1<X<=0.2 0.2<X<=0.5 0.5<X<=0.8
No 22.000 53.000 99.000 132.000 313.000 187.000
Prop 0.026 0.064 0.119 0.158 0.376 0.224

0.8<X<=0.9 0.9<X<=0.95 0.95<X<=0.99 X>0.99
No 18.000 8.00 1.000 0
Prop 0.022 0.01 0.001 0

> catable(maf, c(0, 0.01, 0.05, 0.1, 0.2), cum = T)

X<=0 X<=0.01 X<=0.05 X<=0.1 X<=0.2 all X
No 0 22.000 76.000 183.00 333.0 833
Prop 0 0.026 0.091 0.22 0.4 1

Note that we used ”0” as the first category – this will give you the number
of monomorhic SNPs which we recommend to exclude from analysis.

Other function, perid.summary, produces summary SNP statistics per per-
son. Let us try producing this summary for the first 10 people:

> perid.summary(srdta[1:10, ])

NoMeasured Hom E(Hom) Var F CallPP Het
p1 707 0.7751061 0.6201205 0.4048662 0.40798616 0.8487395 0.2248939
p2 714 0.7198880 0.6212102 0.5090002 0.26050805 0.8571429 0.2801120
p3 700 0.5757143 0.6217225 0.4332890 -0.12162558 0.8403361 0.4242857
p4 705 0.5602837 0.6196322 0.5251900 -0.15602916 0.8463385 0.4397163
p5 707 0.6265912 0.6222997 0.5288936 0.01136232 0.8487395 0.3734088
p6 703 0.7382646 0.6218624 0.3770418 0.30783027 0.8439376 0.2617354
p7 709 0.5867419 0.6178574 0.4527349 -0.08142388 0.8511405 0.4132581
p8 711 0.6680731 0.6193635 0.5163296 0.12796887 0.8535414 0.3319269
p9 711 0.6315049 0.6202163 0.5599395 0.02972375 0.8535414 0.3684951
p10 713 0.6185133 0.6215808 0.4889042 -0.00810600 0.8559424 0.3814867

This table lists the number of genotypes scored for the person, call rate, and
heterozygosity. The outliers who have increased average heterozygosity may be
suggestive of contaminated DNA samples.

Let us analyse the distribution of heterozygosity:

> het <- perid.summary(srdta)$Het

> mean(het)

[1] 0.3309457

> catable(het, c(0.1, 0.25, 0.3, 0.35, 0.5))

X<=0.1 0.1<X<=0.25 0.25<X<=0.3 0.3<X<=0.35 0.35<X<=0.5 X>0.5
No 7.000 73.000 339.000 1281.000 800.00 0
Prop 0.003 0.029 0.136 0.512 0.32 0

> plot(het)
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Figure 4.4: Histogram of heterozygosity
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The resulting histogram is presented in figure 4.4. It is easy to see that few
people have very low heterozygosity, but there are no outliers with extremely
high values.

In this section, we covered low-level functions summary and perid.summary.
Base on these, an upper-level genetic data quality control function, check.marker,
is based. That function will be covered in the next section.

Summary:

• When summary() function is applied to an object of snp.data-class,
it return summary statistics for SNPs, including exact test for Hardy-
Weinberg equilibrium.

• When perid.summary() function is applied to an object of snp.data-
class, it return per-person summary statistics, including the call rate
within this person and its’ heterozygosity.

Exercise 12.

Characterise the distribution of call rates within study subjects and produce a histogram.
How many people have call rate below 93%?



Chapter 5

Genome-wide association
analysis

In the first parts of this section you will be guided through a GWA analysis of a
small data set. In the last part you will investigate a larger data set by yourself,
do a verification study and will answer the questions. All data sets used assume
a study in a relatively homogeneous population. Try to finish the first part in
the morning and the second part in the afternoon.

Though only few thousands of markers located at four small chromosomes
are used in the scan, we still going to call it Genome-Wide (GW), as the amount
of data we will use is approaches the amount to be expected in a real experiment.
However, because the regions are small, and the LD between SNPs is high, some
specific features (e.g. relatively high residual inflation, which occurs because
large proportion of SNPs are in LD with the reuly associated ones) are specific
features of this data set, which are not observed in true GWA studies.

Start R and load GenABEL library by typing

> library(GenABEL)

and load the data which we will use in this section by

> data(ge03d2ex)

Investigate the objects loaded by command

> ls()

[1] "ge03d2ex"

The ge03d2ex is an object of the class gwaa.data:

> class(ge03d2ex)

[1] "gwaa.data"
attr(,"package")
[1] "GenABEL"

To check what are the names of variables in the phenotypic data frame, use

67
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> names(ge03d2ex@phdata)

[1] "id" "sex" "age" "dm2" "height" "weight" "diet" "bmi"

We can attach this data frame to the R search path by

> attach(ge03d2ex@phdata)

5.1 Data descriptives and first round of GWA
analysis

Let us investigate what are the traits presented in the data frame loaded and
what are the characteristics of the distribution by using specific GenABEL func-
tion descriptive.trait:

> descriptives.trait(ge03d2ex)

No Mean SD
id 136 NA NA
sex 136 0.529 0.501
age 136 49.069 12.926
dm2 136 0.632 0.484
height 135 169.440 9.814
weight 135 87.397 25.510
diet 136 0.059 0.236
bmi 135 30.301 8.082

You can see that phenotypic frame contains the data on 136 people; the
data on sex, age, height, weight, diet and body mass index (BMI) are available.
Our trait of interest is dm2 (type 2 diabetes). Note that every single piece
of information in this data set is simulated; however, we tried to keep our
simulations in a way we think the control of T2D may work.

You can produce a summary for cases and controls separately and compare
distributions of the traits by

> descriptives.trait(ge03d2ex, by = dm2)

No(by.var=0) Mean SD No(by.var=1) Mean SD Ptt Pkw
id 50 NA NA 86 NA NA NA NA
sex 50 0.420 0.499 86 0.593 0.494 0.053 0.052
age 50 47.038 13.971 86 50.250 12.206 0.179 0.205
dm2 50 NA NA 86 NA NA NA NA
height 49 167.671 8.586 86 170.448 10.362 0.097 0.141
weight 49 76.534 17.441 86 93.587 27.337 0.000 0.000
diet 50 0.060 0.240 86 0.058 0.235 0.965 0.965
bmi 49 27.304 6.463 86 32.008 8.441 0.000 0.001

Pexact
id NA
sex 0.074
age NA
dm2 NA
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height NA
weight NA
diet 1.000
bmi NA

Here, the by argument specifies the grouping variable. You can see that cases
and controls are different in weight, which is expected, as T2D is associated
with obesity.

Similarly, you can produce grand GW descriptives of the marker data by
using

> descriptives.marker(ge03d2ex)

$`Minor allele frequency distribution`
X<=0.01 0.01<X<=0.05 0.05<X<=0.1 0.1<X<=0.2 X>0.2

No 146.000 684.000 711.000 904.000 1555.000
Prop 0.036 0.171 0.178 0.226 0.389

$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X

No 46.000 71.000 125.000 275.000 4000
Prop 0.012 0.018 0.031 0.069 1

$`Distribution of porportion of successful genotypes (per person)`
X<=0.9 0.9<X<=0.95 0.95<X<=0.98 0.98<X<=0.99 X>0.99

No 1.000 0 59.000 76.000 0
Prop 0.007 0 0.434 0.559 0

$`Distribution of porportion of successful genotypes (per SNP)`
X<=0.9 0.9<X<=0.95 0.95<X<=0.98 0.98<X<=0.99 X>0.99

No 37.000 6.000 996.000 1177.000 1784.000
Prop 0.009 0.002 0.249 0.294 0.446

$`Mean heterozygosity for a SNP`
[1] 0.2582298

$`Standard deviation of the mean heterozygosity for a SNP`
[1] 0.1592255

$`Mean heterozygosity for a person`
[1] 0.2487219

$`Standard deviation of mean heterozygosity for a person`
[1] 0.04309648

It is of note that we can see inflation of the proportion of the tests for HWE
at particular threshold, as compared to the expected. This may indicate poor
genotyping quality and/or genetic stratification.

We can test the GW marker characteristics in controls by

> descriptives.marker(ge03d2ex, ids = (dm2 == 0))
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$`Minor allele frequency distribution`
X<=0.01 0.01<X<=0.05 0.05<X<=0.1 0.1<X<=0.2 X>0.2

No 233.000 676.000 671.000 898.000 1522.00
Prop 0.058 0.169 0.168 0.224 0.38

$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X

No 0 3.000 14.000 98.000 4000
Prop 0 0.001 0.003 0.024 1

$`Distribution of porportion of successful genotypes (per person)`
X<=0.9 0.9<X<=0.95 0.95<X<=0.98 0.98<X<=0.99 X>0.99

No 0 0 50 0 0
Prop 0 0 1 0 0

$`Distribution of porportion of successful genotypes (per SNP)`
X<=0.9 0.9<X<=0.95 0.95<X<=0.98 0.98<X<=0.99 X>0.99

No 37.000 49.000 1523.000 0 2391.000
Prop 0.009 0.012 0.381 0 0.598

$`Mean heterozygosity for a SNP`
[1] 0.2555009

$`Standard deviation of the mean heterozygosity for a SNP`
[1] 0.1618707

$`Mean heterozygosity for a person`
[1] 0.2601554

$`Standard deviation of mean heterozygosity for a person`
[1] 0.04859507

Apparently, HWE distribution holds better in controls than in the total sample.
Let us check whether there are indications that deviation from HWE is due

to cases. At this stage we are only interested in HWE distribution table, and
therefore will ask to report only table two:

> descriptives.marker(ge03d2ex, ids = (dm2 == 1))[2]

$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X

No 45.000 79.00 136.000 268.000 4000
Prop 0.011 0.02 0.034 0.067 1

It seems that indeed excessive number of markers are out of HWE in cases. If no
laboratory procedure (e.g. DNA extraction, genotyping, calling) were done for
cases and controls separately, this may indicate possible heterogeneity specific
for cases.

It may be interesting to plot a χ2−χ2 plot contrasting observed and expected
distributions for the test for HWE in cases. First, we need to compute summary
SNP statistics by
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> s <- summary(ge03d2ex@gtdata[(dm2 == 1), ])

Note the you have produced the summary for the gtdata slot of ge03d2ex;
this is the slot which actually contain all genetic data in special compressed
format.

You can see first 10 elements of this very long table by

> s[1:10, ]

NoMeasured CallRate Q.2 P.11 P.12 P.22 Pexact
rs7435137 84 0.9767442 0.52380952 17 46 21 0.510978370
rs7725697 85 0.9883721 0.01176471 83 2 0 1.000000000
rs664063 86 1.0000000 0.08720930 71 15 0 1.000000000
rs4670072 60 0.6976744 0.11666667 53 0 7 0.001701645
rs546570 84 0.9767442 0.89880952 1 15 68 1.000000000
rs7908680 83 0.9651163 0.03012048 78 5 0 1.000000000
rs166732 83 0.9651163 0.04216867 76 7 0 1.000000000
rs4257079 86 1.0000000 0.07558140 73 13 0 1.000000000
rs5150804 84 0.9767442 0.39880952 31 39 14 0.820496827
rs3508821 83 0.9651163 0.20481928 52 28 3 1.000000000

Fmax Plrt Chromosome
rs7435137 -0.09772727 0.3699602726 1
rs7725697 -0.01190476 0.8773691192 3
rs664063 -0.09554140 0.2308999066 2
rs4670072 1.00000000 0.0002510899 X
rs546570 0.01830931 0.8693645189 2
rs7908680 -0.03105590 0.6935168932 1
rs166732 -0.04402516 0.5787401988 1
rs4257079 -0.08176101 0.3022863648 1
rs5150804 0.03177183 0.7710793180 2
rs3508821 -0.03565062 0.7419587406 2

Note that the column before the last provides P-exact we need. We can extract
these to a separate vector by

100100
Let us first try do GWA scan using the raw (before quality control) data. We

will use the score test, as implemented in the qtscore() funcrtion of GenABEL
for testing:

> an0 <- qtscore(dm2, ge03d2ex, trait = "binomial")

The first argument used describes the model; here it is rather simple — the
affection status, dm2, is supposed to depend on SNP genotype only.

You can see what objects are returned by this function by using

> names(an0)

[1] "chi2.1df" "chi2.2df" "P1df" "P2df" "Pc1df"
[6] "Pc2df" "lambda" "effB" "effAB" "effBB"
[11] "N" "snpnames" "idnames" "map" "chromosome"
[16] "formula" "family"
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Here, P1df, P2df and Pc1df are most interesting; the first two are vectors of 1
and 2 d.f. P-values obtained in the GWA analysis, the last one is 1 d.f. P-value
corrected for inflation factor λ (which is presented in lambda object).

Let us see if there is evidence for the inflation of the test statistics

> an0$lambda

$estimate
[1] 1.029658

$se
[1] 0.0005343007

$iz0
[1] 1

$iz2
[1] 1

The estimate of λ is 1.03, suggesting inflation of the test and some degree of
stratification.

The λ is computed by regression in a Q-Q plot. Both estimation of λ and
production of the χ2 − χ2 plot can be done using the estlambda function:

> estlambda(an0$P1df)

$estimate
[1] 1.029658

$se
[1] 0.0005343007

The corresponding χ2 − χ2 plot is presented in Figure 5.1.

The ’se’ produced by estlambda can not be used to test if inflation is significant

and make conclusions about presence of stratification.

We can also present the obtained results using the ”Manhatten plot”, where
a SNP genomic position is on the X-axes and −log10 of the p-value is shown on
Y-axes:

> plot(an0)

The resulting plot is presented in the figure 5.2. By default, −log10(P−value) of
not corrected 1 d.f. test are presented; see help to figure out how this behaviour
can be changed.

We can also add the corrected P-values to the plot with

> add.plot(an0, df = "Pc1df", col = c("lightblue", "lightgreen"))

You can also generate a descriptive table for the ”top” (as ranked by P-value)
results by
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Figure 5.1: χ2−χ2 plot for a GWA scan. Black line of slope 1: expected under
no inflation; Red line: fitted slope.

> descriptives.scan(an0)

Chromosome Position N effB P1df Pc1df
rs1719133 1 4495479 136 0.33729339 0.0002795623 0.0003425105
rs2975760 3 10518480 134 3.80380024 0.0002983731 0.0003649107
rs7418878 1 2808520 136 3.08123060 0.0009743183 0.0011540593
rs5308595 3 10543128 133 3.98254950 0.0010544366 0.0012463049
rs4804634 1 2807417 132 0.43411456 0.0011970132 0.0014100096
rs3224311 2 6009769 135 3.15831710 0.0013290907 0.0015611949
rs26325 3 10617781 135 0.09742793 0.0013313876 0.0015638203
rs8835506 2 6010852 132 3.17720829 0.0015321522 0.0017928676
rs3925525 2 6008501 135 2.98416931 0.0019400358 0.0022558582
rs2521089 3 10487652 135 2.50239493 0.0020524092 0.0023829357

effAB effBB P2df
rs1719133 0.4004237 0.0000000 0.0006333052
rs2975760 3.4545455 10.0000000 0.0011434877
rs7418878 3.6051282 4.8717949 0.0022642036
rs5308595 3.3171429 Inf 0.0045930101
rs4804634 0.5240642 0.1739130 0.0036964462
rs3224311 3.4151786 4.2500000 0.0029405999
rs26325 0.1097724 NA 0.0013313876
rs8835506 3.4903846 4.1250000 0.0031618340
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Figure 5.2: −log10(P −value) from the genome scan before QC procedure. Raw
analysis: black; corrected analysis: green

rs3925525 3.2380952 4.1212121 0.0045554384
rs2521089 2.5717703 4.7727273 0.0069661425

Here you see top 10 results, sorted by P-value with 1 d.f. If you want to sort
by the corrected P-value, you can use descriptives.scan(an0,sort="Pc1df");
to see more then 10 (e.g. 25) top results, use descriptives.scan(an0,top=25).
You can combine all these options. Large part of results reports NA as effect
estimates and 9.99 as P-value for 2 d.f. test – for these markers only two out of
three possible genotypes were observed, and consequently 2 d.f. test could not
be performed.

Now let us apply qtscore() function with times argument, which tells it
to compute empirical GW (or experiment-wise) significance

> an0.e <- qtscore(dm2, ge03d2ex, times = 200, quiet = TRUE)

> descriptives.scan(an0.e, sort = "Pc1df")

Chromosome Position N effB P1df Pc1df effAB effBB
rs1719133 1 4495479 136 -0.2652064 0.425 0.510 -0.2080882 -0.7375000
rs2975760 3 10518480 134 0.2340655 0.460 0.525 0.2755102 0.4090909
rs7418878 1 2808520 136 0.2089098 0.835 0.900 0.2807405 0.3268398
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rs5308595 3 10543128 133 0.2445516 0.865 0.925 0.2564832 0.4623656
rs4804634 1 2807417 132 -0.2050449 0.910 0.945 -0.1193830 -0.3845238
rs3224311 2 6009769 135 0.2133633 0.940 0.950 0.2778634 0.3151515
rs26325 3 10617781 135 -0.4875367 0.940 0.955 -0.4875367 NA
rs8835506 2 6010852 132 0.2112000 0.950 0.965 0.2796221 0.3076923
rs3925525 2 6008501 135 0.2057095 0.970 0.985 0.2660834 0.3074627
rs2521089 3 10487652 135 0.1775016 0.975 0.985 0.2254633 0.3396072

P2df
rs1719133 9.99
rs2975760 9.99
rs7418878 9.99
rs5308595 9.99
rs4804634 9.99
rs3224311 9.99
rs26325 9.99
rs8835506 9.99
rs3925525 9.99
rs2521089 9.99

None of the SNPs hits GW significance. If, actually, any did pass the thresh-
old, we could not trust the results, because the distribution of the HWE test
and presence of inflation factor for the association test statistics suggest that the
data may contain multiple errors (indeed they do). Therefore before association
analysis we need to do rigorous Quality Control (QC).

Note that at certain SNP, corrected P-values become equal to 1 – at this
point order is arbitrary because sorting could not be done.

Summary:

• The descriptives family of functions was developed to facilitate produc-
tion of tables which can be directly used in a manuscript — it is possible
to save the output as a file, which can be open by Excel or Word. See e.g.
help(descriptives.trait) for details.

• The inflation of test statistics compared to null (1 d.f.) may be estimated
with estlambda function.

5.2 Genetic data QC

The major genetic data QC function of GenABEL is check.marker(). We will try
to run it; the output is rather self-explaining. As it was detailed at the lecture,
in the first round of the QC we do not want to check for HWE. This can be
achieved by setting HWE P-value selection threshold to zero (p.level=0):

> qc1 <- check.marker(ge03d2ex, p.level = 0)

Excluding people/markers with extremely low call rate...
4000 markers and 136 people in total



76 CHAPTER 5. GENOME-WIDE ASSOCIATION ANALYSIS

0 people excluded because of call rate < 0.1
6 markers excluded because of call rate < 0.1
Passed: 3994 markers and 136 people

Running sex chromosome checks...
197 heterozygous X-linked male genotypes found
1 X-linked markers are likely to be autosomal (odds > 1000 )
2 male are likely to be female (odds > 1000 )
0 female are likely to be male (odds > 1000 )
If these people/markers are removed, 0 heterozygous male genotypes are left
Passed: 3993 markers and 134 people

no X/Y/mtDNA-errors to fix

RUN 1
3993 markers and 134 people in total
304 (7.613323%) markers excluded as having low (<1.865672%) minor allele frequency
36 (0.9015778%) markers excluded because of low (<95%) call rate
0 (0%) markers excluded because they are out of HWE (P <0)
1 (0.7462687%) people excluded because of low (<95%) call rate
Mean autosomal HET is 0.2747262 (s.e. 0.03721277)
3 (2.238806%) people excluded because too high autosomal heterozygosity (FDR <1%)
Excluded people had HET >= 0.4856887
Mean IBS is 0.7732328 (s.e. 0.02044899), as based on 2000 autosomal markers
1 (0.7462687%) people excluded because of too high IBS (>=0.95)
In total, 3653 (91.4851%) markers passed all criteria
In total, 129 (96.26866%) people passed all criteria

RUN 2
3653 markers and 129 people in total
72 (1.970983%) markers excluded as having low (<1.937984%) minor allele frequency
0 (0%) markers excluded because of low (<95%) call rate
0 (0%) markers excluded because they are out of HWE (P <0)
0 (0%) people excluded because of low (<95%) call rate
Mean autosomal HET is 0.2744972 (s.e. 0.01706096)
0 people excluded because too high autosomal heterozygosity (FDR <1%)
Mean IBS is 0.7711307 (s.e. 0.01884635), as based on 2000 autosomal markers
0 (0%) people excluded because of too high IBS (>=0.95)
In total, 3581 (98.02902%) markers passed all criteria
In total, 129 (100%) people passed all criteria

RUN 3
3581 markers and 129 people in total
0 (0%) markers excluded as having low (<1.937984%) minor allele frequency
0 (0%) markers excluded because of low (<95%) call rate
0 (0%) markers excluded because they are out of HWE (P <0)
0 (0%) people excluded because of low (<95%) call rate
Mean autosomal HET is 0.2744972 (s.e. 0.01706096)
0 people excluded because too high autosomal heterozygosity (FDR <1%)
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Mean IBS is 0.7690901 (s.e. 0.01819136), as based on 2000 autosomal markers
0 (0%) people excluded because of too high IBS (>=0.95)
In total, 3581 (100%) markers passed all criteria
In total, 129 (100%) people passed all criteria

The computation of all pairwise proportion of alleles identical-by-state (IBS)

by ibs() function, which is also called by check.markers() may take quite some

time, which is proportional to the square of the number of subjects. This

is not a problem with the small number of people we use for this example

or when modern computers are used. However, the computers in the Nihes

computer room are very old. Therefore be prepared to wait for long time

when you will do a self-exercise with 1,000 people.

From the output you can see that QC starts with checking the data for SNPs
and people with extremely low call rate. Six markers are excluded from further
analysis due to very low call rate. Next, X-chromosomal errors are identified.
The function finds out that all errors (heterozygous male X-genotypes) are due
to two people with wrong sex assigned and one marker, which looks like an
autosomal one. This actually could be a marker from pseudoautosomal region,
which should have been arranged as a separate ”autosome”.

Then, the procedure finds the markers with low call rate (≤ 0.95) across
people, markers with low MAF (by default, low MAF is defined as less than few
copies of the rare allele, see help for details); people with low call rate (≤ 0.95)
across SNPs, people with extreme heterozygosity (at FDR 0.01) and these who
have GW IBS ≥ 0.95. These default parameters may be changed if you wish
(consult help).

Because some of the people fail to pass the tests, the data set is not guaran-
teed to be really ”clean”after single iteration, e.g. some marker may not pass the
call threshold after we exclude few informative (but apparently wrong) people.
Therefore the QC is repeated iteratively until no further errors are found.

You can generate short summary of QC by marker and by person through

> summary(qc1)

$`Per-SNP fails statistics`
NoCall NoMAF NoHWE Redundant Xsnpfail

NoCall 42 0 0 0 0
NoMAF NA 376 0 0 0
NoHWE NA NA 0 0 0
Redundant NA NA NA 0 0
Xsnpfail NA NA NA NA 1

$`Per-person fails statistics`
IDnoCall HetFail IBSFail isfemale ismale isXXY

IDnoCall 1 0 0 0 0 0
HetFail NA 3 0 0 0 0
IBSFail NA NA 1 0 0 0
isfemale NA NA NA 2 0 0
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ismale NA NA NA NA 0 0
isXXY NA NA NA NA NA 0

Note that the original data, ge03d2ex, are not modified during the proce-
dure; rather, check.markers() generate a list of markers and people which pass
or do not pass certain QC criteria. The objects returned by check.markers()
are:

> names(qc1)

[1] "nofreq" "nocall" "nohwe" "Xmrkfail" "hetfail" "idnocall"
[7] "ibsfail" "isfemale" "ismale" "snpok" "idok" "call"

The element idok provides the list of people who passed all QC criteria,
and snpok provides the list of SNPs which passed all criteria. You can easily
generate a new data set, which will consist only of these people and markers by

> data1 <- ge03d2ex[qc1$idok, qc1$snpok]

If there are any residual sporadic X-errors (male heterozygosity), these can
be fixed (set to NA) by

> data1 <- Xfix(data1)

no X/Y/mtDNA-errors to fix

Applying this function does not make any difference for the example data set,
but you will need to use it for the bigger data set.

At this point, we are ready to work with the new, cleaned, data set data1.
However, if we try

> length(dm2)

[1] 136

we can see that the original phenotypic data are attached to the search path
(there are only 129 people left in the ’clean’ data set). Therefore we need to
detach the data by

> detach(ge03d2ex@phdata)

and attach new data by

> attach(data1@phdata)

At this stage, let us check if the first round of QC solves the problem of
inflated test for HWE, which may be the case if this inflation is due to genotypic
errors we managed to eliminate:

> descriptives.marker(data1)[2]

$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X

No 43.000 65.000 121.000 240.000 3581
Prop 0.012 0.018 0.034 0.067 1

> descriptives.marker(data1[dm2 == 1])[2]

$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X

No 46.000 70.00 127.000 228.000 3581
Prop 0.013 0.02 0.035 0.064 1
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5.3 Finding genetic sub-structure

Now, we are ready for the second round of QC, detection of genetic outliers which
may contaminate our data. We will detect genetic outliers using a technique,
which resembles the one suggested by Price at al.

As a first step, we will compute a matrix of genomic kinship between all
pairs of people, using only autosomal markers by

> data1.gkin <- ibs(data1[, data1@gtdata@chromosome != "X"], weight = "freq")

You can see the 5x5 upper left sub-matrix by

> data1.gkin[1:5, 1:5]

id199 id300 id403 id415 id666
id199 0.496562976 3262.00000000 3261.00000000 3249.00000000 3265.0000000
id300 -0.012267995 0.49486164 3268.00000000 3257.00000000 3271.0000000
id403 -0.012464681 -0.01262302 0.51836209 3255.00000000 3270.0000000
id415 -0.002399026 0.01363777 -0.02528089 0.56733776 3259.0000000
id666 -0.019116287 -0.02110468 0.02096914 -0.02025885 0.5684808

This step may take few minutes on large data sets or when using old com-

puters!

The numbers below the diagonal show genomic kinship (IBD), the numbers
on the diagonal correspond to 0.5 plus the genomic homozigosity, and the num-
bers above the diagonal tell how many SNPs were typed successfully for both
subjects (thus the IBD estimate is derived using this number of SNPs).

Second, we transform this matrix to a distance matrix using standard R
command

> data1.dist <- as.dist(0.5 - data1.gkin)

Finally, we perform Classical Multidimensional Scaling by

> data1.mds <- cmdscale(data1.dist)

by default, the first two principal components are computed and returned.

This may take few minutes on large data sets or when using old computers!

We can present the results graphically by

> plot(data1.mds)

The resulting plot is presented in figure 5.3. Each point on the plot corre-
sponds to a person, and the 2D distances between points were fitted to be as
close as possible to these presented in the original IBS matrix. You can see that
study subjects clearly cluster in two groups.

You can identify the points belonging to clusters by
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> km <- kmeans(data1.mds, centers = 2, nstart = 1000)

> cl1 <- names(which(km$cluster == 1))

> cl2 <- names(which(km$cluster == 2))

> cl1

[1] "id2097" "id6954" "id2136" "id858"

> cl2

[1] "id199" "id300" "id403" "id415" "id666" "id689" "id765" "id830"
[9] "id908" "id980" "id994" "id1193" "id1423" "id1505" "id1737" "id1827"
[17] "id1841" "id2068" "id2094" "id2151" "id2317" "id2618" "id2842" "id2894"
[25] "id2985" "id3354" "id3368" "id3641" "id3831" "id3983" "id4097" "id4328"
[33] "id4380" "id4395" "id4512" "id4552" "id4710" "id4717" "id4883" "id4904"
[41] "id4934" "id4961" "id5014" "id5078" "id5274" "id5275" "id5454" "id5853"
[49] "id5926" "id5969" "id6237" "id6278" "id6352" "id6501" "id6554" "id6663"
[57] "id6723" "id7499" "id7514" "id7541" "id7598" "id7623" "id7949" "id8059"
[65] "id8128" "id8281" "id8370" "id8400" "id8433" "id8772" "id8880" "id8890"
[73] "id8957" "id8996" "id9082" "id9901" "id9930" "id1857" "id2528" "id4862"
[81] "id9184" "id5677" "id6407" "id5472" "id2135" "id8545" "id4333" "id1670"
[89] "id1536" "id6917" "id6424" "id3917" "id9628" "id9635" "id4729" "id5190"
[97] "id6399" "id6062" "id620" "id1116" "id6486" "id41" "id677" "id4947"
[105] "id9749" "id6428" "id7488" "id5949" "id2924" "id5783" "id4096" "id903"
[113] "id9049" "id185" "id1002" "id362" "id9014" "id5044" "id2749" "id5437"
[121] "id2286" "id4743" "id4185" "id8330" "id6934"

Four outliers are presented in the smaller cluster.

Now you will need to use the BIGGER cluster for to select study subjects.

Whether this will be cl1 or cl2 in you case, is totally random.

We can form a data set which is free from outliers by using only people from
the bigger cluster:

> data2 <- data1[cl2, ]

After we dropped the outliers, we need to repeat QC using check.markers().
At this stage, we want to allow for HWE checks (we will use only controls and
exclude markers with FDR ≤ 0.2):

> qc2 <- check.marker(data2, hweids = (data2@phdata$dm2 == 0),

+ fdr = 0.2)

Excluding people/markers with extremely low call rate...
3581 markers and 125 people in total
0 people excluded because of call rate < 0.1
0 markers excluded because of call rate < 0.1
Passed: 3581 markers and 125 people

Running sex chromosome checks...
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Figure 5.3: Mapping samples on the space of the first two Principle Components
resulting from analysis of genomic kinship. Red dots identify genetic outliers

0 heterozygous X-linked male genotypes found
0 X-linked markers are likely to be autosomal (odds > 1000 )
0 male are likely to be female (odds > 1000 )
0 female are likely to be male (odds > 1000 )
If these people/markers are removed, 0 heterozygous male genotypes are left
Passed: 3581 markers and 125 people

no X/Y/mtDNA-errors to fix

RUN 1
3581 markers and 125 people in total
40 (1.117006%) markers excluded as having low (<2%) minor allele frequency
0 (0%) markers excluded because of low (<95%) call rate
0 (0%) markers excluded because they are out of HWE (FDR <0.2)
0 (0%) people excluded because of low (<95%) call rate
Mean autosomal HET is 0.2776868 (s.e. 0.01655360)
0 people excluded because too high autosomal heterozygosity (FDR <1%)
Mean IBS is 0.7720158 (s.e. 0.01258361), as based on 2000 autosomal markers
0 (0%) people excluded because of too high IBS (>=0.95)
In total, 3541 (98.883%) markers passed all criteria
In total, 125 (100%) people passed all criteria
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RUN 2
3541 markers and 125 people in total
0 (0%) markers excluded as having low (<2%) minor allele frequency
0 (0%) markers excluded because of low (<95%) call rate
0 (0%) markers excluded because they are out of HWE (FDR <0.2)
0 (0%) people excluded because of low (<95%) call rate
Mean autosomal HET is 0.2776868 (s.e. 0.01655360)
0 people excluded because too high autosomal heterozygosity (FDR <1%)
Mean IBS is 0.772 (s.e. 0.01237184), as based on 2000 autosomal markers
0 (0%) people excluded because of too high IBS (>=0.95)
In total, 3541 (100%) markers passed all criteria
In total, 125 (100%) people passed all criteria

> summary(qc2)

$`Per-SNP fails statistics`
NoCall NoMAF NoHWE Redundant Xsnpfail

NoCall 0 0 0 0 0
NoMAF NA 40 0 0 0
NoHWE NA NA 0 0 0
Redundant NA NA NA 0 0
Xsnpfail NA NA NA NA 0

$`Per-person fails statistics`
IDnoCall HetFail IBSFail isfemale ismale isXXY

IDnoCall 0 0 0 0 0 0
HetFail NA 0 0 0 0 0
IBSFail NA NA 0 0 0 0
isfemale NA NA NA 0 0 0
ismale NA NA NA NA 0 0
isXXY NA NA NA NA NA 0

If the procedure did not run, check previous Note.

Indeed, in the updated data set few markers do not pass our QC criteria and
we need to drop a few markers. This is done by

> data2 <- data2[qc2$idok, qc2$snpok]

This is going to be our final analysis data set, therefore let us attach the phe-
notypic data to the search path, then we do not need to type data2@phdata$...
to access dm2 status or other variables:

> detach(data1@phdata)

> attach(data2@phdata)
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5.4 GWA association analysis

Let us start again with descriptives of the phenotypic and marker data

> descriptives.trait(data2, by = dm2)

No(by.var=0) Mean SD No(by.var=1) Mean SD Ptt Pkw
id 48 NA NA 77 NA NA NA NA
sex 48 0.438 0.501 77 0.597 0.494 0.084 0.082
age 48 46.378 13.865 77 50.593 12.465 0.089 0.097
dm2 48 NA NA 77 NA NA NA NA
height 47 167.988 8.610 77 170.423 10.646 0.166 0.223
weight 47 77.273 17.427 77 94.160 26.963 0.000 0.000
diet 48 0.062 0.245 77 0.065 0.248 0.957 0.957
bmi 47 27.485 6.539 77 32.235 8.335 0.001 0.001

Pexact
id NA
sex 0.098
age NA
dm2 NA
height NA
weight NA
diet 1.000
bmi NA

You can see that relation to weight is maintained in this smaller, but hope-
fully cleaner, data set; moreover, relation to age becomes boundary significant.

If you check descriptives of markers (only HWE part shown)

> descriptives.marker(data2)[2]

$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X

No 1 2.000 22.000 108.00 3541
Prop 0 0.001 0.006 0.03 1

you can see that the problems with HWE are apparently fixed; we may guess
that these were caused by the Wahlund’s effect.

Run the score test on the cleaned data by

> data2.qt <- qtscore(dm2, data2)

and check lambda

> data2.qt$lambda

$estimate
[1] 1.040969

$se
[1] 0.0007325815

$iz0
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Figure 5.4: −log10(CorrectedP − value) from the genome scan after the QC
procedure

[1] 1.016119

$iz2
[1] 1

there is still some inflation, which is explained by the fact that we investigate
only few short chromosomes with high LD and few causative variants.

Produce the association analysis plot by

> plot(data2.qt, df = "Pc1df")

(figure 5.4).
Produce the scan summary by

> descriptives.scan(data2.qt, sort = "Pc1df")

Chromosome Position N effB P1df Pc1df
rs1719133 1 4495479 125 -0.2709715 0.0003599745 0.000470699
rs8835506 2 6010852 122 0.2346446 0.0008465818 0.001072548
rs4804634 1 2807417 122 -0.2161383 0.0010949169 0.001374104
rs3925525 2 6008501 125 0.2280847 0.0011081904 0.001390146
rs3224311 2 6009769 125 0.2280847 0.0011081904 0.001390146
rs2975760 3 10518480 124 0.2244898 0.0012545339 0.001566573
rs4534929 1 4474374 124 -0.1864322 0.0019996882 0.002454805
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rs6079246 2 7048058 124 -0.4730491 0.0021060217 0.002580453
rs5308595 3 10543128 123 0.2731788 0.0023674963 0.002888472
rs1013473 1 4487262 125 0.1864494 0.0025659783 0.003121460

effAB effBB P2df
rs1719133 -0.2153891 -0.7260274 0.0009290908
rs8835506 0.3201507 0.3201507 0.0012972329
rs4804634 -0.0971660 -0.3947368 0.0026493765
rs3925525 0.3046200 0.3187614 0.0020102814
rs3224311 0.3046200 0.3187614 0.0020102814
rs2975760 0.2570423 0.3959311 0.0047945922
rs4534929 -0.1487634 -0.3968254 0.0074296050
rs6079246 -0.4730491 NA 0.0021060217
rs5308595 0.2844101 0.4719101 0.0095505795
rs1013473 0.2714833 0.3782654 0.0067821374

Comparison with the top 10 from the scan before QC shows that results
changed substantially with only few markers overlapping.

You can see similar results when accessing empirical GW significance:

> data2.qte <- qtscore(dm2, data2, times = 200, quiet = TRUE)

> descriptives.scan(data2.qte, sort = "Pc1df")

Chromosome Position N effB P1df Pc1df effAB
rs1719133 1 4495479 125 -0.27097152 0.480 0.570 -0.21538910
rs8835506 2 6010852 122 0.23464458 0.775 0.845 0.32015066
rs4804634 1 2807417 122 -0.21613833 0.850 0.925 -0.09716599
rs3925525 2 6008501 125 0.22808468 0.860 0.925 0.30461997
rs3224311 2 6009769 125 0.22808468 0.860 0.925 0.30461997
rs2975760 3 10518480 124 0.22448980 0.885 0.935 0.25704225
rs7435137 1 4259040 124 0.08916655 1.000 1.000 0.11073664
rs664063 2 7288020 125 -0.13014211 1.000 1.000 -0.09180036
rs546570 2 6120257 124 -0.15740741 1.000 1.000 0.75000000
rs7908680 1 2311762 122 0.19316239 1.000 1.000 0.19316239

effBB P2df
rs1719133 -0.7260274 0.710
rs8835506 0.3201507 0.785
rs4804634 -0.3947368 0.965
rs3925525 0.3187614 0.935
rs3224311 0.3187614 0.935
rs2975760 0.3959311 0.995
rs7435137 0.1761787 1.000
rs664063 -0.6372549 1.000
rs546570 0.5925926 1.000
rs7908680 NA 1.000

Again, none of the SNPs hits GW 5% significance. Still, you can see that
after QC top markers achieve somewhat ”better” significance.

In the last part, we will do several adjusted and stratified analyses. Only
empirical P-values will be estimated to make the story shorter. To adjust for
sex and age, we can



86 CHAPTER 5. GENOME-WIDE ASSOCIATION ANALYSIS

> data2.qtae <- qtscore(dm2 ~ sex + age, data2, times = 200, quiet = T)

> descriptives.scan(data2.qtae)

Chromosome Position N effB P1df Pc1df effAB
rs1719133 1 4495479 125 -0.25890157 0.570 0.690 -0.22773582
rs8835506 2 6010852 122 0.22215111 0.905 0.970 0.31550163
rs3925525 2 6008501 125 0.21871930 0.930 0.975 0.30498571
rs3224311 2 6009769 125 0.21871930 0.930 0.975 0.30498571
rs4804634 1 2807417 122 -0.20651613 0.955 0.985 -0.09071397
rs6079246 2 7048058 124 -0.46876373 0.985 0.995 -0.46876373
rs7435137 1 4259040 124 0.06938366 1.000 1.000 0.10716530
rs664063 2 7288020 125 -0.11264399 1.000 1.000 -0.07332386
rs546570 2 6120257 124 -0.15868138 1.000 1.000 0.13634042
rs7908680 1 2311762 122 0.10136925 1.000 1.000 0.10136925

effBB P2df
rs1719133 -0.62102151 0.915
rs8835506 0.28148154 0.825
rs3925525 0.28255981 0.900
rs3224311 0.28255981 0.900
rs4804634 -0.37649275 0.995
rs6079246 NA 1.000
rs7435137 0.13499367 1.000
rs664063 -0.61187789 1.000
rs546570 -0.02234096 1.000
rs7908680 NA 1.000

You can see that there is little difference between adjusted and unadjusted
analysis, but this is not always the case; adjustment may make your study much
more powerful when covariates explain a large proportion of environmental trait
variation.

Finally, let us do stratified (by BMI) analysis. We will contracts obese
(BMI ≥ 30) cases to all controls.

> data2.qtse <- qtscore(dm2 ~ sex + age, data2, ids = ((bmi > 30 &

+ dm2 == 1) | dm2 == 0), times = 200, quiet = TRUE)

> descriptives.scan(data2.qtse, sort = "Pc1df")

Chromosome Position N effB P1df Pc1df effAB effBB
rs1891586 1 2297398 89 -0.2525526 0.860 0.870 -0.1844922 -0.4744112
rs794264 1 2534738 88 0.2285093 0.945 0.960 0.3184520 0.4947580
rs9178808 1 2536431 89 -0.2265653 0.970 0.970 -0.1652287 -0.4983534
rs5032886 1 2537020 89 -0.2265653 0.970 0.970 -0.1652287 -0.4983534
rs9630764 1 3897972 89 0.2231745 0.975 0.980 0.2110261 0.4420613
rs7504607 1 2704056 89 -0.4582995 0.975 0.980 -0.4582995 NA
rs2884479 X 13618173 87 -0.2085201 0.990 0.990 -0.4488573 -0.3298415
rs4803085 1 3256810 89 0.2793141 0.995 0.995 0.2658124 0.6359811
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rs3215698 X 13559835 89 -0.2679440 0.995 0.995 -0.3703538 -0.4693541
rs8538767 X 13437421 87 0.2328469 0.995 0.995 0.2120678 0.4763338

P2df
rs1891586 0.995
rs794264 1.000
rs9178808 1.000
rs5032886 1.000
rs9630764 1.000
rs7504607 1.000
rs2884479 0.410
rs4803085 1.000
rs3215698 1.000
rs8538767 1.000

Again, noting interesting at GW significance level. If we would have had
found something, naturally, we would not known if we mapped a T2D or obesity
gene (or a gene for obesity in presence of T2D, or the one for T2D in presence
of obesity).

At this point, you acquired the knowledge necessary for the self-exercise.
Please close R by q() command and proceed to the next section.

5.5 GWA exercise

During the exercise, you will work with a larger data set (approximately 1,000
people and 7,000+ SNPs). You are to do complete three-round QC; perform
GWA analysis with dm2 as the outcome of interest and identify 10 SNPs which
you would like to take to the stage 2 (replication) scan. You will do replication
analysis using a confirmatory data set. If you did everything right, the SNPs
which you identified as significant or replicated will be located in know T2D
genes.

Please keep in mind that the data are simulated, and do not take your
findings too seriously!

Start R by going to ”Start -> Programs -> R -> R-2.4.1”. Load GenABEL
library by

> library(GenABEL)

The two data sets we will use in this exercise are part of the GenABEL distri-
bution. The first one (”discovery” set) can be loaded by

> data(ge03d2)

Please move along the lines detailed in the guided exercise and try to answer
following questions:

Exercise 15 How many cases and controls are presented in the original data
set?

Exercise 16 How many markers are presented in the original data set?

Exercise 17 Is there evidence for inflation of the HWE test staistics?
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Exercise 18 Analyse empirical GW significance. How many SNPs pass genome-
wide significance threshold, after correction for the inflation factor? Write down
the names of these SNPs for further comparison.

Perform complete three steps of the genetic data QC.

Exercise 19 How many male turned apparently female?

Exercise 20 How many sporadic X errors do you still observe even when the fe-
male male and non-X X-markers are removed? (do not forget to Xfix() these!)

Exercise 21 How many ”twin” DNAs did you discover?

Exercise 22 How many genetic outliers did you discover?

After you have finished QC, answer the questions:

Exercise 23 How many cases and controls are presented in the data after QC?

Exercise 24 How many markers are presented in the data after QC?

Exercise 25 Is there evidence for inflation of the HWE test staistics?

Exercise 26 Perform GWA analysis of the cleaned data, using assimptotic test
and plot the results. What is the estimate of λ for the 1 d.f. test?

Exercise 27 Analyse empirical GW significance. How many SNPs pass genome-
wide significance threshold, after correction for the inflation factor? Do these
SNPs overlap much with the ones ranked at the top before the QC? If not, what
could be the reason?

If time permits, do analysis with adjustment for covariates and stratified
analysis.

Select 10 SNPs which you would like to follow-up. Say, you’ve selected
rs1646456, rs7950586, rs4785242, rs4435802, rs2847446, rs946364, rs299251,
rs2456488, rs1292700, and rs8183220.

Make a vector of these SNPs with

> vec12 <- c("rs1646456", "rs7950586", "rs4785242", "rs4435802",

+ "rs2847446", "rs946364", "rs299251", "rs2456488", "rs1292700",

+ "rs8183220")

Load the stage 2 (replicaton) data set by

> data(ge03d2c)

and select the subset of SNPs you need by

> confdat <- ge03d2c[, vec12]

Analyse the confdat for association with dm2.

Exercise 28 Given the two-stage design, and applying the puristic criteria spec-
ified in the lecture, for how many SNPs you can claim a significant finding?
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Exercise 29 Using the same criteria, for how many SNPs you can claim a
replicated finding?

You can check if any of the SNPs you have identified as significant or repli-
cated are the ones which were simulated to be associated with dm2 by using the
command

> show.ncbi(c("snpname1", "snpname2", "snpname3"))

where snpnameX stands for the name of your identified SNP. The ”true” SNPs
can be found on NCBI and are located in known T2D genes (just because we
used these names to name the ”significant” ones).

If time permits, characterise the mode of inheritance of the significant SNPs.
You can convert data from GenABEL format to the format used by dgc.genetics
and genetics libraries by using as.genotype() function. Consult help for
details. Please do not attempt to convert more then few dozens SNPs: the
format of genetics is not compressed, which means conversion may take long
and your low-memory computer may even crash if you attempt to convert the
whole data set.

If time permits, try to do first round of QC allowing for HWE checks (assume
FDR of 0.1 for total sample). In this case, can you still detect stratification in
the ”cleaned” data?
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Chapter 6

GWA in presence of genetic
stratification

Both ethnic admixture and presence of close relationships represents examples
of confounding in association analysis. However, the methods to correct for
stratification as resulting from mixture of subjects coming from different ge-
netic populations, and methods to correct for family relations may be slightly
different, and will be described separately in the next two sections.

6.1 Analysis with ethnic admixture

In previous section we detected genetic stratification by analysis of genomic
kinship matrix and excluded genetic outliers from our further analysis. When
there are only a few such outliers, exclusion them from analysis is a good option.
However, in large studies cases and controls are usually selected across a number
of locations and genetic populations, and stratification is expected by design.
In such case, analysis of association should account for this stratification.

One of the ways to do that is to perform structured association analysis.
In such analysis, effect size estimate and its’ variance is estimated within each
strata separately, and then these estimates are pooled to generate global statis-
tics. The strata can be known from design (e.g. place of birth or ethnicity of
parents) or estimated from GWA data.

Let us do structured association analysis using the data1 data derived in
previous section. First, we need to define the variable which will tell what
population the study subjects belong to. In previous section, we stored the
names of ’outlier’ subjects in variable cl1:

> cl1

[1] "id2097" "id6954" "id2136" "id858"

We can use function %in% to find out what names of subjects are in cl1:

> pop <- as.numeric(data1@phdata$id %in% cl1)

> pop

91
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[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[38] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[75] 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[112] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Now, structured association may be done with qtscore function by specify-
ing strata:

> data1.sa <- qtscore(dm2, data = data1, strata = pop)

We can compare results of analysis excluding outliers (black dots) and structured
association analysis (green) by

> plot(data2.qt, cex = 0.5, pch = 19, ylim = c(1, 5))

> add.plot(data1.sa, col = c("lightgreen", "lightblue"), cex = 1.2)

The resulting plot is presented at figure 6.1.
In this case, there is very little difference, because all people belonging to

the smaller sub-population are cases.
Other way to adjust for genetic (sub)structure is to apply the method of

Price et al., which make use of principal components of the genomic kinship
matrix to adjust both phenotypes and genotypes for possible stratification. In
GenABEL , such analysis is done using egscore function:

> tmp.gkin <- data1.gkin

> diag(tmp.gkin) <- hom(data1[, autosomal(data1)])$Var

> data1.eg <- egscore(dm2, data = data1, kin = tmp.gkin)

Note that we have replaced the diagonal elements of the genomic kinship matrix,
which are by default are 0.5+ th estimates of the inbreeding, by the variance
returned by the hom function. The analysis plot may be added to the previous
one by

> add.plot(data1.eg, col = c("red"), cex = 1.3)

The resulting plot is presented at figure 6.1.
Again, the difference between three analysis methods is marginal because

there are no highly differentiated SNPs in the data set, and one sub-population
is presented by cases only. Still, the signals at chromosome one and three slightly
improved, while these at two and X went down.

Exercise 13.

Load and analyse the data set presented in file stratified.RData. GWA data presented
in this file concern a study containing data from several popualtions. All these populations
originate from the same base population some generations ago. Some of these populations
mantained large size and some were small. There was little (2.5%) migration between popu-
lations.

Two traits (quat and bint) ara available for analysis. Investigate relations between pheno-
types and covariates. Perform association analysis using structured association and egscore.
Answer the questions

1. How many SNPs and IDs are presented in the data set?

2. How many SNPs and IDs pass the quality control?

3. Is there evidence for stratification coming from the distribution of GW test for HWE
(what is lambda?)
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Figure 6.1: Comparison of structured association analysis (green), method of
Price et al. (red) and analysis excluding genetic outliers (solid black).

4. Is there evidence that the test statistics for trait quat is inflated (what is lambda?)

5. Is there evidence that the test statistics for trait bint is inflated (what is lambda?)

6. How many genetically distinct populations are present in the data set? How many
people belong to each population?

7. Please make some inferences on the characteristics / history of these populations.

8. What is the strongest SNP associated with trait quat? What model (method and
covariates used) gives best results? Is the finding GW-significant?

9. What is the strongest SNP associated with trait bint? What model (method and
covariates used) gives best results? Is the finding GW-significant?

6.2 Analysis of family data

In this section we will consider analysis of quantitative traits in a family-based
cohort, where participants were not selected for the value of the trait under
analysis. Such data may be generated in any study selecting participants based
on kinship (e.g. collections of sibships, nuclear or extended families); also any
study in a genetically isolated population is likely to end up with a large propor-
tion of relatively closely related individuals, even if ascertainment was random
with the respect to kinship.

In pedigree-based association analysis the pedigree works as a confounder –
exactly in the same manner as ethnic origin may work in a population-based
study. Any genetic polymorphism is inherited through genealogy, and therefore
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genotypes are more similar between close relatives. In the same manner, any
other heritable trait will be also more similar between relatives, and therefore
certain degree of association is expected between any genetic marker and any
heritable trait in a family-based sample. If additive 1 d.f. test for association
is considered, the effect of confounding by pedigree can be shown to inflate the
resulting null distribution of presumably χ2

1 test statistics by a certain constant
λ.

As you remember, this is exactly what happens when simple test for as-
sociation is applied to a population-based data with ethnic admixture. In a
population-based study with strong admixture (both in terms of the proportion
and ethnic ”distance”), some genomic regions may have been differentially se-
lected in different populations. In such situation, use of genomic control does not
prevent false-positive association between a trait and these regions, and other
methods, such as EIGENSTRAT or Structured Association, are to be used.

For pedigree-based data coming from (relatively) genetically homogeneous
population it can be shown that λ is a function of trait’s heritability and pedigree
structure, expressed as kinship matrix. Thus, genomic control is a simple and
valid method to study association in genetically homogeneous families. However,
this method reduces (or summarises if you prefer) all the abundant information
about heritability and relationship into a single parameter λ, therefore it is not
the most powerful method.

In quantitative genetics, a mixed polygenic model of inheritance may be
considered as ”industrial standard” – this model has sound theoretical bases
and is proven by time to describe well inheritance of complex quantitative traits.
This model describes the vector of observed quantitative traits as

Y = µ+G+ e (6.1)

where µ is the intercept, G is contribution from polygene, and e is random
residual.

It is assumed that for each individual its ”personal” random residual ei is
distributed as Normal with mean zero and variance σ2

e . As these residuals
are independent between pedigree members, the joint distribution of residuals
in the pedigree can be modelled using multivariate normal distribution with
variance-covariance matrix proportional to the identity matrix I (this is a matrix
with diagonal elements equal to 1, and off-diagonal elements equal to zero):
e ∼MVN(0, Iσ2

e).
The polygenic component G describes the contribution from multiple inde-

pendently segregating genes all having a small additive effect onto the trait (in-
finitesimal model). For a person for whom parents are not known, it is assumed
that Gi is distributed as Normal with mean zero and variance σ2

G. Assuming
model of infinitely large number of genes, it can be shown that given polygenic
values for parents, the distribution of polygene in offspring follows Normal dis-
tribution with mean (Gm + Gf )/2 and variance σ2

G/2, where Gm is maternal
and Gf is paternal polygenic values. From this, it can be shown that jointly the
distribution of polygenic component in a pedigree can be described as multi-
variate normal with variance-covariance matrix proportional to the relationship
matrix Φ: G ∼MVN(0,Φσ2

G).
Thus the log-likelihood for this model can be written as a function of three
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parameters:

L(µ, σ2
G, σ

2
e) = − 1

2
· loge

∣∣(Φ · σ2
G + I · σ2

e)
∣∣

+ (Y − µ)T · (Φ · σ2
G + I · σ2

e)−1 · (Y − µ) (6.2)

where µ is intercept, σ2
G is the proportion of variance explained by the polygenic

component, and σ2
e is the residual variance.

Covariates such as sex, age, or a genetic marker studied for association can
be easily included into the model:

Y = µ+
∑
j

βj · Cj +G+ e

Here, Cj is the vector containing j-th covariate and betaj is the coefficient
of regression of Y onto that covariate.

This mixed morel leads to likleihood

L(µ, σ2
G, σ

2
e , β1, β2, ...) = − 1

2
· loge

∣∣(Φ · σ2
G + I · σ2

e)
∣∣

+

Y − (µ+
∑
j

βj · Cj)

T

·
(
Φ · σ2

G + I · σ2
e

)−1

·

Y − (µ+
∑
j

βj · Cj)

 (6.3)

This general formulation can be easily adopted to test genetic association;
for example, an effect of a SNP can be incorporated into regression model

Y = µ+ βg · g +G+ e

where g is the vector containing genotypic values. In this mode, you can specify
a variety of 1 d.f. models by different coding of the vector g. For example,
if you consider an ”AG” polymorphism and want to estimate and test additive
effect of the allele ”G”, you should code ”AA” as 0 (zero), ”AG” as 1 and ”GG”
as 2. Under this coding, the βg will estimate additive contribution from the ”G”
allele. If you are willing to consider dominant model for G, you should code
”AA” and ”AG” as 0 and ”GG” as 1. Recessive and over-dominant models can
be specified in a similar manner. If, however, you want to estimate general 2
d.f. model, the specification should be different:

Y = µ+ βa · g + βd · Ig=2 +G+ e

where g is coded as 0, 1 or 2, exactly the same as in the additive model, and Ig=2

is the binary indicator which takes value of one when g is equal to 2 and zero
otherwise. In this model, βa will estimate the additive and βd – the dominance
effect. There may be other, alternative coding(s) allowing for essentially the
same model, for example

Y = µ+ β1 · Ig=1 + β2 · Ig=2 +G+ e
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would estimate trait’s deviation in these with g = 1 (β1) and these with g = 2
(β2) from the reference (g = 0).

The classical way to estimate mixed polygenic model and test for significance
is Maximum Likelihood (ML) or Restricted ML (REML) using equation (6.3).
However, when large pedigrees are analysed, ML/REML solution may take pro-
hibitively long time, i.e. from minutes to hours for single SNP analysis, making
study of hundreds of thousand of SNPs impossible. Therefore fast approximate
tests were developed for the purposes of GWA association analysis in samples
of relatives.

Here we will cover two of fast approximations available, FAmily-based Score
Test for Association (FASTA, Chen & Abecasis, 2007) and Genome-wide Rapid
Analysis using Mixed Models And Score test (GRAMMAS, Amin et al, 2007).
Both tests are based on the classical polygenic mixed model and are performed
in two steps.

First, polygenic model as specified by equation (6.1) and likelihood (6.2) is
estimated using available data.

Secondly, the maximum likelihood estimates (MLEs) of the intercept, µ̂,
proportion of variance explained by the polygenic component, σ̂2

G, and residual
variance, σ̂2

e , are used to compute the FASTA test statistics

T 2
F =

(
(g − E[g])T · (Φ · σ̂2

G + I · σ̂2
e)−1 · (Y − µ̂)

)2
(g − E[g])T · (Φ · σ̂2

G + I · σ̂2
e)−1 · (g − E[g])

It can be shown that T 2
F follows χ2

1 when pedigree structure is 100% complete
and 100% correct. As this is never actually the case, application of GC to correct
for residual inflation is recommended.

FASTA test results in unbiased estimates of the SNP effect and correct
P − values. Please keep in mind that this is correct – as for any score test
– only when alternative is reasonably close to the null, i.e. when the SNP ex-
plains small proportion of trait’s variance. Disadvantages of this test are that
is can be relatively slow when thousands of study subjects are analysed, and
that permutation procedures can not be applied to estimate genome-wide sig-
nificance, because the data structure is not exchangeable.

Other test, GRAMMAS, also exploits MLEs from the polygenic model (6.1).
However, these are used to first compute the vector of environmental residuals
ê, using standard equation

ê = σ̂2
e · (Φ · σ̂2

G + I · σ̂2
e)−1 · (Y − µ̂)

These residuals, in turn, are used to run simple score test:

T 2
G =

(
(g − E[g])T · ê)

)2
(g − E[g])T · (g − E[g])

This test is conservative, but GC can be used to correct for the deflation of
the test statistics.

The fact that environmental residuals ê are not dependent on pedigree struc-
ture leads to a nice property of the GRAMMAS test: the data structure be-
comes exchangeable and permutations may be used to estimate genome-wide
significance. When used in combination with GC, P − values derived from
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GRAMMAS test are correct; however, there is a downward bias in estimates of
SNP effects.

When using FASTA or GRAMMAS test, it is recommended to estimate ge-
nomic kinship matrix from available genome-wide data, and use it in analysis
instead of pedigree kinship. This solution firstly does not rely on the complete-
ness and quality of pedigree; secondly, genomic kinship is more likely to give a
better estimate of a true covariance between individual genomes, while pedigree
kinship provides one with expectation. Therefore use of genomic kinship is ex-
pected to lead to better estimates of polygenic model, and thus better power to
detect association in GWA analysis. This being said, we generally advocate use
of genomic, and not pedigree kinship. Of cause, you can only implement this
solution when you have GWA data; in a candidate gene study you will have to
rely on the pedigree structure to estimate kinship matrix.

6.3 Example GWA analysis using family-based
data

In this section, we will explore small data set (150 people, 5827 SNPs). Let us
load and explore it:

> load("RData/erfsmall.RData")

> ls()

[1] "erfs" "pkins"

> class(erfs)

[1] "gwaa.data"
attr(,"package")
[1] "GenABEL"

> class(pkins)

[1] "matrix"

You can see that there a two objects, erfs and pkins, presented in the data.
The class of the first object is standard GenABEL ’s gwaa.data-class; this is
the object containing GWA data. The other object contains kinship matrix, as
estimated from pedigree data.

You can check the number of people and SNPs in the data set with

> erfs@gtdata@nids

[1] 150

> erfs@gtdata@nsnps

[1] 5827

As usual, it is advisable to check the distribution of SNPs by chromosome:

> table(erfs@gtdata@chromosome)
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1 10 11 12 13 14 15 16 17 18 19 2 20 21 22 23 3 4 5 6
484 251 224 285 188 210 206 189 159 170 149 481 130 100 132 26 403 300 320 397
7 8 9 X

286 253 206 278

(here, 23 stays for pseudo-autosomal region of the X chromosome); you can see
that markers are evenly spread over the chromosomes.

Summary marker statistics can be generated by

> descriptives.marker(erfs@gtdata)

$`Minor allele frequency distribution`
X<=0.01 0.01<X<=0.05 0.05<X<=0.1 0.1<X<=0.2 X>0.2

No 17.000 26.000 75.000 437.000 5272.000
Prop 0.003 0.004 0.013 0.075 0.905

$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X

No 2 14.000 83.000 319.000 5827
Prop 0 0.002 0.014 0.055 1

$`Distribution of porportion of successful genotypes (per person)`
X<=0.9 0.9<X<=0.95 0.95<X<=0.98 0.98<X<=0.99 X>0.99

No 0 1.000 3.00 14.000 132.00
Prop 0 0.007 0.02 0.093 0.88

$`Distribution of porportion of successful genotypes (per SNP)`
X<=0.9 0.9<X<=0.95 0.95<X<=0.98 0.98<X<=0.99 X>0.99

No 77.000 33.000 214.000 208.000 5295.000
Prop 0.013 0.006 0.037 0.036 0.909

$`Mean heterozygosity for a SNP`
[1] 0.4402752

$`Standard deviation of the mean heterozygosity for a SNP`
[1] 0.08287253

$`Mean heterozygosity for a person`
[1] 0.4358498

$`Standard deviation of mean heterozygosity for a person`
[1] 0.01306670

You can see that the quality of genotypic data is quite reasonable: call rate is
generally high, both per-person and per SNP, and there is little deviation from
Hardy-Weinberg equilibrium.

Let us explore pedigree kinship matrix. First, let us just look how this matrix
looks like by displaying few elements from the upper-left corner:

> pkins[1:5, 1:5]
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id1 id2 id3 id4 id5
id1 5.00000e-01 8.56146e-05 1.01984e-04 2.33397e-04 8.56146e-05
id2 8.56146e-05 5.00000e-01 3.96513e-03 2.56896e-05 2.51269e-01
id3 1.01984e-04 3.96513e-03 5.00000e-01 1.21593e-05 3.96513e-03
id4 2.33397e-04 2.56896e-05 1.21593e-05 5.00000e-01 2.56896e-05
id5 8.56146e-05 2.51269e-01 3.96513e-03 2.56896e-05 5.00000e-01

By definition, pedigree kinship should take values between 0 and 0.5 (plus
some small amount from inbreeding); kinship between (non-inbred) sibs or an
offspring and the parent is 1/4. You can see that in the upper-left corner there
is one inbred sib-pair (or parent-offspring pair; ”id2” and ”id5”). You can also
see that this matrix is symmetric around the diagonal.

Let us summarise the distribution of kinship coefficients; in doing this we
want to generate the summary for every off-diagonal element only once. Func-
tion lower.tri can be used to get the ”lower triangle” sub-matrix elements:

> summary(pkins[lower.tri(pkins)])

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000000 0.0004999 0.0028500 0.0062810 0.0053780 0.2633000

As you can see, average relationship corresponds to that expected between
second cousins (1/64 = 0.015625) and third cousins (1/256 = 0.00390625).

We can also draw a histogram of the distribution of the kinship coefficients
(shown at figure 6.2A):

> hist(pkins[lower.tri(pkins)])

and see that most elations are indeed remote.
Let us estimate genomic kinship matrix using autosomal data with the com-

mand ibs, and look up the elements in the upper-left corner:

> gkins <- ibs(erfs[, autosomal(erfs)], weight = "freq")

> gkins[1:5, 1:5]

id1 id2 id3 id4 id5
id1 0.531729506 5.439000e+03 5.446000e+03 5441.00000000 5440.0000000
id2 -0.012569446 4.921817e-01 5.524000e+03 5524.00000000 5521.0000000
id3 0.001516184 -8.551323e-03 5.144766e-01 5529.00000000 5528.0000000
id4 0.010459422 -1.471218e-02 -3.467894e-03 0.52042474 5523.0000000
id5 -0.007957596 2.561484e-01 -8.925127e-03 -0.02205665 0.4943998

Here, the estimated kinship is shown below the diagonal, and the number of
informative SNP pairs used for estimation is shown above the diagonal.

You can see that ”genomic kinship” coefficients may take values lower than
zero, which is consequence of the fact that in effect ”genomic kinship” is simply
covariance between the vectors of individual genotypes. This quantity, though
it provides an unbiased estimate of kinship, can be lower than zero.

> summary(gkins[lower.tri(gkins)])

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.038980 -0.011930 -0.005826 -0.003362 0.000481 0.268000
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Figure 6.2: Distribution of the pedigree (upper histogram) and genomic (lower
histogram) kinship coefficients for erfs data set.

here, the average is quite close to that obtained with pedigree kinship.
We can also draw a histogram of the distribution of ”genomic kinship” coef-

ficients (shown at figure 6.2B):

> hist(gkins[lower.tri(gkins)])

and can easily graphically present relations between genomic and pedigree kin-
ship with

> plot(pkins[lower.tri(pkins)], gkins[lower.tri(gkins)])

(shown at figure 6.3), and estimate correlation between the two with

> cor(pkins[lower.tri(pkins)], gkins[lower.tri(gkins)])

[1] 0.91615

From the graph, you can clearly see that, though there is a very strong
correlation between genomic and pedigree kinships, these are not identical.

In real data, you may find that there are some points where pedigree data
clearly suggest relation different from that suggested by genomic data. Which
one to believe? Generally, pedigrees are more prone to errors than genotypic
data. In the data containing close relatives it is better to rely on ”genomic
kinship”.

Let us first analyse the data using plain GC method:
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Figure 6.3: Scatter-plot relating pedigree and genomic kinships for erfs data
set.

> qts <- qtscore(qtbas, data = erfs)

You can check the estimate of the inflation factor λ with

> qts$lam$est

[1] 1.137247

This is relatively high value, suggesting presence of close relatives in data and
high heritability of the trait.

The top 10 hits from GWA analysis can be displayed with

> descriptives.scan(qts, sort = "Pc1df")

Chromosome Position N effB P1df Pc1df
rs1781670 13 2694164735 150 0.4554848 0.0001804816 0.0004453466
rs1054889 2 324154337 150 0.4760959 0.0002711808 0.0006387800
rs1861659 16 3171591122 150 0.4844231 0.0002811280 0.0006594988
rs1860991 5 1213061568 150 0.4616985 0.0002834991 0.0006644252
rs1043883 8 1745120471 128 0.4338657 0.0005729702 0.0012396586
rs1872087 17 3329938025 150 -0.4111272 0.0006091602 0.0013088424
rs1982904 4 961162979 150 0.5369605 0.0006904958 0.0014626936
rs2141693 12 2590653716 150 1.2178255 0.0007070577 0.0014937647
rs7141672 14 2851979738 150 0.4595401 0.0007473279 0.0015689781
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rs1075456 15 3036078968 150 -0.3943230 0.0008094764 0.0016841742
effAB effBB P2df

rs1781670 0.55710736 0.9015131 0.0007574863
rs1054889 0.32660599 1.0001217 0.0008416365
rs1861659 0.30184684 1.0290361 0.0006959544
rs1860991 0.49412227 0.9080701 0.0013452354
rs1043883 0.23834763 0.9427557 0.0015609770
rs1872087 -0.50149169 -0.8092418 0.0024403173
rs1982904 0.60470761 0.8678924 0.0026214066
rs2141693 1.21782551 NA 0.0007070577
rs7141672 0.37923110 1.0172357 0.0028443093
rs1075456 -0.01486038 -0.8540990 0.0002978615

here, nominal P − values after genomic control are given in column named
”Pc1df”.

We can estimate genome-wide empirical significance by using the same func-
tion with times argument, which tells the number of permutations:

> qts.e <- qtscore(qtbas, data = erfs, times = 200, quiet = TRUE)

> descriptives.scan(qts.e, sort = "Pc1df")

Chromosome Position N effB P1df Pc1df effAB
rs1781670 13 2694164735 150 0.45548481 0.490 0.835 0.5571074
rs1054889 2 324154337 150 0.47609594 0.670 0.925 0.3266060
rs1860991 5 1213061568 150 0.46169852 0.685 0.930 0.4941223
rs1861659 16 3171591122 150 0.48442305 0.680 0.930 0.3018468
rs1982904 4 961162979 150 0.53696053 0.950 0.990 0.6047076
rs1043883 8 1745120471 128 0.43386568 0.900 0.990 0.2383476
rs1872087 17 3329938025 150 -0.41112719 0.915 0.990 -0.5014917
rs2017143 1 2252811 150 0.06610235 1.000 1.000 0.3084208
rs2840531 1 2318570 150 -0.31150314 1.000 1.000 -0.3273450
rs2477703 1 2458154 150 -0.16765976 1.000 1.000 -0.2043520

effBB P2df
rs1781670 0.90151313 0.935
rs1054889 1.00012170 0.945
rs1860991 0.90807011 0.995
rs1861659 1.02903607 0.915
rs1982904 0.86789245 1.000
rs1043883 0.94275573 1.000
rs1872087 -0.80924177 1.000
rs2017143 0.05342849 1.000
rs2840531 -0.47957726 1.000
rs2477703 -0.29647369 1.000

(argument ”quiet” supress warning messages; this is used for the purposes of
this tutorial, normally you do not need to specify this option)

As you can see, in this analysis nothing comes even close to genome-wide
significance, as indicated by genome-wide corrected P−values (column ”Pc1df”)
all >> 0.05 .

Let us try to estimate polygenic model with
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> h2 <- polygenic(qtbas, kin = gkins, data = erfs)

The results of estimation are contained in ”h2an” element of the resulting
analysis object:

> h2$h2an

$minimum
[1] 139.9891

$estimate
[1] 0.03828507 0.78448170 1.21485857

$gradient
[1] -4.04701109 -0.06361344 -3.05067753

$code
[1] 2

$iterations
[1] 4

In the ”estimate” list, the MLEs shown correspond to intercept µ̂, heritability
ĥ2 = σ̂2

G/(σ̂
2
G + σ̂2

e), and total variance σ̂2
T = σ̂2

G + σ̂2
e . You can see that

heritability of the trait is indeed high – almost 80%.
Under these conditions (hight heritability, presence of close relatives) we may

expect that FASTA and GRAMMAS analysis exploiting heritability model and
relationship matrix in exact manner may have better power compared to simple
GC.

Let us run FASTA test using estimated polygenic model, as specified by h2
object:

> mms <- mmscore(h2, data = erfs)

There is little residual inflation left when we use ”genomic kinship” matrix:

> mms$lam$est

[1] 1.022223

And the significance of ”top” hit becomes an order of magnitude better com-
pared to plain GC:

> descriptives.scan(mms, sort = "Pc1df")

Chromosome Position N effB P1df Pc1df effAB
rs1075456 15 3036078968 150 -0.5384183 0.0000119801 0.0000149041 NA
rs1054889 2 324154337 150 0.4981468 0.0002076476 0.0002435181 NA
rs1781670 13 2694164735 150 0.4724096 0.0002398578 0.0002804606 NA
rs1264007 X 4256199578 150 -0.3772189 0.0007196424 0.0008227652 NA
rs774033 12 2531521679 150 -0.4283929 0.0009456322 0.0010751485 NA
rs7141672 14 2851979738 150 0.4605357 0.0010869289 0.0012323077 NA
rs537848 15 3020539910 150 0.4151429 0.0012151235 0.0013745365 NA
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rs760109 X 4353106270 150 0.3677194 0.0013603032 0.0015352473 NA
rs1860991 5 1213061568 150 0.4111162 0.0014521083 0.0016366936 NA
rs1370139 6 1381958118 149 0.5911044 0.0016504575 0.0018554446 NA

effBB P2df
rs1075456 NA 9.99
rs1054889 NA 9.99
rs1781670 NA 9.99
rs1264007 NA 9.99
rs774033 NA 9.99
rs7141672 NA 9.99
rs537848 NA 9.99
rs760109 NA 9.99
rs1860991 NA 9.99
rs1370139 NA 9.99

If you compare these results to that obtained with simple GC, you can also
see that the ranks of top hits have changed quite a bit; unbiased estimated of
genetic effects were obtained.

However, we can not estimate genome-wide significance with FASTA, be-
cause the data structure is not exchangeble.

Using GRAMMAS method, you can estimate nominal P − values by

> grs <- qtscore(h2$pgres, data = erfs, clam = FALSE)

> grs$lam$est

[1] 0.797455

In the above analysis, note that the estimated ”inflation” factor λ is less
than one, i.e. now it is the GRAMMAS deflation factor. In order to obtain
non-concervative test statistics, we had to say to qtscore that deflation is OK
(parameter clam=FALSE).

We can see ”top” nominal corrected P − values with

> descriptives.scan(grs, sort = "Pc1df")

Chromosome Position N effB P1df Pc1df
rs1075456 15 3036078968 150 -0.10704009 0.0001344706 0.0000190625
rs1054889 2 324154337 150 0.10245323 0.0009999196 0.0002288717
rs1781670 13 2694164735 150 0.09165369 0.0015542793 0.0003948600
rs1264007 X 4256199578 150 -0.07764670 0.0023993775 0.0006751315
rs774033 12 2531521679 150 -0.09282392 0.0026100856 0.0007490689
rs7141672 14 2851979738 150 0.09341129 0.0040026811 0.0012695452
rs537848 15 3020539910 150 0.08489591 0.0042136070 0.0013525421
rs1860991 5 1213061568 150 0.08655964 0.0042663779 0.0013734589
rs760109 X 4353106270 150 0.07432363 0.0045810469 0.0014994038
rs2639197 15 3068765468 150 -0.09085234 0.0052630062 0.0017791082

effAB effBB P2df
rs1075456 -0.04882437 -0.2241217 0.0002410666
rs1054889 0.04392601 0.2236716 0.0013187233
rs1781670 0.08025377 0.1843682 0.0064411019
rs1264007 -0.09842481 -0.1512012 0.0099102406
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rs774033 -0.09430729 -0.1856043 0.0107644457
rs7141672 0.08525171 0.1967954 0.0153935223
rs537848 0.08848437 0.1695158 0.0165978319
rs1860991 0.10807561 0.1629485 0.0140947764
rs760109 0.06139187 0.1491903 0.0179490427
rs2639197 -0.09197031 -0.1804026 0.0203630654

By comparing this output to that from FASTA test, you can see that P −
values are quite close, but the effects are underestimated with GRAMMAS, as
expected.

However, the streangths of GRAMMAS test is not only its speed, but also
possiblity to estimate genome-wide significance. This can be done by

> grs.e <- qtscore(h2$pgres, data = erfs, times = 200, clam = FALSE,

+ quiet = TRUE)

> descriptives.scan(grs.e, sort = "Pc1df")

Chromosome Position N effB P1df Pc1df effAB
rs1075456 15 3036078968 150 -0.107040094 0.415 0.090 -0.04882437
rs1054889 2 324154337 150 0.102453231 0.990 0.630 0.04392601
rs1781670 13 2694164735 150 0.091653694 1.000 0.820 0.08025377
rs1264007 X 4256199578 150 -0.077646696 1.000 0.945 -0.09842481
rs774033 12 2531521679 150 -0.092823921 1.000 0.960 -0.09430729
rs2017143 1 2252811 150 0.023731274 1.000 1.000 0.05393011
rs2840531 1 2318570 150 -0.054122537 1.000 1.000 -0.05682457
rs2477703 1 2458154 150 -0.026077897 1.000 1.000 -0.03853168
rs734999 1 2545378 150 -0.001253863 1.000 1.000 0.06778755
rs2377041 1 2736485 150 -0.012215600 1.000 1.000 0.02296854

effBB P2df
rs1075456 -0.224121723 0.6
rs1054889 0.223671599 1.0
rs1781670 0.184368208 1.0
rs1264007 -0.151201249 1.0
rs774033 -0.185604344 1.0
rs2017143 0.037645098 1.0
rs2840531 -0.083781477 1.0
rs2477703 -0.038971061 1.0
rs734999 -0.006219629 1.0
rs2377041 -0.027814290 1.0

As you can see, now the ”top” hit starts approaching genome-wide signif-
icance (genome-wide P − value ∼ 10%), showing the power of kinship-based
methods under high heritability model.

Finally, let us plot −log10 nominal P −values from different methods across
the genome. Let black dots correspond to GC, green to GRAMMAS and red to
FASTA (figure 6.4):

> plot(mms, df = "Pc1df")

> add.plot(grs, df = "Pc1df", col = c("lightgreen", "lightblue"),
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Figure 6.4: Comparison of FASTA (red), GRAMMAS (green), and plain GC
(black).

+ cex = 1.2)

> add.plot(qts)

You can see that there is a great degree of correlation between the FASTA
and GRAMMAS P − values, while plain GC really stands apart.

6.4 Exercise: analysis of family data

Exercise 30 Repeat heritability estimation, FASTA and GRAMMAS analysis
of previous section using pediree kinship (pkins object). Discuss the results.

In the next section, you will explore a small (695 people) subset of people
from ERF, a family-based study with participants coming from a genetically
isolated population and sampled based on kinship (all living descendants of 22
couples living in the area in mid-XIXth century). The study participants were
genotyped using Illumina 6K ”linkage” array. QC was already performed. Your
trait of interest is ”qtbas”.

Explore the data set and answer the questions:

Exercise 31 Describe the trait ”qt”. Can you detect significant outliers at visual
inspection? Is trait distributed normally? What are significant covariates?
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Exercise 32 Explore relations between genomic and pedigree kinship (these are
provided in data as gkin and pkin data objects, respectively). What are your
conclusions? Which matrix would you use later on?

Exercise 33 What is the heritability of the trait (take care: polygenic analysis
may rung for a long while)? Based on heritability analysis, how would you rank
different methods of GWA analysis for this trait (and why)?

Exercise 34 Do GWA analysis using simple score test with genomic control.
Estimate genome-wide significance. What are your conclusions?

Run GWA analysis using the ”best” method and model as you have decided
in previous exercises. Estimate genome-wide significance. What are your con-
clusions? Did they change compared to simple analysis?

Exercise 35 Repeat the last ”best” analysis using pedigree kinship. How your
results change?

Exercise 36 If you have any time left – repeat analysis using ”qt” trait. This
one is much more fun, but also more laborous to analyse.
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Chapter 7

Exploring and using public
databases

See help for show.ncbi
More functions coming soon.
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Chapter 8

Genetic data imputations

With very dense SNP panels available nowadays, linkage disequilibrium between
neighbouring SNP is high. This allows us, based on the context, predict geno-
types with high degree of accuracy. The genetic data imputations refer to such
prediction of genotypes of missing SNPs,

The uses of genetic data imputations are basically two-fold. The first sit-
uation concerns imputations of partly missing genotypes of SNPs, typed, in a
study, based on the context provided by SNPs typed in the same study. This
allows decreasing the proportion of missing SNPs, potentially improving the
power of the study. The second situation concerns prediction of genotypes at
SNPs, which were not typed in the study, based on the context provided by the
SNPs typed and using the data coming from another study with more dense
genotyping, which may be potentially done using other population. Though
imputations may be done using the same method under the two scenarios, and
difference between them is quantitative rather than qualitative, for practical
reasons it is useful to distinguish these two situations.

GenABEL is well connected with MACH imputations software, developed by Y.
Li and G. Abecasis. Please read abou MACH at http://www.sph.umich.edu/csg/abecasis/MACH/.

8.1 Imputing partly missing genotypes

Assume you have gwaa.data object ”data” and you want to impute missing
genotypes for chromosome 1. For this, you will first need to export chromosome
one data in MACH format. The MACH data format bears remarkable similarity to
the format used by MERLIN, an excellent linkage analysis program. This is not
surprising: MERLIN was developed by G. Abecasis. Therefore we can export the
data for MACH using our function export.merlin:

> export.merlin(data[,data@gtdata@chromosome=="1"],pedf="chr1.ped",

+ dataf="chr1.dat",mapf="chr1.map")

where the first argument supplies the data to be exported and others specify
the names for the output files containing MACH genetic data (pedigree-file), and
descriptives (data-file). It will also save map information in file ’chr1.map’; this
information is not necessarily used by MACH, but is required by MERLIN, and also
required by GenABEL .
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Given the data are exported, we can use MACH for imputations of missing
genotypes. Read MACH documentation for details. Basically, under UNIX, you
need to run command

bash> mach1 -p chr1.ped -d chr1.dat --states 200 --rounds 20
--mle --mldetails --prefix chr1.out

This should produce files, of which we will use chr1.out.mlgeno, containing
the imputed genotypes and chr1.out.mlinfo, containing information about
imputations process, including quality score.

Now we need to read the imputed data back into R environment. First, we
need convert MACH output to GenABEL format:

> convert.snp.mach(pedf="chr1.out.mlgeno",mapf="chr1.map",

+ info="chr1.out.mlinfo",outf="chr1.raw",quality=0.9)

This will convert MACH output to file ’chr1.raw’, containing genotypic data in
GenABEL format. All SNPs with quality < 0.9 will be dropped.

Conversion of data from MACH to GenABEL format may be a lengthy proce-

dure. You can improve the speed much by replacing all ”/” to space (” ”) in

’chr1.out.mlgeno’.

As soon as conversion is done, you can import the data by

> chr1.imp <- load.gwaa.data(phe="pheno.dat",gen="chr1.raw")

This assumes that your penotypes are in file ”pheno.dat”, probably easiest
way to generate it is by

> save.gwaa.data(data,phen="pheno.dat",geno="tmp.raw")

Later, you can even replace your original data with imputed:

> data@gtdata@gtps[,data@gtdata@chromosome=="1"] <- chr1.imp@gtdata@gtps

8.2 Inferences from other data sets

If you imported your data to GenABEL before version 1.2-6, you will need to
re-load your data to GenABEL , to provide the information about actual coding
and strand (easily available for Affymetrix). Please check documentation for
convert.snp.text, convert.snp.illumina, convert.snp.ped. For the latter two take
care that strand=”file”.

Assume that your data are in gwaa.data object data; you want to impute
SNPs in the region between SNP 100 and 500.

Go to HapMap web-site and download phased haplotype data for the region
between SNP 100 and 500. We have a script which generates MACH input files
from HapMap dump-files (dump2mach.pl, available upon request). Note that
in HapMap phased haplotype data, SNP coding is given for ”+” strand.
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Assume that haplotype and SNP file names are reg1.haplo, reg1.snps (read
MACH documentation for details). Check that all of your SNPs (from 100 to
500) are in HapMap data; else generate the vector of indexes/names of the ones
which are in HapMap (only these will pass through MACH). Assuming all 500
are in HapMap, export your regional data in MACH format by:

> export.merlin(data[,c(100:500)],pedf="reg1.ped",

+ dataf="reg1.dat",mapf="reg1.map",strand="+")

To do imputations, in bash type

bash> mach1 -p reg1.ped -d reg1.dat -h reg1.haplo -s reg1.snps
--greedy --rounds 20 --mle --mldetails --prefix reg1.out

This should produce files, of which we will use reg1.out.mlgeno, containing
the imputed genotypes, and reg1.out.mlinfo, containing information about
imputations process, including quality score.

Back in R, convert the data to GenABEL format by:

> convert.snp.mach(pedf="reg1.out.mlgeno",mapf="reg1.large.map",

+ info="reg1.out.mlinfo",outf="reg1.raw",quality=0.9)

Here, reg1.large.map provides map for all HapMap SNPs in the region (this
one is easily made from the dump-file, or with dump2mach.pl) The above com-
mand will convert MACH output to GenABEL format, dropping all SNPs with
quality < 0.9.

Conversion of data from MACH to GenABEL format may be a lengthy proce-

dure. You can improve the speed much by replacing all ”/” to space (” ”) in

’chr1.out.mlgeno’.

Now, you can import the data by

> reg1.imp <- load.gwaa.data(phe="pheno.dat",gen="reg1.raw")
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Chapter 9

Imperfect knowledge about
genotypes

This section is copy-pasted from ProbABEL manual – will be re-written.

Many statistical and experimental techniques, such as imputations and high-
throughput sequencing, generate the data, which are informative for genome-
wide association analysis, and are probabilistic in the nature.

When we work with directly genotyped markers using such techniques as
SNP or microsatellite typing, we would normally know the genotype of a par-
ticular person at a particular locus with very high degree of confidence, and, in
case of biallelic marker, can state whether genotype is AA, AB or BB.

On the contract, when dealing with imputed or high-throughput sequencing
data, for many of genomic loci we are quite uncertainty about genotypic status
of the person; instead of known genotypes we deal rather with probability dis-
tribution; that is based on observed information, we have estimates that true
underlying genotype is either AA, AB or BB; the degree of confidence about the
real status is measured with probability distribution {P (AA), P (AB), P (BB)}.

Several techniques may be applied to analyse such data. The most simplis-
tic approach would be to pick up the genotype with highest probability, i.e.
maxg[P (g = AA), P (g = AB), P (g = BB)] and then analyse the data as if
directly typed markers were used. The disadvantage of this approach is that it
does not take into account the probability distribution – i.e. the uncertainty
about the true genotypic status. Such analysis is statistically wrong: the esti-
mates of association parameters (regression coefficients, odds or hazard ratios,
etc.) are biased, and the bias becomes more pronounced with greater probability
distribution uncertainty (entropy).

One of the solution which generates unbiased estimates of association param-
eters and takes probability distribution into account is achieved by performing
association analysis by means of regression of the outcome of interest onto esti-
mated genotypic probabilities.
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9.1 Regression analysis

Standard linear theory is used to estimate betas and their standard errors. We
assume linear model with expectation

E[Y] = Xβ (9.1)

and variance-covaraince matrix

V = σ2I

where Y is the vector of phenotypes of interest, X is design matrix, β is the
vector of regression parameters, σ2 is variance and I is identity matrix.

The maximum likelihood estimates (MLEs) for the regression parameters is
given by

β̂ = (XTX)−1XTY (9.2)

and MLE of the variance is

σ̂2 =
(Y −Xβ̂)T (Y −Xβ̂)

N − rX
(9.3)

where N is the number of observations and rX is rank of X (number of columns
of the design matrix).

Standard errors for the j-th parameter can be obtained as

s.e.(β̂j) = σ̂2(XTX)−1
jj (9.4)

where (XTX)−1
jj stands for the j-th diagonal element of the inverse of matrix

(XTX).
Logistic and survibal to be filled in here...

9.2 Analysis of imputed data with ProbABEL

ProbABEL takes three files as input: a file containing SNP information (e.g.
MLINFO file of MACH), file with genome- or chromosome-wide predictor in-
formation (e.g. MLDOSE file of MACH), and a file containing phenotype of
interest and covariates.

Optionally, the map information can be supplied (e.g. ”legend” files of
HapMap).

SNP information file
In the simplest scenario, SNP information file is an MLINFO file generated

by MACH. This must be a space or tab-delimited file containing SNP name,
coding for allele 1 and 2 (e.g. A, T, G or C), frequency of allele 1, minor allele
frequency and two quality metrics (”Quality” = average maximum posterior
probability and ”Rsq” – ratio between observed and expected variances).

Actually, for ProbABEL, it does not matter what is written in this file – this
information is just brought forward to the output. However, it is critical that
the number of columns is seven and the number of lines in the file is equal to
the number of SNPs in the corresponding DOSE file (plus one for the header
line).
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The example of SNP information file content follows here (also to be found
in ProbABEL/example/test.mlinfo)

Note that header line is present in the file. The file describes five SNPs.
Genomic predictor file
Again under simplest scenario this is a MLDOSE file generated by MACH.

Such file starts with two special columns plus, for each of the SNPs under con-
sideration, a column containing the estimated allele 1 dose. The first ”special”
column is made of the sequential id, followed by an arrow followed by study ID
(the one specified in MACH input files). The second column contains method
(e.g. ”MLDOSE”) keyword.

An example of the few first lines of an MLDOSE file for five SNPs described in
SNP information file follows here (also to be found in ProbABEL/example/test.mldose)

The order of SNPs in the SNP information file and DOSE-file must
be the same. This should be the case if you just used MACH outputs.

Thus, by all means, the number of columns in the genomic predictor file
must be the same as the number of lines in the SNP information file plus one.

Phenotypic file
Phenotypic data file contains phenotypic data, but also specifies the anal-

ysis model. There is a header line, specifying the variable names. The first
column should contain personal study IDs. It is assumed that both the total
number and the order of these IDs is are exactly the same as in the
genomic predictor (MLDOSE) file described in previous section. This
is not difficult to arrange using e.g. R; example is given in ProbABEL/examples
directory.

Missing data should be coded with ’NA’, ’N’ or ’NaN’ codes. Any
other coding will be converted to some number which will be used in analysis!
E.g. coding missing as ’-999.9’ will result in analysis which will consider -999.9
as indeed true measurements of the trait/covariates.

In case of linear or logistic regression (programs palinear and palogist,
respectively), the second column specifies the trait under analysis, while the
third, fourth, etc. provide information on covariates to be included into analysis.
An example few lines of phenotypic information file designed for linear regression
analysis follow here (also to be found in ProbABEL/example/height.txt)

Note again that the order of IDs is the same between MLDOSE and pheno-
typic data file. The model specified by this file is height ∼ µ+ sex+age, where
µ is intercept.

Clearly, you can for example include sex x age interaction terms by speci-
fying another column having a product of sex and age here.

For logistic regression, it is assumed that in the second column cases are
coded as ”1”and controls as ”0”. An example few lines of phenotypic information
file designed for logistic regression analysis follow here (also to be found in
ProbABEL/example/logist_data.txt)

You can see that in the first 10 people, there are three cases, as indicated by
”chd” equal to one. The model specified by this file is chd ∼ µ + sex + age +
othercov.

In case of Cox proportional hazards model, the composition of the pheno-
typic input file is a bit different. In the second column and third column, you
need to specify the outcome in terms of follow-up time (column two) and event
(column three, ”1” if event occurred and zero if censoring). Columns from four
inclusive specify covariates to be included into analysis. An example few lines of
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phenotypic information file designed for Cox proportional hazards model anal-
ysis follow here (also to be found in ProbABEL/example/coxph_data.txt)

You can see that for first 10 people, event happens for three of them, while
for the other seven there is no event during follow-up time, as indicated by ”chd”
column. Follow-up time is specified in the preceding column. The covariates
included into the model are age (presumably at baseline), sex and ”othercov”;
thus the model, in terms of R/survival is Surv(fuptime chd, chd) ∼ sex +
age+ othercov.

Optional map file
If you would like that map information (e.g. base pair position) to be in-

cluded in your outputs, you can supply a map file. These follow HapMap ”leg-
end” file format. For example, for the five SNPs we considered the map-file may
look like

The order of the SNPs in the map file should follow that in the SNP infor-
mation file. Only information from the second column – the SNP location – is
actually used to generate the output.

Running analysis
To run linear regression, you should use program called palinear; for logistic

analysis use palogist, and for Cox proportional hazards model use pacoxph (to
be found in ProbABEL/bin/ directory after you have compiled the program).

There are in total 11 command line options you can specify to ProbABEL
analysis functions linear or logistic. If you run either program without any
argument, you will get a short explanation to command line options:

user@server~$ palogist

Usage: ../bin/palogist options
Options:

--pheno : phenotype file name
--info : information (e.g. MLINFO) file name
--dose : predictor (e.g. MLDOSE) file name
--map : [optional] map file name
--nids : [optional] number of people to analyse
--chrom : [optional] chromosome (to be passed to

output)
--out : [optional] output file name (default is

regression.out.csv)
--skipd : [optional] how many columns to skip in

predictor (dose) file (default 2)
--ntraits : [optional] how many traits are analysed

(default 1)
--separat : [optional] character to separate fields

(default is space)
--no-head : do not report header line
--help : print help

However, for a simple run you can use only three, which specify the necessary
files needed to run regression analysis.

These options are -dose (or -d), specifying genomic predictor / MLDOSE
file described in sub-section 9.2; -pheno (or -p), specifying the phenotypic data
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file described in sub-section 9.2; and -info (or -i), specifying the SNP infor-
mation file described in sub-section 9.2.

If you change to the ProbABEL/example directory you can run analysis of
height by

user@server~/ProbABEL/example/$ ../bin/palinear -p height.txt
-d test.mldose -i test.mlinfo

Output from analysis will be directed to ”regression.out.csv” file.
You can run analysis of binary trait ”chd” with

user@server~/ProbABEL/example/$ ../bin/palogist -p logist_data.txt
-d test.mldose -i test.mlinfo

To run a Cox proportional hazards model, try

user@server~/ProbABEL/example/$ ../bin/pacoxph -p coxph_data.txt
-d test.mldose -i test.mlinfo

Please have a look at the shell script files example_qt.sh, example_bt.sh
and example_all.sh to have a better overview of analysis options.

Output file format
Let us consider what comes out of the linear regression analysis described in

the above section. After you have run the analysis, in the output file you will
find something like

Here, I show only three first lines of output. Note that lines starting with
”...” are actually the ones continuing the previous line – I just have wrapped
this output so we can see these long lines.

The header provides short description of what can be found in the specific
column. The first column provides the SNP name and next six are descriptives
which were brought directly from the SNP information file. Thus these describe
allele frequencies and quality in your total imputations, not necessarily in the
data under analysis.

On the contrast, starting with the next column, named ”n”, the output
concerns the data analysed. Column 8 (”n”) tells the number of subjects for
whom complete phenotypic information was available. At this point, unless
you have complete measurements on all subjects, you should feel warned if the
number here is exactly the number of people in the file – this probably indicates
you did not code missing values according to ProbABEL format (’NA’, ’NaN’, or
’N’).

The next column nine (”Mean predictor/2”) gives you the mean value of the
predictor (SNP) divided by 2. When MLDOSE file is used, this corresponds to
the estimated frequency of allele 1 in people with complete phenotypic data.

If ”–chrom” option was used, in the next column you will find the value
specified by this option. If ”–map” option was used, in next column you will find
map location brought from the map-file. Next columns, starting with ”beta mu”,
provide estimates for the regression coefficients (”beta mu” is a bit awkward
name for intercept). The number of βs reported is equal to the number of
covariates in the phenotypic file plus two (intercept and βSNP ). It is likely
that you will be most interested in ”beta SNP” – the estimate of the regression
coefficient for the SNP in consideration. Next columns provide corresponding
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standard errors of the estimates (”sebeta mu”, ... ”sebeta SNP”). Column names
”sigma2” provides residual variance; finally, ”SNP Z” provides the value of the
Wald’s test computed as

ZSNP =
βSNP
s.e.βSNP

while ”SNP chi2” provides the χ2
1 test obtained as square of ZSNP .

Preparing input files
In the ProbABEL/bin directory you can find perepare_data.R file – an R

script which arranges phenotypic data in right format. Please read this script
for details.

Memory use and performance
Maximum likelihood regression is implemented in ProbABEL. With 6,000 peo-

ple and 2.5 millions SNPs, genome-wide scan is completed in less that an hour
for linear model with 1-2 covariates and overnight for logistic regression or Cox
proportional hazards model.

Memory is an issue with ProbABEL – large chromosomes, such as chromosme
one consumed up to 5Gb RAM with 6,000 people.



Chapter 10

Meta-analysis of GWA
scans

10.1 Standard meta-analysis methods

Imagine you are interested in the effect of a certain polymorphism onto a par-
ticular disease. After scanning literature, you find some studies that implicate
certain allele as significantly increasing the risk of the disease, but you will typ-
ically find also that other studies were inconclusive (no significant association),
and that even some of the studies implicated the same allele as ”protective”.
Your gut feeling may be that the allele is indeed the risk one, because you feel
that the studies contradicting to this hypothesis were based on small number of
subjects; however, how do you quantify this feeling? In this situation you need
to perform meta-analysis of available data to come up with the joint effect size
estimate and P-value, as based on all available data.

Let us first consider a situation when you are interested in the effect of the
allele on a quantitative phenotype, expressed as a coefficient of regression of the
trait onto the number of this allele in the genotype. Under a favourable scenario,
from every individual study you would know the estimate of this regression
coefficient, and the standard error of the estimate (or, equivalently, the P−value
or the test statistics value for association).

One of approaches frequently used in meta-analysis of the data coming from
a number of independent studies is the inverse variance method. In essence,
this method is equivalent to combining likelihoods coming from separate studies,
using quadratic approximation. Denote coefficients of regression estimated in
N studies as βi, and associated squared standard errors of the estimates as s2i
where i ∈ 1, 2, ..., N . Note that the regression coefficient should be reported on
the same scale, e.g. centimeters, meters, or using observations reported on the
standard normal scale. Define weights for individual studies as

wi =
1
s2i

Then the pooled estimate of the regression coefficient is

β =
∑N
i=1 wiβi∑N
i=1 wi
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As you can see, the weights have straightforward interpretation: the bigger
the weight of the study (meaning the small is the standard error in the study),
the larger is the contribution from this study onto the pooled estimate.

The standard error of the pooled estimate is computed as

s2 =
1∑N
i=1 wi

and the χ2-test for association is computed in standard manner as

T 2 =
β2

s2
=

(∑N
i=1 wiβi

)2

∑N
i=1 wi

or, alternatively, the Z-test is

Z =
β

s
=
∑N
i=1 wiβi√∑N
i=1 wi

Let us try to do meta-analysis using the inverse variance pooling method.
Imagine we have information from four different studies reporting effect and the
standard error of the same allele:

Table 10.1: Estimated regression coefficients from four studies
Study n β sβ χ2

1 225 0.16 0.07 5.224
2 560 0.091 0.042 4.694
3 437 0.072 0.048 2.25
4 89 -0.03 0.12 0.062
Total 1311 ? ? ?

Let us try to access the joint significance of the association using these data.
First, let us define a vector of regression coefficients and squared standard errors:

> beta <- c(0.16, 0.091, 0.072, -0.03)

> s <- c(0.07, 0.042, 0.048, 0.12)

> s2 <- s * s

> s2

[1] 0.004900 0.001764 0.002304 0.014400

Compute the weight for individual studies as

> w <- 1/s2

> w

[1] 204.08163 566.89342 434.02778 69.44444

Estimate pooled regression coefficient as

> pbeta <- sum(w * beta)/sum(w)

> pbeta
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[1] 0.08898527

and pooled squared standard error as

> ps2 <- 1/sum(w)

> ps2

[1] 0.0007846539

To access significance of association in meta-analysis, let us compute χ2 test
statistics and the P − value with

> pchi2 <- pbeta * pbeta/ps2

> pchi2

[1] 10.09155

> ppvalue <- 1 - pchisq(pchi2, 1)

> ppvalue

[1] 0.001489504

We conclude that there is a significant association in meta-analysis.
There is an important effect which should be considered when doing meta-

analysis of published data. Given numerous polymorphisms available in human
genome, a particular polymorphism usually becomes a focus of interest only
when it was shown to be significantly associated in some study which reports it.
Put it other way around: only when a significant association was detected and
reported, more studies are likely to be performed on the same polymorphism.
This first report, however, is not guaranteed to demonstrate a true association:
it may well report a false-positive, or, even in presence of association, it is likely
to over-estimate the effect of the polymorphism. Thus there is a positive bias
in literature reports, and this bias is particularly strong for the first report, a
phenomenon frequently referenced to as ”champion’s” or ”winner’s curse”.

The observations we have just considered are quite typical in that the first
study, where the association was originally discovered, reports the biggest effect
and most significant effect, while the follow-up studies suggest smaller effect.

Therefore, when you meta-analyse data from publications it is always good
idea to exclude the first report (in case it is positive – and it is always positive!)
and check if significant association is still observed. Let us try to do that:

> beta <- beta[2:4]

> s2 <- s2[2:4]

> w <- w[2:4]

> pbeta <- sum(w * beta)/sum(w)

> pbeta

[1] 0.07544522

> ps2 <- 1/sum(w)

> ps2

[1] 0.0009342602



124 CHAPTER 10. META-ANALYSIS OF GWA SCANS

> pchi2 <- pbeta * pbeta/ps2

> pchi2

[1] 6.092501

> ppvalue <- 1 - pchisq(pchi2, 1)

> ppvalue

[1] 0.01357568

Indeed, when the first ”champion” report is excluded, the overall evidence is
decreased and results become less significant, though still pointing to the same
direction.

When binary traits are studied, and results are reported as Odds Ratios with
P − values, it is also possible to apply inverse variance method. For this, you
need to transform your Odds Ratios using natural logarithm, and, on this scale,
estimate the standard error. Generic inverse variance pooling may be applied
to the data transformed this way; the final results are back-transformed onto
Odds Ratio scale using exponentiation.

Let us consider a simple example. Let Odds Ratios and χ2 test statistics
values coming from four studies of a binary phenotype are as following: θ1 = 1.5
(χ2 = 5.1), θ2 = 1.3 (χ2 = 2.2), θ3 = 0.9 (χ2 = 0.5), θ4 = 1.2 (χ2 = 3.1).

Let us first transform the Odds Ratio to the logarithmic scale with

> or <- c(1.5, 1.3, 0.9, 1.2)

> lnor <- log(or)

> lnor

[1] 0.4054651 0.2623643 -0.1053605 0.1823216

To compute standard errors from known χ2 values, one can use simple relation

χ2 =
β2

s2

and thus

s2 =
β2

χ2

Thus to compute the square standard errors corresponding to the log-Odds
Ratio, we can use

> chi2or <- c(5.1, 2.2, 0.5, 3.1)

> s2lnor <- lnor * lnor/chi2or

> s2lnor

[1] 0.03223568 0.03128864 0.02220168 0.01072295

Now we can combine log-Odds Ratios and corresponding standard errors
using inverse variance method:

> w <- 1/s2lnor

> plnor <- sum(w * lnor)/sum(w)

> plnor
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[1] 0.1650462

> ps2 <- 1/sum(w)

> ps2

[1] 0.004968165

> pchi2 <- plnor * plnor/ps2

> pchi2

[1] 5.482958

> ppval <- 1 - pchisq(pchi2, 1)

> ppval

[1] 0.01920274

And the corresponding estimate of pooled Odds Ratio is

> exp(plnor)

[1] 1.179448

and 95% confidence interval is

> exp(plnor - 1.96 * sqrt(ps2))

[1] 1.02726

> exp(plnor + 1.96 * sqrt(ps2))

[1] 1.354181

Some times, effects are reported on different scales, and/or there may be
suspect that these effects are not translatable across studies because of the
differences in experimental design or for some other reasons. In this case, it may
be better to poll the data without use of the effect estimate in exact manner,
based only on the sign of association and its significance. This can be done by
pooling Z-score values. Z-score refers to the test statistics, which has standard
normal distribution under the null and can be derived e.g. by dividing estimate
of the regression coefficient onto its standard error:

Zi =
βi
si

The Z-score pooling methods can be derived from the inverse variance pool-
ing by exploiting the fact that generally standard error of the estimate is pro-
portional to 1/

√
n, where n is the number of observations used for estimation.

Therefore individual scores are assigned weights which are proportional to the
square root of number of independent observations used in individual study,
wi =

√
ni. The pooled Z-score statistics is computed as

Z =
∑N
i=0 wiZi√∑N
i=0 w

2
i

We can now repeat the analysis of our first data set using Z-score pooling
method. First, our data from table 10.1 are
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> n <- c(225, 560, 437, 89)

> beta <- c(0.16, 0.091, 0.072, -0.03)

> s <- c(0.07, 0.042, 0.048, 0.12)

The Z-scores and weights are are:

> z <- beta/s

> z

[1] 2.285714 2.166667 1.500000 -0.250000

> w <- sqrt(n)

> w

[1] 15.000000 23.664319 20.904545 9.433981

The pooled estimate of Z-score is

> pz <- sum(w * z)/sqrt(sum(w^2))

> pz

[1] 3.163875

and corresponding P − value is

> 1 - pchisq(pz * pz, 1)

[1] 0.001556839

which is almost the same P − value we have obtained previously using the
inverse variance method. Note, however, that now we do not know the ”pooled”
estimate of the regression coefficient.

Other important aspects of meta-analysis, such as heterogeneity, and a wide
range of methods different from the inverse variance and Z-score based methods
are not covered here, and we refer the reader to more epidemiologically-oriented
literature for a better review.

10.2 Exercise: meta-analysis of literature data

In this exercise, you will perform meta-analysis of results collected from liter-
ature. These results resemble these obtained for association analysis between
Pro12Ala polymorphism of the PPAR-γ gene and type 2 diabetes. The data
collected from literature are presented in the table 10.2.

As you can see, only the original study report significant association, while
other four are insignificant and one point in opposite direction.

Answer the following questions:

Exercise 37 Perform meta-analysis of the data presented in table 10.2. Which
allele is the risk one? Is this risk significant? What is pooled Odds Ratio and
95% confidence interval? Do analysis using at least two methods. Which method
is better (best) in this situation? Why?

Exercise 38 Perform meta-analsys excluding the original report (study 1). Is
there still significant association between Pro12Ala and diabetes?
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Table 10.2: Summary of six studies of association between T2D and Pro12Ala
polymorphism of the PPAR-γ gene. n: number of subjects; effective allele: the
allele for which the OR was estimated.

Study Effective allele n ORE P − value
1 Ala 221 0.67 0.013
2 Pro 306 0.93 0.60
3 Pro 71 1.08 0.84
4 Ala 164 0.83 0.40
5 Pro 242 1.22 0.25
6 Pro 471 1.23 0.07

10.3 Reporting GWA results for future meta-
analysis

In this section, we will discuss specifics of GWA analysis when meta-analysis
is aimed at later stage. In order to perform meta-analysis at later stage, using
either inverse variance or Z-score based method, you generally need to report
only effect estimates, standard errors of The estimates (or, equivalently, P −
values or test statistics values), and number of observations used for estimation.

It is also clear that it is crucial to know for which allele the effect is reported,
and this is the point where meta-analysis of genetic data may be very confus-
ing. Generally, one may think that reporting what couple of nucleotide bases
correspond to the polymorphism under the study and defining what allele was
used as reference in the regression model may be enough. This, however, is not
true for certain class of polymorphisms and may be a source of great confusion.

Consider a DNA molecule; as you know it is made of two complementary
strands (forward or ”+” and reverse or ”-”). As you may guess, depending on the
strand, what is an ”A/G” polymorphism when reported on ”+” strand becomes
”T/C” polymorphism on the ”-” strand (using complementarity rule A<->T
and G<->C). This is not a big problem for most of the polymorphism classes,
because if say you know that for a first study β1 is reported for the ”G” allele of
the ”A/G” polymorphism and in the second study β2 is the estimate of the effect
”C” allele of the same polymorphism, but coded as ”T/C” (thus other strand),
you can easily spot that and say the ”C” is the same as ”G” in this situation,
and pool the two betas straightforwardly.

However, for two types of polymorphisms, ”A/T” and ”G/C”, where you can
not get away without knowing what the strand was: what is reported as the
effect of ”T” in ”A/T” polymorphism in study one; and seemingly corresponding
effect of ”T” in ”A/T” polymorphism in study two may be apparently reports for
two opposite alleles, if strands used for reporting in two studies were different.

The story may become even more complex, because the forward/reverse
orientation depends on the genomic build1.

Thus if you want to pool your results with the results of others, there are
quite a few SNP characteristics which are absolutely crucial to report, namely,
the nucleotide bases describing the polymorphism, with indication which one was
used as reference, and which one as ”effective”, strand, genomic build, and only

1 There is alternative, top/bottom, strand designation, which does not depend on genomic
build. However, it is not always used.
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than the effect estimate, standard error of the effect, and number of observations
used to do estimation.

Other characteristics which are also recommended for reporting because they
describe the quality characteristics of the sample and/or provide redundant in-
formation, which is good for double checks. Such characteristics include: fre-
quency of the effective or reference allele, call rate, P-value for Hardy-Weinberg
equlibrium and may be some parameter describing what is the direction of de-
viation from HWE (e.g. Fmax). When reporting results for imputed SNPs,
more quality control characteristics should be included, suh as average maximal
posterior probability, R2, etc.

Let us start with arranging two data sets which could then be used for meta-
analysis. Basically, we will use cleaned data from the GWA exercise you did in
section 5 (5, page 67), and split that is two parts.

Let us first load the data and re-name the data object:

> data(ge03d2ex.clean)

> data2 <- ge03d2ex.clean

> rm(ge03d2.clean)

and then split it in two parts:

> data2@gtdata@nids

[1] 125

> mdta1 <- data2[1:40, ]

> mdta2 <- data2[41:data2@gtdata@nids, ]

We will analyse body mass index. If you pooling results of analysis of stud-
ies which are designed in approximately the same manner, you may think of
reporting the effect estimates on the same scale and use of the inverse variance
method for meta-analysis.

However, in meta-analysis of multiple data sets different individual studies
are likely to assess different population, will use different designs, measure dif-
ferent covariates, and so on. Therefore you should think of some standardisation
of the outcome variable (or apply Z-score method).

Therefore for the purpose of future meta-analysis, it becomes conventional
to analyse pre-adjusted data which are scaled to Standard Normal (mean of zero
and variance of unity). Note that this argument applies only to meta-analysis –
you may and should report effects on the original scale (e.g. in centimeters and
grams) in analysis of individual studies, in order to have better interpretability.

Moreover, in meta-analysis you heavily rely on the large numbers approxima-
tion when estimating P−values; while for individual study you can always apply
empirical, e.g. permutation-based, procedures to derive the correct P − value
whatever is the distribution of the trait, in meta-analysis the Normality assump-
tion becomes crucial, and you do not want few outliers spoiling your results by
screwing up P − values. Therefore some transformation improving normality is
desirable. Note that transformation to Standard Normal does not improve the
fit to normality; to do that other transformation should be applied. Probably
the most famous transformations are log- and square root ones, then one may
think of Box-Cox transformation. At the same time there is a transformation,
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called a Rank Transformation ro Normality which guarantees perfect fit to Nor-
mal in absence of heavy ties2. We advocate the use of Rank Transformation to
Normal for meta-analysis purposes.

GenABEL implements the ztransform function for the purposes of Z-transformation.
This function takes two (actually three – see help for details) arguments: for-
mula (or just the variable name) and data. ztransform function will perform
(generalised) linear regression using the specified formula, and will transform
the residuals from analysis onto Z-scale by subtracting the mean and division
by the standard deviation.

Let us consider what this function does practically. Let us first transform
BMI from the first set without using covariates:

> zbmi0 <- ztransform(bmi, mdta1)

The histogram of the transformed variable and scatter-plot of raw against trans-
formed BMI is given at figure 10.1, column 1. Note that the fit to Normality
is not improved by this transformation; with the original BMI, the Shapiro test
for deviation from normality gives

> shapiro.test(mdta1@phdata$bmi)

Shapiro-Wilk normality test

data: mdta1@phdata$bmi
W = 0.9328, p-value = 0.01990

with identical results from the transformed variable:

> shapiro.test(zbmi0)

Shapiro-Wilk normality test

data: zbmi0
W = 0.9328, p-value = 0.01990

This is quite natural: as you can note from scatter-plot in column 1 of figure
10.1, only the centering and the spread of the scales are different for X (original
BMI) and Y (x0), otherwise there is an exact linear correspondence between the
two.

We can also do transformation using sex and age-adjusted residuals with

> zbmi1 <- ztransform(bmi ~ sex + age, mdta1)

The scatter-plot of raw against transformed BMI is given at figure 10.1, column
2. Note that this transformation may slightly change the fit to Normal, which
happens because we factor out the effects of sex and age:

> shapiro.test(zbmi1)

Shapiro-Wilk normality test

data: zbmi1
W = 0.9263, p-value = 0.01224

2 Ties are generated by the subjects with exactly the same trait values
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From the scatter-plot in column 2 of figure 10.1, it is quite clear what happens:
the residuals from linear regression are not corresponding to the original BMI
in exact linear manner.

A similar function, which performs rank-transformation to normality, is
named rntransform. For example if we want to adjust BMI for sex and age
and rank-transform the residuals to Normal, we can use

> rnbmi1 <- rntransform(bmi ~ sex + age, mdta1)

This transformation, however, indeed improves the fit to Normal:

> shapiro.test(rnbmi1)

Shapiro-Wilk normality test

data: rnbmi1
W = 0.999, p-value = 1

In essence, the P − value of 1 means perfect fit to Normal – and this is what
should have occurred when this transformation is used on the data without ties.
Perfectly Normal distribution of the transformed trait may be enjoyed at the
histogram presented at column 3 of figure 10.1.

Let us analyse Rank-Normal-transformed, sex and age-adjusted BMI in the
two data sets, using qtscore function. Analysis of the first study is done with

> qts1 <- qtscore(rnbmi1, mdta1)

and analysis of the second study is done with

> zbmi2 <- ztransform(bmi ~ sex + age, mdta2)

> qts2 <- qtscore(zbmi2, mdta2)

The analysis looks very simple – is not it? However, the real difficulty did
not start yet: now we need to extract coding, reference allele, strand, etc. –
otherwise we can not do right meta-analysis later on!

Let us assume that you want to summarise the GW results from additive 1
d.f. test using following variables: (1) SNP name (2) chromosome (3) position
(4) number of people with data available for this SNP test (5) effect of the allele
(6) standard error of the effect (7) P-value for the test (8) corrected P-value
(we will use Genomic Control) (9) coding, with reference allele coming first (10)
strand (11) frequency of the reference allele and, finally, (11) P-value from the
exact test for HWE (that would be good for QC checks later on).

In the above list of output parameters, two are not directly available – fre-
quency of the reference allele, which can be computed with

> refallfreq <- 1 - summary(mdta1@gtdata)$Q.2

and the standard error of the effect estimate. Though GenABEL does not report
the s.e., it can be computed from the χ2 value of the test. By definition,(

β

SEβ

)2

= χ2
1
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Figure 10.1: Histogram of transformed BMI and scatter-plots of the raw BMI
against transformed BMI. Column 1: Z-transformation without covariates. Col-
umn 2: Z-transformation with adjustment for age and sex. Column 3: Rank-
transformation to normality, after adjustment for sex and age.

and thus given value of the χ2 test and knowing the effect, we can compute
standard error with

SEβ =
β√
χ2

Thus, s.e. is

> seeff <- qts1$effB/sqrt(qts1$chi2.1df)

At this moment we can arrange the required data frame:

> mdf1 <- data.frame(name = qts1$snpnames, chrom = qts1$chromosome,

+ pos = qts1$map, n = qts1$N, beta = qts1$effB, sebeta = seeff,

+ p = qts1$P1df, pgc = qts1$Pc1df, coding = as.character(mdta1@gtdata@coding),

+ strand = as.character(mdta1@gtdata@strand), reffreq = refallfreq)

Let us inspect the first 10 raws of the resulting output:

> mdf1[1:5, ]

name chrom pos n beta sebeta p pgc
rs7435137 rs7435137 1 4259040 39 0.05838361 0.2141932 0.7851803 0.7851803
rs664063 rs664063 2 7288020 40 0.01829962 0.4705679 0.9689794 0.9689794
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rs546570 rs546570 2 6120257 40 0.27341721 0.3890643 0.4822079 0.4822079
rs7908680 rs7908680 1 2311762 40 0.67913083 0.5908536 0.2503885 0.2503885
rs166732 rs166732 1 4716343 39 0.35418295 0.7213534 0.6234280 0.6234280

coding strand reffreq
rs7435137 CT - 0.5128205
rs664063 GC - 0.9375000
rs546570 TA + 0.1000000
rs7908680 CA - 0.9625000
rs166732 TG - 0.9743590

However, it is not recommended that you perform above-described reporting
actions unless you develop your own format. In case if you plan to use MetABEL
for meta-analysis, you best use formetascore function, which basically performs
operations similar to described, and reports results in format compatible with
MetABEL.

Thus, if you plan to use MetABEL for meta-analysis, required tables can be
generated with single command:

> mdf1 <- formetascore(bmi ~ sex + age, mdta1, transform = rntransform)

You can see that results are the same as previously:

> mdf1[1:5, ]

name chromosome position strand allele1 allele2 effallele
rs7435137 rs7435137 1 4259040 - C T T
rs664063 rs664063 2 7288020 - G C C
rs546570 rs546570 2 6120257 + T A A
rs7908680 rs7908680 1 2311762 - C A A
rs166732 rs166732 1 4716343 - T G G

effallelefreq n beta sebeta p pgc pexhwe
rs7435137 0.48717949 39 0.05838361 0.2141932 0.7851803 0.7851803 0.7484124
rs664063 0.06250000 40 0.01829962 0.4705679 0.9689794 0.9689794 1.0000000
rs546570 0.90000000 40 0.27341721 0.3890643 0.4822079 0.4822079 1.0000000
rs7908680 0.03750000 40 0.67913083 0.5908536 0.2503885 0.2503885 1.0000000
rs166732 0.02564103 39 0.35418295 0.7213534 0.6234280 0.6234280 1.0000000

call
rs7435137 0.975
rs664063 1.000
rs546570 1.000
rs7908680 1.000
rs166732 0.975

To write all the data to a file, we can use standard R write.csv function:

> write.csv(mdf1, file = "RData/part1.rnbmisexage.csv", row.names = F)

Similar analysis is applied to the second data set:

> mdf2 <- formetascore(bmi ~ sex + age, mdta2, transform = rntransform)

We can inspect the first five lines of the output with

> mdf2[1:5, ]
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name chromosome position strand allele1 allele2 effallele
rs7435137 rs7435137 1 4259040 - C T T
rs664063 rs664063 2 7288020 - G C C
rs546570 rs546570 2 6120257 + T A A
rs7908680 rs7908680 1 2311762 - C A A
rs166732 rs166732 1 4716343 - T G G

effallelefreq n beta sebeta p pgc pexhwe
rs7435137 0.47619048 84 0.1701252 0.1658456 0.3049836 0.3200269 0.2729091
rs664063 0.11309524 84 0.2235208 0.2428365 0.3573334 0.3722425 1.0000000
rs546570 0.95180723 83 -0.2957072 0.3683184 0.4220571 0.4364039 1.0000000
rs7908680 0.01234568 81 -0.2475810 0.7150117 0.7291462 0.7371260 1.0000000
rs166732 0.02976190 84 -0.3871952 0.4576614 0.3975362 0.4121416 1.0000000

call
rs7435137 1.0000000
rs664063 1.0000000
rs546570 0.9880952
rs7908680 0.9642857
rs166732 1.0000000

Let us write the data to a file:

> write.csv(mdf2, file = "RData/part2.rnbmisexage.csv", row.names = F)

Finally let us analyse and save results for another data set, ge03d2c:

> data(ge03d2c)

> mdf3 <- formetascore(bmi ~ sex + age, ge03d2c, transform = rntransform)

> write.csv(mdf3, file = "RData/part3.rnbmisexage.csv", row.names = F)

10.4 Meta-analysis with MetABEL

Now we are ready to meta-analyse GWA data coming from three studies. For
this we will need to use MetABEL package, implementing simple meta-analysis
functions for GWA data. Start with loading the package:

> library(MetABEL)

We will first meta-analyse the three studies using the data frames generated
in previous section, mdf1, mdf2 and mdf3. For this we will use the core function
of MetABEL, metagwa.tables. This function takes four arguments: two data
frames with results from individual studies, and two arguments supplying the
study names. Pooling of multiple studies is possible by sequential application
of this function.

Let us pool two first data frames:

> pooled <- metagwa.tables(mdf1, mdf2, name.x = "Part1", name.y = "Part2")

analysing ...
Lambda Part1 = 0.9440436
Lambda Part2 = 1.090242
Corrected Lambda Part1 = 0.9440436
Corrected Lambda Part2 = 1
Lambda POOLED data = 0.9997559
... DONE
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The pooled data frame contains results of meta-analysis and essential details
of the original studies:

> pooled[1:5, ]

name strand allele1 allele2 effallele chromosome position n npops
1 rs100616 - G C C 1 1911712 123 2
2 rs1006497 + T G G 1 2658810 123 2
3 rs1011580 + A G G 3 10048771 122 2
4 rs1011953 + A G G 2 6464510 124 2
5 rs1013473 + A T T 1 4487262 124 2

beta sebeta effallelefreq call pexhwe obetaPart1
1 0.11128490 0.1842895 0.1260163 0.9919667 4.7183287 0.08819818
2 -0.07530695 0.1933475 0.1463415 0.9920732 0.1698876 -0.25425751
3 -0.06827202 0.1394457 0.5040984 0.9839091 3.8552114 -0.06755996
4 0.07615424 0.1367472 0.3306452 1.0000000 0.1037354 0.18982068
5 0.30191078 0.1318863 0.5161290 1.0000000 0.0000000 0.31522388

obetaPart2 osePart1 osePart2 chi2 p
1 0.118757384 0.3726827 0.2120267 0.3646457 0.54593737
2 0.003368901 0.3498751 0.2319889 0.1517026 0.69691357
3 -0.068805418 0.2130800 0.1844217 0.2397041 0.62441989
4 0.007546243 0.2228918 0.1731671 0.3101352 0.57759723
5 0.295031422 0.2259542 0.1624257 5.2403198 0.02206922

If one needs to pool more studies, this data frame should be used as the first
argument of the metagwa.tables, and name.x argument should take special
value ”POOLED”:

> pooled <- metagwa.tables(pooled, mdf3, name.x = "POOLED", name.y = "mdf3")

NA for betas in both populaions
18 SNPs removed
analysing ...
Lambda mdf3 = 1.128096
Corrected Lambda mdf3 = 1
Lambda POOLED data = 1.357809
... DONE

> pooled[1:5, ]

name strand allele1 allele2 effallele chromosome position n npops
1 rs1000475 + T C C X 13721802 91 1
2 rs1000909 - A G G 2 8531681 190 1
3 rs1006092 - T G G X 13527448 190 1
4 rs100616 - G C C 1 1911712 311 3
5 rs1006497 + T G G 1 2658810 316 3

beta sebeta effallelefreq call pexhwe obetaPart1
1 -0.05521349 0.11185255 0.5824176 0.4690722 5.9671619 NA
2 -0.08504871 0.13218866 0.8157895 0.9793814 2.8521518 NA
3 -0.03712065 0.08523891 0.5078947 0.9793814 6.8378385 NA
4 0.11688313 0.12065072 0.1237942 0.9781269 6.6661003 0.08819818
5 -0.02265030 0.11396275 0.1613924 0.9937663 0.2330977 -0.25425751
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obetaPart2 obetamdf3 osePart1 osePart2 osemdf3 chi2 p
1 NA -0.055213494 NA NA 0.11185255 0.24366808 0.6215693
2 NA -0.085048708 NA NA 0.13218866 0.41394922 0.5199718
3 NA -0.037120652 NA NA 0.08523891 0.18965112 0.6632071
4 0.118757384 0.121082405 0.3726827 0.2120267 0.15961076 0.93852071 0.3326586
5 0.003368901 0.005382408 0.3498751 0.2319889 0.14107317 0.03950226 0.8424569

This procedure may become quite laborious if multiple studies are to be
pooled. In this case, it is possible to run meta-analysis using data provided in
files, by applying function metagwa.files. As the first argument, this func-
tion takes the path to the directory where the files with results of individual
studies are stored. It is assumed that the file names are made of two parts:
population/study name and an extension. Thus the second argument of the
metagwa.files function is the vector with names of studies, and the third
one provides extension. Other arguments, ”maf”, ”call” and ”phwe” provide the
threshold for QC filtering of SNPs in individual studies.

The function does not return any value, but rather creates a new file named
POOLEDextens, where ”extens” is the argument supplied to the function, in the
source directory. To run analysis on the three files in the directory ”RData” we
can use

> metagwa.files(dir = "RData", pops = c("part1", "part2", "part3"),

+ extens = ".rnbmisexage.csv", maf = 1e-04, call = 0.93, phwe = 1e-08)

Population part1 , reading RData/part1.rnbmisexage.csv done
Dimesions after filters are 3678 15
population part2, reading RData/part2.rnbmisexage.csv done
Dimesions after filters are 3823 15
analysing ...
Lambda part1 = 0.9403026
Lambda part2 = 1.090242
Corrected Lambda part1 = 0.9403026
Corrected Lambda part2 = 1
Lambda POOLED data = 0.9971353
... DONE
Dimesions after pooling are 3868 20
population part3, reading RData/part3.rnbmisexage.csv done
Dimesions after filters are 7493 15
analysing ...
Lambda part3 = 1.127385
Corrected Lambda part3 = 1
Lambda POOLED data = 1.360099
... DONE
Dimesions after pooling are 7493 22
$analysed.pops
[1] "part1" "part2" "part3"

> poolf <- read.csv("RData/POOLED.rnbmisexage.csv", strings = F)

> poolf[1:5, ]

name strand allele1 allele2 effallele chromosome position n npops
1 rs1000909 - A G G 2 8531681 190 1
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2 rs1006092 - T G G X 13527448 190 1
3 rs100616 - G C C 1 1911712 311 3
4 rs1006497 + T G G 1 2658810 316 3
5 rs1010481 + A C C 2 8409087 190 1

beta sebeta effallelefreq call pexhwe obetapart1
1 -0.08504871 0.13214698 0.8157895 0.9793814 2.8521518 NA
2 -0.03712065 0.08521203 0.5078947 0.9793814 6.8378385 NA
3 0.11688465 0.12062898 0.1237942 0.9781269 6.6661003 0.08819818
4 -0.02263876 0.11393929 0.1613924 0.9937663 0.2330977 -0.25425751
5 -0.03241475 0.12373958 0.2657895 0.9793814 0.0000000 NA

obetapart2 obetapart3 osepart1 osepart2 osepart3 chi2 p
1 NA -0.085048708 NA NA 0.13214698 0.41421039 0.5198402
2 NA -0.037120652 NA NA 0.08521203 0.18977078 0.6631075
3 0.118757384 0.121082405 0.3726827 0.2120267 0.15956043 0.93888336 0.3325652
4 0.003368901 0.005382408 0.3498751 0.2319889 0.14102869 0.03947828 0.8425041
5 NA -0.032414750 NA NA 0.12373958 0.06862274 0.7933527



Chapter 11

Analysis of selected region

11.1 Exploring linkage disequilibrium

See help for r2fast.

11.2 Haplotype analysis

Use

> gtforld <- as.hsgeno(srdta[, 1:5])

to convert part of your SNPs to haplo.stats format.
You can also use interface function to do sliding widow analysis

> h2 <- scan.haplo("qt1~CRSNP", srdta, snps = c(1:5))

11.3 Analysis of interactions

See help for scan.haplo.2D and scan.glm.2D
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Appendix A

Importing data to GenABEL

As described in section 4.1, GenABEL gwaa.data-class consist of phenotypic data
frame and an object of snp.data-class, which contains all genetic data. To import
data to GenABEL , you need to prepare two files: one containing the phenotypic,
and the other containing genotypic data.

The phenotype file relates study subject IDs with values of covariates and
outcomes. In the phenotypic data file, the first line gives a description (variable
name) of the data contained in a particular column; the names should better be
unique, otherwise R will change them.

The first column of the phenotype file must contain the subjects’ unique
ID, named ”id”. The IDs listed here, and in the genotypic data file, must be the
same. It is recommended that the id names are given in quotation marks (see
example below), which will save you a possible troubles with e.g. leading zeros.

There also should also be a column named ”sex” and giving sex information
(0 = female, 1 = male). Other columns in the file should contain phenotypic
information.

Missing values should be coded with ”NA”; binary traits should have values
0 or 1.

All subjects present in the genotypic files must be listed in the phenotypic
file as well, because sex information provided by the phenotypic file is an essential
part of the genotypic QC procedure.

An example of few first lines of a phenotype file is as follows:

id sex age bt1 qt qt1
"cd289982" 0 30.33 NA NA 3.93
"cd325285" 0 36.514 1 0.49 3.61
"cd357273" 1 37.811 0 1.65 5.30
"cd872422" 1 20.393 0 1.95 4.07
"cd1005389" 1 28.21 1 0.35 3.90

This file tells us that, for example, person 325286 is female (0 in second
column), and she has ”1” (usually this means a ”case”) value for the trait ”bt1”,
so on. Person 289982 has measurements only for sex, age and qt1, while other
measurements are missing (NA, Not Available).

If you need to add pehnotypes to a gwaa.data-class object already created,
you can use function add.phdata. This function allows you to add variables
contained in some data frame to the existing data@phdata object. The data
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frame to be added should contain ”id” variable, identical to that existing in the
object, and should not contain any othe variables with names identical to these
already existing.

The second file you need should contains genotypic data. As described in
section 4.1 (4.1, page 51), GenABEL snp.data-class contains different types of
information. For every SNP, information on map position, chromosome, and
strand should be provided. For every person, every SNP genotype should be
provided. GenABEL provides a number of function to convert these data from
different formats to the internal GenABEL raw format. We will first consider our
preferred format, which we informally call ”Illumina”-like.

A.1 Converting from preferred format

We will consider use of convert.snp.illumina procedure; details of other pro-
cedures are given later. Note that what we call ”illumina” format is not really a
proprietary format from that company, it is just one of the possible text output
format from the Illumina BeadStudio; similar formats are accepted/generated
by HapMap and Affymetrix.

The file of the ”Illumina” format contains SNPs in rows and IDs in columns.
The first line is a ”header”, containing column names. The first three columns
should contain information on SNP name, chromosome, and position. There is
an optional (though highly recommended!) fourth column, containing strand
information (acceptable codes: ”+”, ”-”, ”u”, the last stands for ”unknown”).
After that column, each of the residual ones corresponds to an individual, with
ID as the column name. Genotypes should be presented by two consecutive
characters (no separator).

An example of few first lines of the ”illumina” genotypic file is as follows:

name chr pos strand "cd289982" "cd325285" "cd357273" "cd872422" "cd1005389"
rs1001 1 1235 + AA AG AG AA GG
rs6679 9 2344 + GT GG GG TG GG
rs2401 22 3455 + AA CC CC CC AC
rs123 X 32535 - TT GT TT TT TT
rs6679 XY 2344 - GT GG GG TG GG
rs876 Y 23556 + 00 00 TT GG TT
mitoA1 mt 24245 - AA CC 00 00 00

It is clear that is not quite conventional Illumina file – because in BeadStudio
the alleles are reported using the ”top” strand; rather, this is an Affymetrix
or HapMap-type of a file. Anyways, this file contains all required genotypic
information, and this file format is the preferred one for import. Assume that
the file with the genotypic data is called ”gen0.illu”, and is stored in the directory
”RData”. You can convert the data to GenABEL raw format by

> convert.snp.illumina(inf = "RData/gen0.illu", out = "RData/gen0i.raw",

+ strand = "file")

Reading genotypes from file 'RData/gen0.illu' ...
Writing to file 'RData/gen0i.raw' ...
... done.
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Here is the content of the converted file ”gen0i.raw” – internal raw data
representation:

#GenABEL raw data version 0.1
"cd289982" "cd325285" "cd357273" "cd872422" "cd1005389"
rs1001 rs6679 rs2401 rs123 rs6679 rs876 mitoA1
1 9 22 X XY Y mt
1235 2344 3455 32535 2344 23556 24245
04 0c 0f 08 0c 08 0f
01 01 01 02 02 01 02
69 c0
96 40
d5 80
65 40
96 40
07 40
d0 00

Note the option strand="file" – it is telling GenABEL that strand informa-
tion is provided in the file.

At this moment, you can load the data into GenABEL . Assume that the
phenotypic file described above is called ”phe0.dat” and the converted genotypic
file in the raw GenABEL format is called ”gen0i.raw”. You can load the data using
the command

> df <- load.gwaa.data(phe = "RData/phe0.dat", gen = "RData/gen0i.raw",

+ force = T)

ids loaded...
marker names loaded...
chromosome data loaded...
map data loaded...
allele coding data loaded...
strand data loaded...
genotype data loaded...
snp.data object created...
assignment of gwaa.data object FORCED; X-errors were not checked!

The option ”force=TRUE” tells that GenABEL should load the data even if it
fins sex errors.

You can inspect the loaded data; let us first look into phenotypic data by by

> df@phdata

id sex age bt1 qt qt1
cd289982 cd289982 0 30.330 NA NA 3.93
cd325285 cd325285 0 36.514 1 0.49 3.61
cd357273 cd357273 1 37.811 0 1.65 5.30
cd872422 cd872422 1 20.393 0 1.95 4.07
cd1005389 cd1005389 1 28.210 1 0.35 3.90

... and than check that the genotypes have imported right:
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> g0 <- as.character(df@gtdata)

> g0

rs1001 rs6679 rs2401 rs123 rs6679 rs876 mitoA1
cd289982 "A/A" "G/T" "A/A" "T/T" "G/T" NA "A/A"
cd325285 "A/G" "G/G" "C/C" "T/G" "G/G" NA "C/C"
cd357273 "A/G" "G/G" "C/C" "T/T" "G/G" "T/T" NA
cd872422 "A/A" "G/T" "C/C" "T/T" "G/T" "G/G" NA
cd1005389 "G/G" "G/G" "C/A" "T/T" "G/G" "T/T" NA

> as.character(df@gtdata@strand)

rs1001 rs6679 rs2401 rs123 rs6679 rs876 mitoA1
"+" "+" "+" "-" "-" "+" "-"

> as.character(df@gtdata@coding)

rs1001 rs6679 rs2401 rs123 rs6679 rs876 mitoA1
"AG" "GT" "CA" "TG" "GT" "TG" "CA"

In a real Illumina file, a coding on the TOP strand is supplied. Then, the
file will normally look like

name chr pos "cd289982" "cd325285" "cd357273" "cd872422" "cd1005389"
rs1001 1 1235 AA AG AG AA GG
rs6679 9 2344 GT GG GG TG GG
rs2401 22 3455 AA CC CC CC AC
rs123 X 32535 TT GT TT TT TT
rs6679 XY 2344 GT GG GG TG GG
rs876 Y 23556 00 00 TT GG TT
mitoA1 mt 24245 AA CC 00 00 00

and the conversion command will be

> convert.snp.illumina(inf = "RData/gen0.illuwos", out = "RData/gen0iwos.raw",

+ strand = "+")

Reading genotypes from file 'RData/gen0.illuwos' ...
Writing to file 'RData/gen0iwos.raw' ...
... done.

In this particular data set, after conversion, the ”+” strand will actually mean
not ”forward”, but TOP – something you should remember for this particular
data. The resulting file will look like this:

You can load the data with

> df <- load.gwaa.data(phe = "RData/phe0.dat", gen = "RData/gen0iwos.raw",

+ force = T)

ids loaded...
marker names loaded...
chromosome data loaded...
map data loaded...
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allele coding data loaded...
strand data loaded...
genotype data loaded...
snp.data object created...
assignment of gwaa.data object FORCED; X-errors were not checked!

Obviously, the ”strand” is always ”+” (here it means TOP):

> g1 <- as.character(df@gtdata)

> g1

rs1001 rs6679 rs2401 rs123 rs6679 rs876 mitoA1
cd289982 "A/A" "G/T" "A/A" "T/T" "G/T" NA "A/A"
cd325285 "A/G" "G/G" "C/C" "T/G" "G/G" NA "C/C"
cd357273 "A/G" "G/G" "C/C" "T/T" "G/G" "T/T" NA
cd872422 "A/A" "G/T" "C/C" "T/T" "G/T" "G/G" NA
cd1005389 "G/G" "G/G" "C/A" "T/T" "G/G" "T/T" NA

> as.character(df@gtdata@strand)

rs1001 rs6679 rs2401 rs123 rs6679 rs876 mitoA1
"+" "+" "+" "+" "+" "+" "+"

> as.character(df@gtdata@coding)

rs1001 rs6679 rs2401 rs123 rs6679 rs876 mitoA1
"AG" "GT" "CA" "TG" "GT" "TG" "CA"

We can see that the genotypes are identical to ones we imported previously,
as should be the case:

> g0 == g1

rs1001 rs6679 rs2401 rs123 rs6679 rs876 mitoA1
cd289982 TRUE TRUE TRUE TRUE TRUE NA TRUE
cd325285 TRUE TRUE TRUE TRUE TRUE NA TRUE
cd357273 TRUE TRUE TRUE TRUE TRUE TRUE NA
cd872422 TRUE TRUE TRUE TRUE TRUE TRUE NA
cd1005389 TRUE TRUE TRUE TRUE TRUE TRUE NA

A.2 Converting PLINK tped files

PLINK TPED (transposed-pedigree) format bears notable similarity to what
we call ”Illumina” format, with few exceptions: (1) there is no header line giving
field names (and therefore IDs are stored in a separate file) (2) the first column
gives chromosome, second – SNP name, third genetic map (usually kept as
zeroes), the fourth – physical position, and, starting with the fifth column,
genotypic data are listed, (3) finally, within a genotypes, alleles are separated
with a space. In TPED format, the data we already worked with would look
like
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1 rs1001 0 1235 A A A G A G A A G G
9 rs6679 0 2344 G T G G G G T G G G
22 rs2401 0 3455 A A C C C C C C A C
X rs123 0 32535 T T G T T T T T T T
XY rs6679 0 2344 G T G G G G T G G G
Y rs876 0 23556 0 0 0 0 T T G G T T
mt mitoA1 0 24245 A A C C 0 0 0 0 0 0

Obviously, a separate file is needed to keep correspondence between geno-
types and IDs. This file emulated standard pedigree file without a header line.
The file, conventionally called a TFAM-file, should contain six columns, cor-
responding to pedigree ID, ID, father, mother, sex, and affection. Only the
second column is used by GenABEL – please make sure you use unique IDs. Con-
sequently, it does not matter what pedigree ID, father/mother, sex, or affection
status you assign in the file – the real information is coming from the phenotypic
data file. The TFAM file for our data will look like this:

1 cd289982 0 0 1 0
1 cd325285 0 0 1 0
1 cd357273 0 0 1 0
1 cd872422 0 0 1 0
1 cd1005389 0 0 1 0

You can convert the data from PLINK TPED format to the GenABEL format
using command convert.snp.tped:

> convert.snp.tped(tped = "RData/gen0.tped", tfam = "RData/gen0.tfam",

+ out = "RData/gen0tped.raw", strand = "+")

Reading individual ids from file 'RData/gen0.tfam' ...
... done. Read 5 individual ids from file 'RData/gen0.tfam'
Reading genotypes from file 'RData/gen0.tped' ...
...done. Read 7 SNPs from file 'RData/gen0.tped'
Writing to file 'RData/gen0tped.raw' ...
... done.

and load the data with

> df <- load.gwaa.data(phe = "RData/phe0.dat", gen = "RData/gen0tped.raw",

+ force = T)

ids loaded...
marker names loaded...
chromosome data loaded...
map data loaded...
allele coding data loaded...
strand data loaded...
genotype data loaded...
snp.data object created...
assignment of gwaa.data object FORCED; X-errors were not checked!

Obviously, the ”strand” is always ”+” (meaning TOP):
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> g1 <- as.character(df@gtdata)

> g1

rs1001 rs6679 rs2401 rs123 rs6679 rs876 mitoA1
cd289982 "A/A" "G/T" "A/A" "T/T" "G/T" NA "A/A"
cd325285 "A/G" "G/G" "C/C" "T/G" "G/G" NA "C/C"
cd357273 "A/G" "G/G" "C/C" "T/T" "G/G" "T/T" NA
cd872422 "A/A" "G/T" "C/C" "T/T" "G/T" "G/G" NA
cd1005389 "G/G" "G/G" "C/A" "T/T" "G/G" "T/T" NA

> as.character(df@gtdata@strand)

rs1001 rs6679 rs2401 rs123 rs6679 rs876 mitoA1
"+" "+" "+" "+" "+" "+" "+"

> as.character(df@gtdata@coding)

rs1001 rs6679 rs2401 rs123 rs6679 rs876 mitoA1
"AG" "GT" "CA" "TG" "GT" "TG" "CA"

We can see that the genotypes are identical to ones we imported previously,
as should be the case:

> g0 == g1

rs1001 rs6679 rs2401 rs123 rs6679 rs876 mitoA1
cd289982 TRUE TRUE TRUE TRUE TRUE NA TRUE
cd325285 TRUE TRUE TRUE TRUE TRUE NA TRUE
cd357273 TRUE TRUE TRUE TRUE TRUE TRUE NA
cd872422 TRUE TRUE TRUE TRUE TRUE TRUE NA
cd1005389 TRUE TRUE TRUE TRUE TRUE TRUE NA

A.3 Converting linkage-like files

Linkage-like files, also known as pre-makeped files, or pedigree files, represent a
historic format which dates back to the time when only few markers could be
typed – thus the number of subjects was usually greater than the number of
markers. In that situation, it was natural and obvious to keep IDs in rows and
markers in columns. In the first six columns, standard linkage-like file would
contain pedigree ID, ID, father’s ID, mother’s ID, sex (coded as 1 = male and
2 = female), and affection status (0 = unknown, 1 = unaffected, 2 = affected).
In the following columns, genotypic information is provided. Alleles of the same
genotype could be separated by a space, or by a slash (”/”). Thus the data we
are working with could be presented as

1 cd289982 0 0 1 0 A A G T A A T T G T 0 0 A A
1 cd325285 0 0 1 0 A G G G C C G T G G 0 0 C C
1 cd357273 0 0 1 0 A G G G C C T T G G T T 0 0
1 cd872422 0 0 1 0 A A T G C C T T T G G G 0 0
1 cd1005389 0 0 1 0 G G G G A C T T G G T T 0 0
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As you can see, this file misses header line, and information what are the
SNP names, position, etc. should be provided in a separate MAP-file. GenABEL
accepts map in Merlin format, and an extended format. A map in Merlin
format consist of header line, giving column names, and three columns with
chromosome, name and position information, for example:

chr name pos
1 rs1001 1235
9 rs6679 2344
22 rs2401 3455
X rs123 32535
XY rs6679 2344
Y rs876 23556
mt mitoA1 24245

The data can be converted to the internal GenABEL format with

> convert.snp.ped(ped = "RData/gen0.ped", map = "RData/map0.dat",

+ out = "RData/gen0pedwos.raw", strand = "+")

Reading map from file 'RData/map0.dat' ...
... done. Read positions of 7 markers from file 'RData/map0.dat'
Reading genotypes from file 'RData/gen0.ped' ...
...done. Read information for 5 people from file 'RData/gen0.ped'
Analysing marker information ...
Writing to file 'RData/gen0pedwos.raw' ...
... done.

and loaded with

> df <- load.gwaa.data(phe = "RData/phe0.dat", gen = "RData/gen0pedwos.raw",

+ force = T)

ids loaded...
marker names loaded...
chromosome data loaded...
map data loaded...
allele coding data loaded...
strand data loaded...
genotype data loaded...
snp.data object created...
assignment of gwaa.data object FORCED; X-errors were not checked!

We can inspect the genotypic data and check that conversion results are
identical to previous runs with

> g1 <- as.character(df@gtdata)

> g1

rs1001 rs6679 rs2401 rs123 rs6679 rs876 mitoA1
cd289982 "A/A" "G/T" "A/A" "T/T" "G/T" NA "A/A"
cd325285 "A/G" "G/G" "C/C" "T/G" "G/G" NA "C/C"
cd357273 "A/G" "G/G" "C/C" "T/T" "G/G" "T/T" NA
cd872422 "A/A" "G/T" "C/C" "T/T" "G/T" "G/G" NA
cd1005389 "G/G" "G/G" "C/A" "T/T" "G/G" "T/T" NA
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> as.character(df@gtdata@strand)

rs1001 rs6679 rs2401 rs123 rs6679 rs876 mitoA1
"+" "+" "+" "+" "+" "+" "+"

> as.character(df@gtdata@coding)

rs1001 rs6679 rs2401 rs123 rs6679 rs876 mitoA1
"AG" "GT" "CA" "TG" "GT" "TG" "CA"

> g0 == g1

rs1001 rs6679 rs2401 rs123 rs6679 rs876 mitoA1
cd289982 TRUE TRUE TRUE TRUE TRUE NA TRUE
cd325285 TRUE TRUE TRUE TRUE TRUE NA TRUE
cd357273 TRUE TRUE TRUE TRUE TRUE TRUE NA
cd872422 TRUE TRUE TRUE TRUE TRUE TRUE NA
cd1005389 TRUE TRUE TRUE TRUE TRUE TRUE NA

If you are willing to import strand information, you can make use of the
extended map format. In this format the strand information is added to the
map-file:

chr name pos strand coding
1 rs1001 1235 + AG
9 rs6679 2344 + TG
22 rs2401 3455 + AC
X rs123 32535 - GT
XY rs6679 2344 - GT
Y rs876 23556 + GT
mt mitoA1 24245 - AC

The data can be converted to the internal GenABEL format with

> convert.snp.ped(ped = "RData/gen0.ped", map = "RData/emap0.dat",

+ out = "RData/gen0ped.raw", strand = "file")

Reading map from file 'RData/emap0.dat' ...
... done. Read positions of 7 markers from file 'RData/emap0.dat'
Reading genotypes from file 'RData/gen0.ped' ...
...done. Read information for 5 people from file 'RData/gen0.ped'
Analysing marker information ...
Writing to file 'RData/gen0ped.raw' ...
... done.

Note that option strand==file was used to specify that the extended map
format should be used. The data can be loaded with

> df <- load.gwaa.data(phe = "RData/phe0.dat", gen = "RData/gen0ped.raw",

+ force = T)
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ids loaded...
marker names loaded...
chromosome data loaded...
map data loaded...
allele coding data loaded...
strand data loaded...
genotype data loaded...
snp.data object created...
assignment of gwaa.data object FORCED; X-errors were not checked!

We can inspect the genotypic data and check that conversion results are
identical to previous runs with

> g1 <- as.character(df@gtdata)

> g1

rs1001 rs6679 rs2401 rs123 rs6679 rs876 mitoA1
cd289982 "A/A" "G/T" "A/A" "T/T" "G/T" NA "A/A"
cd325285 "A/G" "G/G" "C/C" "T/G" "G/G" NA "C/C"
cd357273 "A/G" "G/G" "C/C" "T/T" "G/G" "T/T" NA
cd872422 "A/A" "G/T" "C/C" "T/T" "G/T" "G/G" NA
cd1005389 "G/G" "G/G" "C/A" "T/T" "G/G" "T/T" NA

> as.character(df@gtdata@strand)

rs1001 rs6679 rs2401 rs123 rs6679 rs876 mitoA1
"+" "+" "+" "-" "-" "+" "-"

> as.character(df@gtdata@coding)

rs1001 rs6679 rs2401 rs123 rs6679 rs876 mitoA1
"AG" "GT" "CA" "TG" "GT" "TG" "CA"

> g0 == g1

rs1001 rs6679 rs2401 rs123 rs6679 rs876 mitoA1
cd289982 TRUE TRUE TRUE TRUE TRUE NA TRUE
cd325285 TRUE TRUE TRUE TRUE TRUE NA TRUE
cd357273 TRUE TRUE TRUE TRUE TRUE TRUE NA
cd872422 TRUE TRUE TRUE TRUE TRUE TRUE NA
cd1005389 TRUE TRUE TRUE TRUE TRUE TRUE NA

A.4 Converting from MACH format

The data from MACH format can be converted by using convert.snp.mach.
This function actually calls convert.snp.ped in specific format. MACH soft-
ware is widely used for SNP imputations. For our needs we consider two files
produced by MACH: pedigree file with (the imputed) genotypic data, and info-
file, containing information about quality of imputations for particular SNP.

SEE HELP FOR convert.snp.mach for further details.

A.5 Converting from text format
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Answers to exercises

B.0.1 Exercise 2.1:

For the first person id is ”p1” and sex code is 1 (1=male, 2=female)

> srdta@gtdata@idnames[1]

[1] "p1"

> srdta@gtdata@male[1]

p1
1

For the 22nd person id is ”p22” and sex code is 1:

> srdta@gtdata@idnames[22]

[1] "p22"

> srdta@gtdata@male[22]

p22
1

Among first 100 subjects, there are 53 males:

> sum(srdta@gtdata@male[1:100])

[1] 53

Among 4th hundred subjects there are 45 females:

> 100 - sum(srdta@gtdata@male[301:400])

[1] 45

Male proportion among first 1000 people is

> mean(srdta@gtdata@male[1:1000])

149
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[1] 0.508

Female proportion among second 1000 people is

> 1 - mean(srdta@gtdata@male[1001:2000])

[1] 0.476

Name, chromosome and map position of the 33rd marker are:

> srdta@gtdata@snpnames[33]

[1] "rs422"

> srdta@gtdata@chromosome[33]

rs422
1

Levels: 1

> srdta@gtdata@map[33]

rs422
105500

The map positions for and distance between markers 25 and 26 are:

> pos25 <- srdta@gtdata@map[25]

> pos25

rs365
91250

> pos26 <- srdta@gtdata@map[26]

> pos26

rs372
92750

> pos26 - pos25

rs372
1500

B.0.2 Exercise 2.2:

Value of the 4th variable of person 75:

> srdta@phdata[75, 4]

[1] -0.04

Value for the variable 1 is

> srdta@phdata[75, 1]
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[1] "p75"

Also, if we check first 10 elements we see

> srdta@phdata[1:10, 1]

[1] "p1" "p2" "p3" "p4" "p5" "p6" "p7" "p8" "p9" "p10"

This is personal ID.
The sum for variable 2 is

> sum(srdta@phdata[, 2])

[1] 1275

This is sex variable.

B.0.3 Exercise 2.3:

To obtain the number of people with age >65 y.o., you can use any of the
following

> sum(srdta@phdata$age > 65)

[1] 48

> vec <- which(srdta@phdata$age > 65)

> length(vec)

[1] 48

To get sex of these people use any of:

> sx65 <- srdta@phdata$sex[srdta@phdata$age > 65]

> sx65

[1] 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 0
[39] 1 0 1 0 0 0 0 1 1 1

> sx65 <- srdta@phdata$sex[vec]

> sx65

[1] 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 0
[39] 1 0 1 0 0 0 0 1 1 1

Thus, number of males is:

> sum(sx65)

[1] 26

To conclude, the proportion of male is 0.541666666666667
Distribution of qt3 in people younger and older than 65 are:

> summary(srdta@phdata$qt3[vec])
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Min. 1st Qu. Median Mean 3rd Qu. Max.
0.730 2.690 3.480 3.499 4.265 5.840

> sd(srdta@phdata$qt3[vec], na.rm = TRUE)

[1] 1.128701

> young <- which(srdta@phdata$age < 65)

> summary(srdta@phdata$qt3[young])

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
-1.97 1.83 2.58 2.59 3.35 6.34 11.00

> sd(srdta@phdata$qt3[young], na.rm = TRUE)

[1] 1.093374

B.0.4 Exercise 2.3:

> summary(srdta@phdata$age)

Min. 1st Qu. Median Mean 3rd Qu. Max.
24.10 45.10 50.00 50.04 54.80 71.60

The histogram for qt2 looks strange: it seems there are few very strong
outliers (figure B.1) You can also see that with summary:

> summary(srdta@phdata$qt2)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 4.220 5.045 6.122 5.910 888.000

B.0.5 Exercise 1:

How many SNPs are described in this data frame?

> attach(popdat)

The following object(s) are masked from data2@phdata :

sex

> names(popdat)

[1] "subj" "sex" "aff" "qt" "snp1" "snp2" "snp3" "snp4" "snp5"
[10] "snp6" "snp7" "snp8" "snp9" "snp10"

The answer is 10 snps
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Histogram of srdta@phdata$qt2
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Figure B.1: Histogram of qt2
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B.0.6 Exercise 2:

What is the frequency (proportion) of snp1 allele A? What is its frequency in
these affected (aff==1)?

> summary(snp1)

Number of samples typed: 2374 (95%)

Allele Frequency: (2 alleles)
Count Proportion

A 3462 0.73
B 1286 0.27
NA 252 NA

Genotype Frequency:
Count Proportion

B/B 199 0.08
A/B 888 0.37
A/A 1287 0.54
NA 126 NA

Heterozygosity (Hu) = 0.3950646
Poly. Inf. Content = 0.3169762

The frequency of A in all subjects is 0.73.

> summary(snp1[aff == 1])

Number of samples typed: 519 (94.5%)

Allele Frequency: (2 alleles)
Count Proportion

A 729 0.7
B 309 0.3
NA 60 NA

Genotype Frequency:
Count Proportion

B/B 48 0.09
A/B 213 0.41
A/A 258 0.50
NA 30 NA

Heterozygosity (Hu) = 0.4185428
Poly. Inf. Content = 0.3307192

The frequency of A in affected subjects is 0.7.
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B.0.7 Exercise 3:

How many cases and controls are present?

> table(aff)

aff
0 1

1951 549

There are 549 cases and 1951 controls.

B.0.8 Exercise 4:

If all subjects are used to test HWE, are there any SNPs out of HWE at nominal
P ≤ 0.05? Which ones?

> HWE.exact(snp1)

Exact Test for Hardy-Weinberg Equilibrium

data: snp1
N11 = 1287, N12 = 888, N22 = 199, N1 = 3462, N2 = 1286, p-value =
0.01083

...

> HWE.exact(snp10)

Exact Test for Hardy-Weinberg Equilibrium

data: snp10
N11 = 1792, N12 = 552, N22 = 40, N1 = 4136, N2 = 632, p-value = 0.7897

Only SNP 1 is out of HWE in the total sample.

B.0.9 Exercise 5:

If only controls are used to test the SNPs which are out of HWE in total sample,
are these still out of HWE?

> HWE.exact(snp1[aff == 0])

Exact Test for Hardy-Weinberg Equilibrium

data: snp1[aff == 0]
N11 = 1029, N12 = 675, N22 = 151, N1 = 2733, N2 = 977, p-value =
0.008393

Yes, SNP 1 is out of HWE also in controls.
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B.0.10 Exercise 6:

Which SNP pairs are in strong LD (r2 ≥ 0.8)?

> LD(popdat[, 5:14])$"R^2"

snp1 snp2 snp3 snp4 snp5 snp6 snp7 snp8 snp9 snp10
snp1 NA 0.016 0.235 0.206 0.258 0.227 0.152 0.117 0.090 0.000
snp2 NA NA 0.004 0.004 0.005 0.004 0.000 0.000 0.000 0.000
snp3 NA NA NA 0.602 0.457 0.346 0.641 0.031 0.042 0.001
snp4 NA NA NA NA 0.803 0.650 0.729 0.027 0.037 0.002
snp5 NA NA NA NA NA 0.874 0.586 0.034 0.046 0.002
snp6 NA NA NA NA NA NA 0.670 0.030 0.040 0.002
snp7 NA NA NA NA NA NA NA 0.020 0.027 0.003
snp8 NA NA NA NA NA NA NA NA 0.002 0.000
snp9 NA NA NA NA NA NA NA NA NA 0.001
snp10 NA NA NA NA NA NA NA NA NA NA

SNP pairs 4-5 and 5-6 have r2 ≥ 0.8.

B.0.11 Exercise 7:

For SNPs in strong LD, what is r2 for separate samples of cases and controls?
For controls,

> LD(data.frame(snp4, snp5, snp6)[aff == 0, ])$"R^2"

snp4 snp5 snp6
snp4 NA 0.806591 0.6419715
snp5 NA NA 0.8661005
snp6 NA NA NA

For cases,

> LD(data.frame(snp4, snp5, snp6)[aff == 1, ])$"R^2"

snp4 snp5 snp6
snp4 NA 0.7951475 0.6773275
snp5 NA NA 0.9083237
snp6 NA NA NA

Note that the fact that LD is higher in cases may mean nothing because the
estimates of LD are biased upwards with smaller sample sizes. For example in a
small sample (5 people) of controls we expect even higher LD because of strong
upward bias:

> LD(popdat[which(aff == 0)[1:5], 8:10])$"R^2"

snp4 snp5 snp6
snp4 NA 0.9995876 0.9995876
snp5 NA NA 0.9995876
snp6 NA NA NA

More elaborate methods, such as that by Zaykin, are required to contrast LD
between sample of unequal size.
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B.0.12 Exercise 8:

Is there significant association between affection status and sex? What is P -
value for association?

> glm(aff ~ sex, family = binomial())

Call: glm(formula = aff ~ sex, family = binomial())

Coefficients:
(Intercept) sex

-1.3197 0.1006

Degrees of Freedom: 2499 Total (i.e. Null); 2498 Residual
Null Deviance: 2632
Residual Deviance: 2631 AIC: 2635

There is significant (P = 0.03) association.

B.0.13 Exercise 9:

Is association between the disease and qt significant?

> glm(aff ~ qt, family = binomial())

Call: glm(formula = aff ~ qt, family = binomial())

Coefficients:
(Intercept) qt

-1.26769 -0.02514

Degrees of Freedom: 2499 Total (i.e. Null); 2498 Residual
Null Deviance: 2632
Residual Deviance: 2632 AIC: 2636

There is no significant (P = 0.6) association.

B.0.14 Exercise 10:

Which SNPs are associated with the quantitative trait qt at nominal P ≤ 0.05?
Use 2 d.f. test.

> summary(lm(qt ~ snp1))

Call:
lm(formula = qt ~ snp1)

Residuals:
Min 1Q Median 3Q Max

-3.52609 -0.66427 -0.01110 0.67648 3.54622

Coefficients:
Estimate Std. Error t value Pr(>|t|)
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(Intercept) -0.02846 0.02758 -1.032 0.3022
snp1A/B 0.08200 0.04316 1.900 0.0575 .
snp1B/B 0.18644 0.07536 2.474 0.0134 *
---
Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Residual standard error: 0.9893 on 2371 degrees of freedom
(126 observations deleted due to missingness)

Multiple R-squared: 0.00335, Adjusted R-squared: 0.002509
F-statistic: 3.985 on 2 and 2371 DF, p-value: 0.01873

...

> summary(lm(qt ~ snp10))

Call:
lm(formula = qt ~ snp10)

Residuals:
Min 1Q Median 3Q Max

-3.586464 -0.677484 0.001935 0.673270 3.412527

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.01915 0.02344 0.817 0.414
snp10A/B 0.01277 0.04829 0.264 0.792
snp10B/B 0.17178 0.15860 1.083 0.279

Residual standard error: 0.9921 on 2381 degrees of freedom
(116 observations deleted due to missingness)

Multiple R-squared: 0.0005072, Adjusted R-squared: -0.0003324
F-statistic: 0.6041 on 2 and 2381 DF, p-value: 0.5467

SNPs 1, 4, 5 an 9 are significantly associated at nominal P ≤ 0.05.

B.0.15 Exercise 11:

Test each SNP for association with the affection status, using 2 d.f. test. Which
SNPs are significantly associated at nominal P ≤ 0.05? How can you describe
the model of action of the significant SNPs?

> x <- glm(aff ~ snp5, family = binomial())

> x

Call: glm(formula = aff ~ snp5, family = binomial())

Coefficients:
(Intercept) snp5A/A snp5B/B

-1.4868 0.2112 0.3387

Degrees of Freedom: 2382 Total (i.e. Null); 2380 Residual
(117 observations deleted due to missingness)



159

Null Deviance: 2440
Residual Deviance: 2431 AIC: 2437

> anova(x, test = "Chisq")

Analysis of Deviance Table

Model: binomial, link: logit

Response: aff

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 2382 2440.40
snp5 2 9.24 2380 2431.16 0.01

...

> x <- glm(aff ~ snp10, family = binomial())

> x

Call: glm(formula = aff ~ snp10, family = binomial())

Coefficients:
(Intercept) snp10A/B snp10B/B

-1.3703 0.2909 -0.1803

Degrees of Freedom: 2383 Total (i.e. Null); 2381 Residual
(116 observations deleted due to missingness)

Null Deviance: 2475
Residual Deviance: 2468 AIC: 2474

> anova(x, test = "Chisq")

Analysis of Deviance Table

Model: binomial, link: logit

Response: aff

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 2383 2475.13
snp10 2 6.73 2381 2468.39 0.03

The SNPs 5 an 10 are significantly associated at P ≤ 0.05. The model of action
of SNP5 can be ddescribed as recessive (while the risk for AA and AB is not
significantly different, there is 1.4 times increased risk for these homozygous for
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BB). The SNP 10 demonstrates somewhat weird action with the risk increased
in heterozygous AB individuals. However, the confidence interval for BB is large
and therefore we can not claim that BB is not increasing the risk.

B.0.16 Exercise 12:

For the SNPs selected in previous question, test association using additive
model. Which SNPs are still associated?

> glm(aff ~ as.numeric(snp5), family = binomial())

Call: glm(formula = aff ~ as.numeric(snp5), family = binomial())

Coefficients:
(Intercept) as.numeric(snp5)

-1.5695 0.1094

Degrees of Freedom: 2382 Total (i.e. Null); 2381 Residual
(117 observations deleted due to missingness)

Null Deviance: 2440
Residual Deviance: 2438 AIC: 2442

> glm(aff ~ as.numeric(snp10), family = binomial())

Call: glm(formula = aff ~ as.numeric(snp10), family = binomial())

Coefficients:
(Intercept) as.numeric(snp10)

-1.5539 0.1976

Degrees of Freedom: 2383 Total (i.e. Null); 2382 Residual
(116 observations deleted due to missingness)

Null Deviance: 2475
Residual Deviance: 2471 AIC: 2475

Only SNP 10 is significantly associated under the additive model.

B.0.17 Exercise 13:

If you adjust the analysis under additive model (question 12) for significant
covariates which you discovered in questions 8 and 9, are these findings still
significant?

> glm(aff ~ sex + snp10, family = binomial())

Call: glm(formula = aff ~ sex + snp10, family = binomial())

Coefficients:
(Intercept) sex snp10A/B snp10B/B

-1.41894 0.09513 0.29230 -0.18471

Degrees of Freedom: 2383 Total (i.e. Null); 2380 Residual
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(116 observations deleted due to missingness)
Null Deviance: 2475
Residual Deviance: 2467 AIC: 2475

Yes, SNP 10 becomes even a bit more significantly associated after adjusting for
sex.

B.0.18 Exercise 14:

Test association between aff and snp5 and snp10, allowing for the SNPs inter-
action effect. Use arbitrary (not an additive) model. Do you observe significant
interaction? How can you describe the model of concert action of snp5 and
snp10?

> glm(aff ~ snp5 * snp10, family = binomial())

Call: glm(formula = aff ~ snp5 * snp10, family = binomial())

Coefficients:
(Intercept) snp5A/A snp5B/B snp10A/B

-1.50840 -0.41802 0.33441 -0.01403
snp10B/B snp5A/A:snp10A/B snp5B/B:snp10A/B snp5A/A:snp10B/B
-0.14983 1.48369 0.12989 0.82348

snp5B/B:snp10B/B
-0.28562

Degrees of Freedom: 2268 Total (i.e. Null); 2260 Residual
(231 observations deleted due to missingness)

Null Deviance: 2282
Residual Deviance: 2243 AIC: 2261

It appears that SNP10 genotype is only relevant in these who are homozygous for
the low-risk A allele at the SNP5; in such cases SNP 10 allele B is risk increasing.
In these homozygous for SNP 5 A, we observe highly significant increase in risk
for heterozygotes for SNP10 and increased (though not significantly) risk for
SNP 10 BB.

100

B.0.19 Exercise 4.1:

> data(srdta)

Number of people:

> srdta@gtdata@nids

[1] 2500

Number of males:

> sum(srdta@gtdata@male)

[1] 1275
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Number of females:

> srdta@gtdata@nids - sum(srdta@gtdata@male)

[1] 1225

... or you could get the same answer like this1:

> sum(srdta@gtdata@male == 0)

[1] 1225

The proportion of males can be computed using above results

> sum(srdta@gtdata@male)/srdta@gtdata@nids

[1] 0.51

or by using mean() function:

> mean(srdta@gtdata@male)

[1] 0.51

B.0.20 Exercise 4.1:

The names of markers located after 2,490,000 b.p. are

> vec <- (srdta@gtdata@map > 2490000)

> srdta@gtdata@snpnames[vec]

[1] "rs9273" "rs9277" "rs9279" "rs9283"

Between 1,100,000 and 1,105,000 b.p.:

> vec <- (srdta@gtdata@map > 1100000 & srdta@gtdata@map < 1105000)

> srdta@gtdata@snpnames[vec]

[1] "rs4180" "rs4186" "rs4187"

B.0.21 Exercise 4.2:

To learn what allele of ”rs114” is the reference you need to run

> as.character(srdta@gtdata@coding["rs114"])

<NA>
"AT"

Here, the first (”A”) allele is the reference and thus the second (”T”) is the ef-
fective one. Remember that when using as.numeric function to convert the
genotypes to human-readable and R-operatable format, the homozygotes for
reference will be coded as ”0”, heterozygotes as ”1” and the non-reference (”ef-
fective”) homozygotes will be coded as ”2”:

1 This is something covered later in the section ?? (”??”)
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> table(as.character(srdta@gtdata[, "rs114"]), as.numeric(srdta@gtdata[,

+ "rs114"]))

0 1 2
A/A 1868 0 0
A/T 0 491 0
T/T 0 0 34

To compute frequency of the effective allele of SNP ”rs114” in total sample,
you can go two ways. First, we can try to take a sum of all rs114 genotypes and
divide it by twice the number of people:

> a <- as.numeric(srdta@gtdata[, "rs114"])

> sum(a)

[1] NA

This, however, returns NA, because some of the genotypes are missing. We can
deal with this problem by running sum() with the option na.rm=TRUE:

> sum(a, na.rm = T)

[1] 559

However, now we do not know what was the number of people for whom the
genotype was measured!

An easier way would be to compute mean value of rs114 with the mean( ...
,na.rm=TRUE) function and divide it by 2:

> mean(a, na.rm = T)/2

[1] 0.116799

To compute frequency of the effective allele of ”rs114” in males, you can use

> amale <- as.numeric(srdta@gtdata[srdta@phdata$sex == 1, "rs114"])

> mean(amale, na.rm = T)/2

[1] 0.1164216

To compute frequency of the effective allele in females, you can use

> afemale <- as.numeric(srdta@gtdata[srdta@phdata$sex == 0, "rs114"])

> mean(afemale, na.rm = T)/2

[1] 0.1171942

Actually, the problem that we do not know how many people are measured,
can be easily dealt with. This can be done by using is.na(A) function which
returns true when some element of A is not measured. Thus, the number of
people with measured genotype for ”rs114” is

> a <- as.numeric(srdta@gtdata[, "rs114"])

> sum(!is.na(a))
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[1] 2393

And the allele frequency estimate is

> sum(a, na.rm = T)/(2 * sum(!is.na(a)))

[1] 0.116799

exactly the same as above.
The frequencies of the reference allele are computed very simply as one minus

the frequency of the effective allele.

B.0.22 Exercise 4.3:

To test for HWE in first 10 SNPs in total sample

> summary(srdta@gtdata[, 1:10])

NoMeasured CallRate Q.2 P.11 P.12 P.22 Pexact Fmax
rs10 2384 0.9536 0.13255034 1792 552 40 7.897327e-01 -0.006880004
rs18 2385 0.9540 0.28029350 1232 969 184 7.608230e-01 -0.007017332
rs29 2374 0.9496 0.13774221 1763 568 43 7.955141e-01 -0.007241148
rs65 2378 0.9512 0.71972246 182 969 1227 6.475412e-01 -0.010016746
rs73 2385 0.9540 0.01341719 2331 44 10 1.792470e-12 0.303150234
rs114 2393 0.9572 0.11679900 1868 491 34 7.663683e-01 0.005487764
rs128 2391 0.9564 0.02488499 2281 101 9 9.408599e-06 0.129600629
rs130 2379 0.9516 0.69377890 222 1013 1144 9.615127e-01 -0.002140946
rs143 2377 0.9508 0.47728229 655 1175 547 6.512540e-01 0.009313705
rs150 2369 0.9476 0.65998312 267 1077 1025 5.518478e-01 -0.012948436

Plrt Chromosome
rs10 7.355343e-01 1
rs18 7.315304e-01 1
rs29 7.227853e-01 1
rs65 6.246577e-01 1
rs73 1.281239e-12 1
rs114 7.894076e-01 1
rs128 1.000431e-05 1
rs130 9.168114e-01 1
rs143 6.497695e-01 1
rs150 5.281254e-01 1

To test it in cases

> summary(srdta@gtdata[srdta@phdata$bt == 1, 1:10])

NoMeasured CallRate Q.2 P.11 P.12 P.22 Pexact Fmax
rs10 1197 0.9622186 0.13700919 888 290 19 4.635677e-01 -0.024514202
rs18 1189 0.9557878 0.28511354 605 490 94 7.759191e-01 -0.010949158
rs29 1176 0.9453376 0.14285714 859 298 19 2.832575e-01 -0.034722222
rs65 1185 0.9525723 0.72700422 83 481 621 4.647357e-01 -0.022595469
rs73 1187 0.9541801 0.01053075 1167 15 5 3.988770e-08 0.393614304
rs114 1190 0.9565916 0.12184874 918 254 18 8.924018e-01 0.002606831
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rs128 1183 0.9509646 0.02409129 1129 51 3 2.747904e-02 0.083175674
rs130 1188 0.9549839 0.68392256 117 517 554 8.407527e-01 -0.006569292
rs143 1192 0.9581994 0.48489933 320 588 284 6.848365e-01 0.012522119
rs150 1182 0.9501608 0.66624365 127 535 520 5.568363e-01 -0.017756050

Plrt Chromosome
rs10 3.871421e-01 1
rs18 7.052930e-01 1
rs29 2.214580e-01 1
rs65 4.348023e-01 1
rs73 2.423624e-08 1
rs114 9.285104e-01 1
rs128 3.157174e-02 1
rs130 8.207476e-01 1
rs143 6.654994e-01 1
rs150 5.409408e-01 1

in controls

> summary(srdta@gtdata[srdta@phdata$bt == 0, 1:10])

NoMeasured CallRate Q.2 P.11 P.12 P.22 Pexact Fmax
rs10 1177 0.9453815 0.12744265 897 260 20 7.933317e-01 0.006751055
rs18 1185 0.9518072 0.27426160 623 474 88 9.418133e-01 -0.004812165
rs29 1188 0.9542169 0.13215488 897 268 23 5.288436e-01 0.016525913
rs65 1183 0.9502008 0.71344041 98 482 603 8.871139e-01 0.003540522
rs73 1188 0.9542169 0.01641414 1154 29 5 6.941219e-06 0.244001185
rs114 1192 0.9574297 0.11157718 941 236 15 8.846527e-01 0.001356081
rs128 1197 0.9614458 0.02589808 1141 50 6 7.745807e-05 0.172107564
rs130 1181 0.9485944 0.70491109 104 489 588 8.887439e-01 0.004728114
rs143 1174 0.9429719 0.46805792 334 581 259 8.604122e-01 0.006165442
rs150 1176 0.9445783 0.65306122 139 538 499 7.968462e-01 -0.009574142

Plrt Chromosome
rs10 8.178295e-01 1
rs18 8.683219e-01 1
rs29 5.737373e-01 1
rs65 9.031273e-01 1
rs73 5.537568e-06 1
rs114 9.627084e-01 1
rs128 7.552399e-05 1
rs130 8.710047e-01 1
rs143 8.326938e-01 1
rs150 7.424986e-01 1

B.0.23 Exercise 37:

Perform meta-analysis of the data presented in table 10.2. Which allele is the
risk one? Is this risk significant? What is pooled Odds Ratio and 95% confidence
interval? Do analysis using at least two methods. Which method is better (best)
in this situation? Why?

We first need to unify Odds Ratios by using the same effective allele. Let that
be the ”risk” allele, as may be guessed from a glance to the data, namely ”Pro”.
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When the effects are reported for the other, ”Ala” allele, the corresponding ORs
for the ”Pro” allele can be found using simple relation ORPro = 1/ORAla.

Thus, the vector of Odds Ratios for ”Pro” allele is

> or.pro <- c(1/0.67, 0.93, 1.08, 1/0.83, 1.22, 1.23)

> or.pro

[1] 1.492537 0.930000 1.080000 1.204819 1.220000 1.230000

The corresponding P − values are

> p <- c(0.013, 0.6, 0.84, 0.4, 0.25, 0.07)

Let us find log-ORs

> logor.pro <- log(or.pro)

> logor.pro

[1] 0.40047757 -0.07257069 0.07696104 0.18632958 0.19885086 0.20701417

Corresponding squared standard errors are

> s2 <- logor.pro * logor.pro/qchisq(1 - p, 1)

> s2

[1] 0.02599764 0.01915121 0.14531060 0.04901514 0.02988102 0.01305349

and weights are

> w <- 1/s2

> w

[1] 38.46503 52.21601 6.88181 20.40186 33.46606 76.60788

Thus the pooled estimate of log-OR is

> p.logor.pro <- sum(w * logor.pro)/sum(w)

> p.logor.pro

[1] 0.1686548

and the standard error is

> p.s <- 1/sqrt(sum(w))

> p.s

[1] 0.066221

Thus the pooled estimate of Odds Ratio from association between type 2
diabetes and ”Ala” allele is

> exp(p.logor.pro)

[1] 1.183711

and the 95% confidence interval is
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> exp(p.logor.pro - 1.96 * p.s)

[1] 1.039627

> exp(p.logor.pro + 1.96 * p.s)

[1] 1.347765

The χ2 test for association and corresponding P − value are

> p.chi2 <- (p.logor.pro/p.s)^2

> p.chi2

[1] 6.486429

> p.pval <- 1 - pchisq(p.chi2, 1)

> p.pval

[1] 0.01087011

Z-score pooling though may be more appropriate method for such differen-
tially designed studies (e.g. control groups are very different). To get Z-score
pooling working, we need first find Z-scores from P-values

> p <- c(0.013, 0.6, 0.84, 0.4, 0.25, 0.07)

> z <- sqrt(qchisq(1 - p, 1))

> z

[1] 2.4837693 0.5244005 0.2018935 0.8416212 1.1503494 1.8119107

and assign the right sign (let ”+” is for the risk effect of ”Pro”).

> effsig <- c(1, -1, 1, 1, 1, 1)

> z <- z * effsig

> z

[1] 2.4837693 -0.5244005 0.2018935 0.8416212 1.1503494 1.8119107

Now, we need to assign weights to the studies as

> n <- c(221, 306, 71, 164, 242, 471)

> w <- sqrt(n)

ane the pooled estimate of Z and corresponding P − value are

> zpoo <- sum(w * z)/sqrt(sum(w^2))

> zpoo

[1] 2.537333

> 1 - pchisq(zpoo * zpoo, 1)

[1] 0.01117008

As you can see the results are almost identical to the previous obtained with
inverse variance pooling.
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B.0.24 Exercise 38:

Perform meta-analsys excluding the original report (study 1). Is there still
significant association between Pro12Ala and diabetes?

The answer to this exercise can be obtained in exactly the same manner, as
for the previous one, limiting our consideration to the last five studies.

Thus, the vector of Odds Ratios for ”Pro” allele is

> or.pro <- c(0.93, 1.08, 1/0.83, 1.22, 1.23)

> or.pro

[1] 0.930000 1.080000 1.204819 1.220000 1.230000

The corresponding P − values are

> p <- c(0.6, 0.84, 0.4, 0.25, 0.07)

Let us find log-ORs

> logor.pro <- log(or.pro)

> logor.pro

[1] -0.07257069 0.07696104 0.18632958 0.19885086 0.20701417

Corresponding squared standard errors are

> s2 <- logor.pro * logor.pro/qchisq(1 - p, 1)

> s2

[1] 0.01915121 0.14531060 0.04901514 0.02988102 0.01305349

and weights are

> w <- 1/s2

> w

[1] 52.21601 6.88181 20.40186 33.46606 76.60788

Thus the pooled estimate of log-OR is

> p.logor.pro <- sum(w * logor.pro)/sum(w)

> p.logor.pro

[1] 0.1216172

and the standard error is

> p.s <- 1/sqrt(sum(w))

> p.s

[1] 0.07262917

Thus the pooled estimate of Odds Ratio from association between type 2
diabetes and ”Ala” allele is

> exp(p.logor.pro)
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[1] 1.129322

and the 95% confidence interval is

> exp(p.logor.pro - 1.96 * p.s)

[1] 0.9794776

> exp(p.logor.pro + 1.96 * p.s)

[1] 1.302090

The χ2 test for association and corresponding P − value are

> p.chi2 <- (p.logor.pro/p.s)^2

> p.chi2

[1] 2.803937

> p.pval <- 1 - pchisq(p.chi2, 1)

> p.pval

[1] 0.09403318

Z-score pooling though may be more appropriate method for such differen-
tially designed studies (e.g. control groups are very different). To get Z-score
pooling working, we need first find Z-scores from P-values

> p <- c(0.6, 0.84, 0.4, 0.25, 0.07)

> z <- sqrt(qchisq(1 - p, 1))

> z

[1] 0.5244005 0.2018935 0.8416212 1.1503494 1.8119107

and assign the right sign (let ”+” is for the risk effect of ”Pro”).

> effsig <- c(-1, 1, 1, 1, 1)

> z <- z * effsig

> z

[1] -0.5244005 0.2018935 0.8416212 1.1503494 1.8119107

Now, we need to assign weights to the studies as

> n <- c(306, 71, 164, 242, 471)

> w <- sqrt(n)

ane the pooled estimate of Z and corresponding P − value are

> zpoo <- sum(w * z)/sqrt(sum(w^2))

> zpoo

[1] 1.709151

> 1 - pchisq(zpoo * zpoo, 1)

[1] 0.08742297

As you can see the results are almost identical to the previous obtained with
inverse variance pooling.
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Appendix C

Unsorted answers to
exercises section 3

Answer of Exercise 1

A-ba-ba!

Answer of Exercise 2

Try help.search("Fisher") and help.search("Student t-test"). You
will find that the corresponding functions are fisher.test t.test.
Q.1 : How many SNPs are described in this data frame?

> attach(popdat)

The following object(s) are masked from popdat ( position 3 ) :

aff qt sex snp1 snp10 snp2 snp3 snp4 snp5 snp6 snp7 snp8 snp9 subj

The following object(s) are masked from data2@phdata :

sex

> names(popdat)

[1] "subj" "sex" "aff" "qt" "snp1" "snp2" "snp3" "snp4" "snp5"
[10] "snp6" "snp7" "snp8" "snp9" "snp10"

The answer is 10 snps

Q.2 : What is the frequency (proportion) of snp1 allele A? What is its fre-
quency in these affected (aff==1)?

> summary(snp1)

171
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Number of samples typed: 2374 (95%)

Allele Frequency: (2 alleles)
Count Proportion

A 3462 0.73
B 1286 0.27
NA 252 NA

Genotype Frequency:
Count Proportion

B/B 199 0.08
A/B 888 0.37
A/A 1287 0.54
NA 126 NA

Heterozygosity (Hu) = 0.3950646
Poly. Inf. Content = 0.3169762

The frequency of A in all subjects is 0.73.

> summary(snp1[aff == 1])

Number of samples typed: 519 (94.5%)

Allele Frequency: (2 alleles)
Count Proportion

A 729 0.7
B 309 0.3
NA 60 NA

Genotype Frequency:
Count Proportion

B/B 48 0.09
A/B 213 0.41
A/A 258 0.50
NA 30 NA

Heterozygosity (Hu) = 0.4185428
Poly. Inf. Content = 0.3307192

The frequency of A in affected subjects is 0.7.

Q.3 : How many cases and controls are present?

> table(aff)

aff
0 1

1951 549
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There are 549 cases and 1951 controls.

Q.4 : If all subjects are used to test HWE, are there any SNPs out of HWE
at nominal P ≤ 0.05? Which ones?

> HWE.exact(snp1)

Exact Test for Hardy-Weinberg Equilibrium

data: snp1
N11 = 1287, N12 = 888, N22 = 199, N1 = 3462, N2 = 1286, p-value =
0.01083

...

> HWE.exact(snp10)

Exact Test for Hardy-Weinberg Equilibrium

data: snp10
N11 = 1792, N12 = 552, N22 = 40, N1 = 4136, N2 = 632, p-value = 0.7897

Only SNP 1 is out of HWE in the total sample.

Q.5 : If only controls are used to test the SNPs which are out of HWE in
total sample, are these still out of HWE?

> HWE.exact(snp1[aff == 0])

Exact Test for Hardy-Weinberg Equilibrium

data: snp1[aff == 0]
N11 = 1029, N12 = 675, N22 = 151, N1 = 2733, N2 = 977, p-value =
0.008393

Yes, SNP 1 is out of HWE also in controls.

Q.6 : Which SNP pairs are in strong LD (r2 ≥ 0.8)?

> LD(popdat[, 5:14])$"R^2"

snp1 snp2 snp3 snp4 snp5 snp6 snp7 snp8 snp9 snp10
snp1 NA 0.016 0.235 0.206 0.258 0.227 0.152 0.117 0.090 0.000
snp2 NA NA 0.004 0.004 0.005 0.004 0.000 0.000 0.000 0.000
snp3 NA NA NA 0.602 0.457 0.346 0.641 0.031 0.042 0.001
snp4 NA NA NA NA 0.803 0.650 0.729 0.027 0.037 0.002
snp5 NA NA NA NA NA 0.874 0.586 0.034 0.046 0.002
snp6 NA NA NA NA NA NA 0.670 0.030 0.040 0.002
snp7 NA NA NA NA NA NA NA 0.020 0.027 0.003
snp8 NA NA NA NA NA NA NA NA 0.002 0.000
snp9 NA NA NA NA NA NA NA NA NA 0.001
snp10 NA NA NA NA NA NA NA NA NA NA

SNP pairs 4-5 and 5-6 have r2 ≥ 0.8.
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Q.7 : For SNPs in strong LD, what is r2 for separate samples of cases and
controls?

For controls,

> LD(data.frame(snp4, snp5, snp6)[aff == 0, ])$"R^2"

snp4 snp5 snp6
snp4 NA 0.806591 0.6419715
snp5 NA NA 0.8661005
snp6 NA NA NA

For cases,

> LD(data.frame(snp4, snp5, snp6)[aff == 1, ])$"R^2"

snp4 snp5 snp6
snp4 NA 0.7951475 0.6773275
snp5 NA NA 0.9083237
snp6 NA NA NA

Note that the fact that LD is higher in cases may mean nothing because
the estimates of LD are biased upwards with smaller sample sizes. For
example in a small sample (5 people) of controls we expect even higher
LD because of strong upward bias:

> LD(popdat[which(aff == 0)[1:5], 8:10])$"R^2"

snp4 snp5 snp6
snp4 NA 0.9995876 0.9995876
snp5 NA NA 0.9995876
snp6 NA NA NA

More elaborate methods, such as that by Zaykin, are required to contrast
LD between sample of unequal size.

Q.8 : Is there significant association between affection status and sex? What
is P -value for association?

> glm(aff ~ sex, family = binomial())

Call: glm(formula = aff ~ sex, family = binomial())

Coefficients:
(Intercept) sex

-1.3197 0.1006

Degrees of Freedom: 2499 Total (i.e. Null); 2498 Residual
Null Deviance: 2632
Residual Deviance: 2631 AIC: 2635

There is significant (P = 0.03) association.

Q.9 : Is association between the disease and qt significant?
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> glm(aff ~ qt, family = binomial())

Call: glm(formula = aff ~ qt, family = binomial())

Coefficients:
(Intercept) qt

-1.26769 -0.02514

Degrees of Freedom: 2499 Total (i.e. Null); 2498 Residual
Null Deviance: 2632
Residual Deviance: 2632 AIC: 2636

There is no significant (P = 0.6) association.

Q.10 : Which SNPs are associated with the quantitative trait qt at nominal
P ≤ 0.05? Use 2 d.f. test.

> summary(lm(qt ~ snp1))

Call:
lm(formula = qt ~ snp1)

Residuals:
Min 1Q Median 3Q Max

-3.52609 -0.66427 -0.01110 0.67648 3.54622

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.02846 0.02758 -1.032 0.3022
snp1A/B 0.08200 0.04316 1.900 0.0575 .
snp1B/B 0.18644 0.07536 2.474 0.0134 *
---
Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Residual standard error: 0.9893 on 2371 degrees of freedom
(126 observations deleted due to missingness)

Multiple R-squared: 0.00335, Adjusted R-squared: 0.002509
F-statistic: 3.985 on 2 and 2371 DF, p-value: 0.01873

...

> summary(lm(qt ~ snp10))

Call:
lm(formula = qt ~ snp10)

Residuals:
Min 1Q Median 3Q Max

-3.586464 -0.677484 0.001935 0.673270 3.412527

Coefficients:
Estimate Std. Error t value Pr(>|t|)
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(Intercept) 0.01915 0.02344 0.817 0.414
snp10A/B 0.01277 0.04829 0.264 0.792
snp10B/B 0.17178 0.15860 1.083 0.279

Residual standard error: 0.9921 on 2381 degrees of freedom
(116 observations deleted due to missingness)

Multiple R-squared: 0.0005072, Adjusted R-squared: -0.0003324
F-statistic: 0.6041 on 2 and 2381 DF, p-value: 0.5467

SNPs 1, 4, 5 an 9 are significantly associated at nominal P ≤ 0.05.

Q.11 : Test each SNP for association with the affection status, using 2 d.f.
test. Which SNPs are significantly associated at nominal P ≤ 0.05? How
can you describe the model of action of the significant SNPs?

> x <- glm(aff ~ snp5, family = binomial())

> x

Call: glm(formula = aff ~ snp5, family = binomial())

Coefficients:
(Intercept) snp5A/A snp5B/B

-1.4868 0.2112 0.3387

Degrees of Freedom: 2382 Total (i.e. Null); 2380 Residual
(117 observations deleted due to missingness)

Null Deviance: 2440
Residual Deviance: 2431 AIC: 2437

> anova(x, test = "Chisq")

Analysis of Deviance Table

Model: binomial, link: logit

Response: aff

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 2382 2440.40
snp5 2 9.24 2380 2431.16 0.01

...

> x <- glm(aff ~ snp10, family = binomial())

> x

Call: glm(formula = aff ~ snp10, family = binomial())

Coefficients:
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(Intercept) snp10A/B snp10B/B
-1.3703 0.2909 -0.1803

Degrees of Freedom: 2383 Total (i.e. Null); 2381 Residual
(116 observations deleted due to missingness)

Null Deviance: 2475
Residual Deviance: 2468 AIC: 2474

> anova(x, test = "Chisq")

Analysis of Deviance Table

Model: binomial, link: logit

Response: aff

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 2383 2475.13
snp10 2 6.73 2381 2468.39 0.03

The SNPs 5 an 10 are significantly associated at P ≤ 0.05. The model
of action of SNP5 can be ddescribed as recessive (while the risk for AA
and AB is not significantly different, there is 1.4 times increased risk for
these homozygous for BB). The SNP 10 demonstrates somewhat weird
action with the risk increased in heterozygous AB individuals. However,
the confidence interval for BB is large and therefore we can not claim that
BB is not increasing the risk.

Q.12 : For the SNPs selected in previous question, test association using
additive model. Which SNPs are still associated?

> glm(aff ~ as.numeric(snp5), family = binomial())

Call: glm(formula = aff ~ as.numeric(snp5), family = binomial())

Coefficients:
(Intercept) as.numeric(snp5)

-1.5695 0.1094

Degrees of Freedom: 2382 Total (i.e. Null); 2381 Residual
(117 observations deleted due to missingness)

Null Deviance: 2440
Residual Deviance: 2438 AIC: 2442

> glm(aff ~ as.numeric(snp10), family = binomial())

Call: glm(formula = aff ~ as.numeric(snp10), family = binomial())

Coefficients:
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(Intercept) as.numeric(snp10)
-1.5539 0.1976

Degrees of Freedom: 2383 Total (i.e. Null); 2382 Residual
(116 observations deleted due to missingness)

Null Deviance: 2475
Residual Deviance: 2471 AIC: 2475

Only SNP 10 is significantly associated under the additive model.

Q.13 : If you adjust the analysis under additive model (question 12) for sig-
nificant covariates which you discovered in questions 8 and 9, are these
findings still significant?

> glm(aff ~ sex + snp10, family = binomial())

Call: glm(formula = aff ~ sex + snp10, family = binomial())

Coefficients:
(Intercept) sex snp10A/B snp10B/B

-1.41894 0.09513 0.29230 -0.18471

Degrees of Freedom: 2383 Total (i.e. Null); 2380 Residual
(116 observations deleted due to missingness)

Null Deviance: 2475
Residual Deviance: 2467 AIC: 2475

Yes, SNP 10 becomes even a bit more significantly associated after adjust-
ing for sex.

Q.14 : Test association between aff and snp5 and snp10, allowing for the
SNPs interaction effect. Use arbitrary (not an additive) model. Do you
observe significant interaction? How can you describe the model of concert
action of snp5 and snp10?

> glm(aff ~ snp5 * snp10, family = binomial())

Call: glm(formula = aff ~ snp5 * snp10, family = binomial())

Coefficients:
(Intercept) snp5A/A snp5B/B snp10A/B

-1.50840 -0.41802 0.33441 -0.01403
snp10B/B snp5A/A:snp10A/B snp5B/B:snp10A/B snp5A/A:snp10B/B
-0.14983 1.48369 0.12989 0.82348

snp5B/B:snp10B/B
-0.28562

Degrees of Freedom: 2268 Total (i.e. Null); 2260 Residual
(231 observations deleted due to missingness)

Null Deviance: 2282
Residual Deviance: 2243 AIC: 2261
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It appears that SNP10 genotype is only relevant in these who are homozy-
gous for the low-risk A allele at the SNP5; in such cases SNP 10 allele B is
risk increasing. In these homozygous for SNP 5 A, we observe highly sig-
nificant increase in risk for heterozygotes for SNP10 and increased (though
not significantly) risk for SNP 10 BB.
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