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Human genetics has been haunted by the mystery of “missing heri-
tability” of common traits. Although studies have discovered>1,200
variants associated with common diseases and traits, these variants
typically appear to explain only a minority of the heritability. The
proportion of heritability explained by a set of variants is the ratio
of (i) the heritability due to these variants (numerator), estimated
directly from their observed effects, to (ii) the total heritability (de-
nominator), inferred indirectly from population data. The prevailing
view has been that the explanation formissing heritability lies in the
numerator—that is, in as-yet undiscovered variants.Whilemany var-
iants surely remain to be found, we show here that a substantial
portion of missing heritability could arise from overestimation of
the denominator, creating “phantom heritability.” Specifically, (i)
estimates of total heritability implicitly assume the trait involves no
genetic interactions (epistasis) among loci; (ii) this assumption is not
justified, because models with interactions are also consistent with
observable data; and (iii) under such models, the total heritability
may be much smaller and thus the proportion of heritability ex-
plained much larger. For example, 80% of the currently missing her-
itability for Crohn’s disease could be due to genetic interactions, if
the disease involves interaction among three pathways. In short,
missing heritability need not directly correspond to missing variants,
because current estimates of total heritability may be significantly
inflated by genetic interactions. Finally, we describe a method for
estimating heritability from isolated populations that is not inflated
by genetic interactions.

genome-wide association studies | statistical genetics

A continuing mystery in human genetics is the so-called missing
heritability of common traits. Genome-wide association

studies (GWAS) have led to the identification of >1,200 loci har-
boring genetic variants associated with >165 common human dis-
eases and traits, revealing previously unknown roles for scores of
biological pathways (1–3). However, early GWAS were puzzling
because they appeared to explain only a small proportion of the
“heritability” of the traits. With larger GWAS, the proportion of
heritability apparently explained has grown (to 20–30% in some
well-studied cases and >50% in a few), but, for most traits, the
majority of the heritability remains unexplained (1).
This is our first in a series of papers exploring the explanations for

missing heritability. Geneticists define the proportion of (narrow-
sense) heritability of a trait explained by a set of known genetic
variants to be the ratio πexplained = h2known/h2all, where (i) the nu-
merator h2known is the proportion of the phenotypic variance
explained by the additive effects of known variants and (ii) the
denominator h2all is the proportion of the phenotypic variance at-
tributable to the additive effects of all variants, including those not
yet discovered. The numerator can be calculated directly from the
measured effects of the variants, but the denominator must be
inferred indirectly from population data.
The prevailing view among human geneticists has been that the

explanation for missing heritability lies in the numerator, that is, in
additional variants remaining to be discovered. Much debate has
focused on whether these additional variants are common alleles
(frequency ≥1%) with moderate-to-small effects or rare alleles

(frequency <1%) with large effects (3–9). We will discuss the fre-
quency spectrum of disease-related variants in our second paper in
this series.
Here we explore the possibility that a significant portion of the

missing heritability might not reflect missing variants at all. The
basic idea is easy to state: Current studies use estimators of h2all
that are not consistent (that is, converge to the wrong answer);
they may seriously overestimate the denominator h2all and thus
underestimate πexplained. As a result, even when all variants af-
fecting the trait are discovered, πexplained may fall far short of
100%. We refer to this gap as “phantom heritability.”
Quantitative geneticists have long known that genetic inter-

actions can affect heritability calculations (10). However, human
genetic studies of missing heritability have paid little attention to
the potential impact of genetic interactions. A few authors have
constructed mathematical examples (11, 12), but these abstract
models have not been related to biologically plausible mechanisms,
and the studies have not considered whether the presence of ge-
netic interactions would be readily detected, thereby preventing
geneticists from being fooled by phantom heritability. The pre-
vailing view among human geneticists appears to be that inter-
actions play at most a minor part in explaining missing heritability.
Here we show that simple and plausible models can give rise to

substantial phantom heritability. Biological processes often de-
pend on the rate-limiting value among multiple inputs, such as
the levels of components of a molecular complex required in
stoichiometric ratios, reactants required in a biochemical path-
way, or proteins required for transcription of a gene. We thus
introduce the limiting pathway (LP) model, in which a trait
depends on the rate-limiting value of k inputs, each of which is
a strictly additive trait that depends on a set of variants (that may
be common or rare). When k = 1, the LP model is simply
a standard additive trait. For k > 1, we show that LP(k) traits can
have substantial phantom heritability.
The potential magnitude of phantom heritability can be il-

lustrated by considering Crohn’s disease, for which GWAS have
so far identified 71 risk associated loci (13). Under the usual
assumption that the disease arises from a strictly additive ge-
netic architecture, these loci explain only 21.5% of the esti-
mated heritability. However, if Crohn’s disease instead follows
an LP(3) model, the phantom heritability is 62.8%, thus genetic
interactions could account for 80% of the currently missing
heritability.
To avoid being fooled by phantom heritability, one might hope

to be able to recognize when traits involve genetic interactions, for
example, based on population data (such as phenotypic correla-
tions among close relatives) or genetic data (such as pairwise tests
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Interaction models

The value of the trait in i-th individual is 
assumed to follow linear model

Yi = m + bf Fi + bg gi + bfg Fi gi + ei

where m is intercept, Fi is the value of 
some “factor”, gi is the genotypic value, 
and ei is random residual error
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What could “F” be?

• Alleles at other locus (GxG)
• An environment (GxE) - with E being 

external or internal (e.g. sex)
• Methylation status
• Indicator of transmitting parent (parent of 

origin models)
• Other allele at the same locus
• ... etc. 
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GxE

• We thought that modeling was trivial
• ... but initial results were strange, so 

some methodological work had to be 
done ...

Monday, July 16, 12



A Genome-Wide Screen for Interactions Reveals a New
Locus on 4p15 Modifying the Effect of Waist-to-Hip Ratio
on Total Cholesterol
Ida Surakka1,2., Aaron Isaacs3,4., Lennart C. Karssen3, Pirkka-Pekka P. Laurila1,2,5, Rita P. S.

Middelberg6,7, Emmi Tikkanen1,2, Janina S. Ried8, Claudia Lamina9, Massimo Mangino10, Wilmar Igl11,

Jouke-Jan Hottenga12, Vasiliki Lagou13,14, Pim van der Harst15, Irene Mateo Leach15, Tõnu Esko16,17,
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for the 

• A meta-analysis of genome-
wide association (GWA) data 
from 18 population-based 
cohorts with European 
ancestry (maximum N = 
32,225). 
• Eight further cohorts (N = 

17,102) for replication
• SNP rs6448771 

demonstrated genome-wide 
significant interaction with 
waist-to-hip-ratio (WHR) on 
total cholesterol (TC) with a 
combined P-value of 
4.79×10−9
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Can use Bartelet’s or Levene’s test 
to test unequality of variances
(or rather SVLM or DHGLM)
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Power
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SVLM method & VariABEL package: 
Struchalin et al., BMC Genet., 2011
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Rigorous treatment
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Conclusions - methods

• Variance heterogeneity test is an 
interesting approach to prioritize 
markers for interaction testing

• Note that strictly speaking...
• Negative results do not mean there is NO 

interaction (power, special scenarios)

• Positive results should be interpreted with 
caution

Monday, July 16, 12



Conclusions - general

• Some examples of GxE in complex traits 
start appearing

• Genetic interactions are tough
• Genetic interactions appear to be less 

common and/or less strong than we 
have hoped for

• ??? Genetic interactions may be more 
pronounced for rare(r) variants
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