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Intro to MM for GWAS

Mixed Models — an outline

@ In the framework of Mixed Models, the expectation of the
outcome y is modeled using sum of fixed and random effects.

@ Fixed effects are these familiar from the standard linear
models — factors, which we can measure directly and include
In the model

@ Random effects are not directly measured, but we know
(assume) their distributed

@ In fact, standard linear regression model

Yi=n+ 58 +e

does contain random effect — residual error ¢;, which is not
measurable, but is assumed to come from Normal distribution
with mean zero and some variance o2
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Intro to MM for GWAS

Correlations between phenotypes of relatives

@ In a sample of related individuals, the assumption of
independence between measurements (outcome y) does not
hold because phenotypes of relatives are correlated (because
traits are controlled by genome, and related individuals share
genomes!)

@ The strength of control of the trait by genome can be
characterized by heritability, h?

@ The relationship between a couple of relatives i and j is
characterized by coefficient of relationship ¢;;, which is (the
expected) proportion of the genome shared
identical-by-descent
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Intro to MM for GWAS

Correlations between phenotypes of relatives — continued

@ Correlation of phenotypes of relatives i and j depends on the
degree of relatedness ¢;;, and the heritability of the trait h?:

pij = ¢ij - h°
e For example, if h* = 0.9 (e.g. height) the correlation between

the phenotypes of sibs is expected to be 0.5-0.9 = 0.45 and
correlation between phenotypes of uncle and niece would be

0.25-0.9 = 0.225

@ To do correct association analysis we need to account for
this correlation structure in association model

@ This can be done by introducing random polygenic effect with
correlation matrix whith elements p;; = ¢;; - h?
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Intro to MM for GWAS

Accounting for relationship in MM

@ More formally, we can describe the distribution of phenotypes
y in a sample of related individuals with MM

Yi=p+0-8i + G +¢,

where G is distributed as multivariate Normal with
variance-covariance matrix proportional to the relationship
matrix

@ This model is described by 4 parameters: {u, 3, h*, o2}

@ Standard way to test significance of S would be to estimate
this model and compare it with the model restraining 3 to zero

@ The problem is that already for sample size of about 1000,
testing single SNP may take about 15 minutes! (2007)
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Intro to MM for GWAS

Estimation of relationship matrix ¢

o If pedigree is know, ® can be easily estimated from these data

@ However, genome-wide information provides means to do so in
absence of pedigree information as well:

b — 1 3 (8ik — Pr)(&jk — Pk)

—~  p(1—p)

@ It seems that using the "genomic kinship” provides is better
than pedigree-based kinship, at least when working with
human data
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Use of MM in population-based studies

Structure of NFBC66 sample (Kang etl., 2010)
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Figure 1 Scatter plots of the first two principal components against
latitude and longitude. Only individuals of known ancestry are included
in the plot. Latitude and longitude are defined as the average latitude
and longitude of the parents’ birthplaces. Colors indicate linguistic or
geographic subgroups.
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Use of MM in population-based studies

Genomic control )\ for different methods (Kang etl., 2010)

Table 1 Comparison of genomic control inflation factors obtained
with different models

Genomic control inflation factor

Phenotype Uncorrected IBD < 0.1 ES100 EMMAX
CRP 1.007 1.007 1.019 0.993
TG 1.023 1.010 1.019 1.002
INS 1.029 1.022 1.013 1.005
DBP 1.031 1.019 1.028 1.007
BMI 1.031 1.024 1.016 0.995
GLU 1.045 1.033 1.030 1.008
HDL 1.052 1.056 1.036 1.004
SBP 1.066 1.056 1.021 1.006
LDL 1.098 1.089 1.040 1.002
Height 1.187 1.151 1.074 1.003

ES100, EIGENSOFT correcting for 100 principal components; IBD < 0.1, uncorrected
analysis after excluding 611 individuals whose PLINK's IBD estimates with another
individual is greater than 0.1; phenotype abbreviations are CRP, C-reactive protein;
TG, triglyceride; INS, insulin plasma levels; DBP, diastolic blood pressure; BMI, body
mass index; GLU, glucose; HDL, high-density lipoprotein; SBP, systolic blood pressure;
LDL, low density lipoprotein.
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Genome-wide feasible MM

Two-step estimation

@ The main problem is estimation of h? each time we introduce
new SNP into the model

@ If we assume that a SNP has small effect on the trait, then its

inclusion into the model should not change the estimate of h?
much

@ Therefore two-step estimation approach can be used:

o First, estimate h? using MM without SNP: y; = 11 + G; + €;
o Use the same estimate h? to correct the test of association for
every SNP genome-wide




Genome-wide feasible MM
“YoYo)

FASTA-like tests

FASTA (Chen and Abecasis, 2007)

@ [ he obtained estimates are used to construct the
variance-covariance matrix for the data, 2

@ Score test is constructed accounting for Q:

T2 _ (& TQ71Y)?
I giTQ-1g;
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FASTA-like tests

Adjustment for covariates in two-step procedures

e With original FASTA (Merlin, GenABEL::mmscore),
adjustment for covariates is done during the first step, and
adjusted residuals are used in the second step

@ This fine as far as there is no covariance between covariates
and genotypes (most situations)

@ If covariance is present (e.g. covariates are "genetic strata” or
inherited traits) above approach may lead to conservative test
(A <1)

@ ProbABEL::mmscore (Aulchenko et al., 2010),

MixABEL::GWFGLS and EMMAX (Kang et al, 2010) allow to
keep covariates in both steps
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FASTA-like tests

Running time for FASTA (10M SNPs)
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GRAMMAR-like tests

GRAMMAR (Aulchenko et al, 2007)

@ The obtained estimates are used to compute environmental
residuals, €;

@ These residuals are not correlated between relatives, and thus
any standard association method can be used for analysis

@ Advantage of this method is that analysis of transformed trait
is very fast (much faster than FASTA /mmscore/EMMAX!),
and wide variety of methods developed for population-based
studies can be used

@ Disadvantage of this method is that it results in biased
estimates of 5 and conservative test statistics (false negatives)
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GRAMMAR-like tests

GRAMMAR estimates are biased

Pedigree: Analysis method
”én_ Simulated effect /3 MG GRAMMAR
N])
0.01 0.3 0.234 = 0.077 0.149 = 0.053
0.236 0.5 0.237 = 0.078 0.106 = 0.039
0.8 0.238 = 0.077 0.044 £ 0.017
0.02 0.3 0.334 = 0.077 0213 = 0.053
0.333 0.5 0.336 = 0.078 0.149 = 0.039
0.8 0.334 = 0.077 0.062 = 0.017
0.03 0.3 0.408 £ 0.077 0.259 = 0.053
0.408 0.5 0.411 = 0.078 0.183 = 0.039
0.8 0.411 = 0.076 0.076 = 0.017
ERF
0.01 0.3 0.236 = 0.079 0.149 = 0.054
0.236 0.5 0.237 = 0.081 0.105 = 0.041
0.8 0.234 = 0.078 0.044 = 0.018
0.02 0.3 0.333 £ 0.082 0.209 = 0.056
0.333 0.5 0.336 = 0.079 0.150 = 0.040
0.8 0.344 £ 0.078 0.068 = 0.018
IPP
0.01 0.3 0.235 = 0.089 0.125 = 0.058
0.236 0.5 0.237 = 0.088 0.093 = 0.043
0.8 0.238 = 0.082 0.044 = 0.019
0.02 0.3 0.334 = 0.089 0.178 £ 0.058
0.333 0.5 0.335 = 0.087 0.131 = 0.043
0.8 0.329 = 0.083 0.058 = 0.019
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GRAMMAR-like tests

. so are the test statistics values
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GRAMMAR-like tests

GRAMMAR + reverse Genomic Control (Amin et al, 2007)

@ Estimate polygenic model and compute GRAMMAR test
statistics T,-2 genome-wide

@ Estimate GC A (< 1) in usual manner (e.g.

X median(TZ,T3,...)
A= 0.455 )
i .. T2
@ Derive GRAMMAR-GC test statistics as T,-ZGC = TI

@ Solves the conservatively of the test
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GRAMMAR-like tests

GRAMMAR + reverse Genomic Control (Amin et al, 2007)

@ Estimate polygenic model and compute GRAMMAR test
statistics T,-2 genome-wide
@ Estimate GC A (< 1) in usual manner (e.g.

3\ _ median(le,Tzz,...))
0.455
T?

@ Derive GRAMMAR-GC test statistics as T,-27GC =3

-~

@ Solves the conservatively of the test

@ Does not solve the problem of the effect under-estimation
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GRAMMAR-like tests

GRAMMAR + reverse Genomic Control (Amin et al, 2007)

@ Estimate polygenic model and compute GRAMMAR test
statistics T,-2 genome-wide

@ Estimate GC A (< 1) in usual manner (e.g.

X median(TZ,T3,...)
A= 0.455 )
i .. T2
@ Derive GRAMMAR-GC test statistics as T,-ZGC = TI

@ Solves the conservatively of the test
@ Does not solve the problem of the effect under-estimation

@ Does not leave means to judge if MM-correction was adequate
for the data (A is 1 by definition of GRAMMAR-GC(C!)
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GRAMMAR-like tests

GRAMMAR + reverse Genomic Control (Amin et al, 2007)

@ Estimate polygenic model and compute GRAMMAR test
statistics T,-2 genome-wide

@ Estimate GC A (< 1) in usual manner (e.g.

X median(TZ,T3,...)
A= 0.455 )
i .. T2
@ Derive GRAMMAR-GC test statistics as T,-ZGC = TI

@ Solves the conservatively of the test
@ Does not solve the problem of the effect under-estimation

@ Does not leave means to judge if MM-correction was adequate
for the data (A is 1 by definition of GRAMMAR-GC(C!)

@ Is an approximation: but how we judge if it works well for this
particular data?
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GRAMMAR-like tests

There is good correlation between FASTA and GRAMMAR results
(Aulchenko et al., 2007)
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GRAMMAR-like tests

GRAMMAR-~ (work in progress)

@ The bias in test statistics and effect estimates is proportional

N\

to some constant, v = F(£2)

@ Instead of correction of test statistics only with GC, allows
correction of both test statistics and effect estimates

@ Solves the conservatively of the test
@ Solves the problem of the effect under-estimation

@ Provides the means to judge if correction was adequate for the
data (how much X deviate from 17)

@ Provides means to check if approximation was good for
particular data
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NCP and effect estimates by FMM, Grammar-y and GRAMMAR-GC
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Comparison

Speed comparison between methods (500k SNPs)
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Conclusions

Summary of MM-based methods

@ Fast implementations of LRT-based VC test are available now
(MixABEL::FMM of W. Astle, FaST-LMM of Lippert et al.).
These are theoretically superior and have reasonable running
time on samples <3k (? BUT no implementation for imputed
data 7)

@ Two-Step approximations are excellent unless SNPs have large
effects. Speed-up achieved cf. LRT is 5-20 times.
Implementations for imputed data available (ProbABEL,
MixABEL::GWFGLS).

@ Grammar-~y (work in progress) has superior speed and can be
use to analyze tens of millions of SNPs in many thousands of
individuals. Caution should be exercised when analyzing data
with uneven relationship structure (e.g. plants lines/stocks
data).




Conclusions

Summary of advantages of use of MM in GWAS

@ MM can account well for complicated relationship structure.
Such structure is typical for family-based design, genetically
isolated populations, outbred animal data, but can also be
found in contemporary large "population-based” studies.

@ The advantages of use of MM will become more and more
visible with increased sample sizes

@ MM provides natural means to study complex designs, such as
twin data and repeated measurements

@ Use of optimal algebraic kernels and effective implementation
will be critical for effective analysis of statistically complex
problems
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