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Fisher's polygenic model

Controversy between the Mendelian and Galtonian genetics
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Fisher's polygenic model

Fisher's (1918) polygenic model

Assumption: the value of a quantitative trait is determined by
additive effects of many Mendelian loci and the effects of the
environment. The value of the trait of /-th individual is

M
Yi=p+ Y gibi+e

j=1
where /1 is a constant (intercept), gjj is a genotype of the i-th
individual at j-th locus, b; is an effect of j-th locus (M loci in
total), and ¢; is a random error term (assumed to be distributed
normally with mean zero and some variance 02). Such model can
describe continuous distribution and correlation between the
phenotypes of relatives observed.
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Fisher's polygenic model

Fisher’'s model with different M
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Fisher's polygenic model

Correlations between relatives

@ When the number of loci M is large, the distribution of the
genetic effects G; = Zjl\il gijbj can be approximated by the
normal distribution

@ The relatives share large proportions of their genomes IBD
(and hence IBS), and therefore the phenotypes of relatives are
correlated

@ To describe the joint distribution of phenotypes of relatives,
we can make use of multivariate normal distribution
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Fisher's polygenic model

Distribution of polygene G for pairs of relatives

Sibs share 50% of their genome sibs
IBD, and therefore the joint
distribution is described by
bi-variate normal with correlation

matrix
1 1)2
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Half-sibs share 25% of their paletbs
genomes IBD, and hence the
correlation matrix is
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Fisher's polygenic model

Distribution of G for a sample of related individuals

@ In general, the distribution of the polygene G for N individuals
is described by N-variate normal with NxN correlation matrix
)

@ The elements of ® consist of relationship coefficients for pairs
of relatives, ¢ - the expected proportions of genome k and /
share IBD
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Fisher's polygenic model

Fisher’s model (1)

The model
M

yi=n+ Yy gibte
j=1

when M is large can be approximated with
y=p+G+e

where G comes from multivariate normal with mean zero and
VC-matrix achD and € from a multivariate normal with mean zero
and VC-matrix o2/.
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Fisher's polygenic model

Fisher’s model (2)

@ This equation describes a multivariate normal with
expectation E[y] = p and VC-matrix €2 defined by
var; = 0% + 02 and cov;; = 0%¢;

o Denote total variance 0% + 02 as 02 and h? = 0% /o2 (the
coefficient of heritability: proportion of total variance
explained by additive genetic effects)

@ Then, the correlation between the phenotypes of a pair of
relatives / and j is

2
_covj oG .
Pij = =5 =h9;
\J/var;var; o

@ Hence h? has clear relation to expected correlation between
the phenotypes of relatives
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Fisher's polygenic model

Introducing fixed effects in polygenic model

o Fixed effects can be easily introduced in the polygenic model
(Boerwinkle, 1986), e.g.

Yi=p+ Bsexsi + ﬁggi + Gj + ¢

describes a model with fixed effects of sex S and genotype at
some specific locus, g

@ Introducing fixed effects does not change the multi-variate's
normal VC-matrix, but re-defines the expectation as

E[Yi] =t + BsexSi + ngi
(instead of E[y;] = p in previous model)
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Fisher's polygenic model

Relation to mixed models

@ The Fisher's polygenic model with fixed effects is a particular
type of what is known in statistics as mixed models - the
models including both fixed (in our example, g) and random
(G) effects

@ In mixed models, the fixed effects are these familiar from the
standard linear models — factors, which we can measure
directly and include in the model

@ The random effects are not directly measured, but we know
(assume) their distributed
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Hypothesis testing for polygenic model

Log-Likelihood under polygenic model

The log-likelihood function for model
Yi=p+ Bg8i + Gi + €

is defined by the multivariate normal distribution and can be
written as

InL(y|6) o —% (In|Q| + (v — ElD)TQ Yy — E[y]))

This function can be maximized over the 6 giving Maximum
Likelihood (ML) L and ML estimates (MLE) 6.
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Hypothesis testing for polygenic model

Likelihood ratio test (LRT) for fixed effect

@ The hypotheses concerning model's parameters can be tested
in hierarchical manner using the Likelihood Ratio Test (LRT)

@ For example, testing the hypothesis that 3, = ﬁ’g versus the
null hypothesis of S; = 0 can be done with

LRT — zlnL(Y'Z}; — 2[inL(|91) — InL(y|do)]

L(y|0o

where 0y = {fi, Bg, B2, 02} and Oy = {1, B = 0, h2, 02}

@ Under the null hypothesis, the LRT is distributed as x? with
the number of degrees for freedom equal to the number of
parameters constrained (X in the above case)
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Hypothesis testing for polygenic model

GWAS using Mixed Models

@ The polygenic model with fixed effects (mixed model)
Yi=p+ g8+ Gi +¢

allows for GWAS using polygenic (mixed) model by testing the
hypothesis 3, = 34 vs. Bz = 0 for each SNP in GWAS in turn

o PS: Why do we bother? — when the sample consist of
related individuals, not accounting for correlations between
the phenotypes of relatives leads to inflation of the test
statistic (false positives). Also, in general, the model best

describing the nature of the data is the most powerful
©
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Hypothesis testing for polygenic model

Using ML and LRT in GWAS

@ When using ML/LRT as described above the computational
complexity may be an issue: for every SNP tested, we need to
estimate 61 and g - and this is quite laborious procedure

@ In 2007 (Aulchenko et al.), for sample size of about 1000,
testing single SNP was taking about 15 minutes

@ Remarkable progress was achieved in last few years by using
smarter algorithms (FMM of Astle and Balding, 2010;
FaST-LMM of Lippert et al., 2011)

@ Still, when it comes to millions of markers and analyses of
multiple traits, the ML/LRT may be an expensive option
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FASTA-like tests

Two-step estimation

o
First

Second

The main problem is estimation of h? each time we introduce
new SNP into the model: if we knew h?, the estimation of
other parameters would be straightforward

If we assume that a SNP has small effect on the trait, then its
inclusion into the model should not change the estimate of h?
much

Therefore two-step estimation approach can be used:
, estimate h? using MM without SNP: y; = u + G; + €;

, use the same estimate h? to correct the test of association
for every SNP genome-wide
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FASTA-like tests

FASTA (Chen and Abecasis, 2007)

@ The obtained estimates are used to construct the
variance-covariance matrix for the data, €2

@ Score test is constructed accounting for

T2 _ (giTﬁfl \_/)2
701,

1

is distributed as x2 under the null hypothesis

@ Similar ideas were suggested and implemented in the
'mmscore’ of the GenABEL project (2008), P3D/Tassel
(Zhang et al., 2010) and EMMAX (Kang et al., 2010)
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FASTA-like tests

Adjustment for additional covariates in two-step procedures

@ With original FASTA method, the adjustment for covariates is
done during the first step only, and adjusted residuals are used
in the second step

@ This is fine as far as there is no covariance between covariates
and genotypes (most situations)

e If covariance is present (e.g. covariates are "genetic strata” or
inherited traits) above approach may lead to conservative test
(A<1)

@ The Generalized Least Squares procedure, which allows
keeping covariates at both steps, is recommended

(implemented in ProbABEL::mmscore (Aulchenko et al.,
2010), MixABEL::GWFGLS and EMMAX)
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FASTA-like tests

Running time for FASTA type of methods

o Note that term Q~1g; implies multiplication of a vector of
length N by an Nix/N matrix for every SNP. Thus the
computational time is O(N?)

@ While this is usually not a big problem for most studies, it acn
become a problem for larger (say, N > 5000) studies and/or
analysis of multiple traits (e.g. exploration of 'omics’ space)
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GRAMMAR:-like tests

GRAMMAR (Aulchenko et al, 2007)

@ Another type of two-step approach
First , estimate h? using MM without SNP: y; = i + G; + ¢;
Second , the obtained estimates are used to compute environmental
residuals, y* = &;
@ These residuals are not correlated between relatives, and thus
any standard association method can be used for analysis, e.g.

the score test
2 (g_iT)/*)2
= "—3z"
&i &
@ Advantage of this method is that analysis of transformed trait
is very fast (much faster than FASTA/mmscore/EMMAX),
and wide variety of methods developed for population-based
studies can be used
o Disadvantage of this method is that it results in biased
estimates of 3 and conservative test statistics (false negatives[2.08]
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GRAMMAR:-like tests

GRAMMAR estimates are biased

Pedigree: Analysis method
h,i“_ Simulated effect s MG GRAMMAR
NP
0.01 0.3 0.234 = 0.077 0.149 = 0.053
0.236 0.5 0.237 = 0.078 0.106 = 0.039
0.8 0.238 = 0.077 0.044 = 0.017
0.02 0.3 0.334 = 0.077 0213 = 0.053
0.333 0.5 0.336 = 0.078 0.149 = 0.039
0.8 0.334 = 0.077 0.062 = 0.017
0.03 0.3 0.408 = 0.077 0259 = 0.053
0.408 0.5 0.411 = 0.078 0.183 = 0.039
0.8 0.411 = 0.076 0.076 = 0.017
ERF
0.01 0.3 0.236 = 0.079 0.149 = 0.054
0.236 0.5 0.237 = 0.081 0.105 = 0.041
0.8 0.234 = 0.078 0.044 = 0.018
0.02 0.3 0.333 = 0.082 0.209 = 0.056
0.333 0.5 0.336 = 0.079 0.150 = 0.040
0.8 0.344 = 0.078 0.068 = 0.018
PP
0.01 0.3 0.235 = 0.089 0.125 = 0.058
0.236 0.5 0.237 = 0.088 0.093 = 0.043
0.8 0.238 = 0.082 0.044 = 0.019
0.02 0.3 0.334 = 0.089 0.178 = 0.058
0.333 0.5 0.335 = 0.087 0.131 = 0.043
0.8 0.329 = 0.083 0.058 = 0.019
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GRAMMAR:-like tests

. so are the test statistics values

Observed
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GRAMMAR:-like tests

GRAMMAR + reverse Genomic Control (Amin et al, 2007)

o Estimate polygenic model and compute GRAMMAR test
statistics Ti2 genome-wide
e Estimate GC A (< 1) in usual manner (e.g.
3\ _ median(T2,T3,...)
= 0.455 )
2
@ Derive GRAMMAR-GC test statistics as T,-%GC = %

@ Solves the conservatively of the test
@ Does not solve the problem of the effect under-estimation

@ Does not leave means to judge if MM-correction was adequate
for the data (A is 1 by definition of GRAMMAR-GC!)

@ Is an approximation: but how we judge if it works well for this
particular data?
©
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GRAMMAR:-like tests

There is good correlation between FASTA and GRAMMAR results
(Aulchenko et al., 2007)
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GRAMMAR:-like tests

GRAMMAR-~ (Svishcheva et al., 2012)

@ The bias in test statistics and effect estimates is proportional
to some constant, v = F({2)

@ Instead of correction of test statistics only with GC, allows
correction of both test statistics and effect estimates

72 _ 1(&7y*)?
Yoy &g

@ Solves the conservatively of the test

@ Solves the problem of the effect under-estimation

@ Provides the means to judge if correction was adequate for the
data (how much X deviate from 17?)

@ Provides means to check if approximation was good for
particular data )
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GRAMMAR:-like tests

Speed comparison between methods (500k SNPs)
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GRAMMAR:-like tests

Accuracy of Grammar-+ approximation
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MLMM

Multi-locus Mixed Models (Segura et al., 2012)

@ The idea is to perform iterative GWAS: after first round, the
most significant SNP is included into the model as a fixed
effect, and the scan is repeated; best SNP included into fixed
part of the model again; so on

@ The method has better location accuracy: for a particular
locus, it is quite typical to see multiple signals because of LD.
MLMM can refine these associations and indicate only
independent signals

@ The method may also have an improved power — in case loci
explaining large proportion of trait's variance are present (such
as the case in 'omics’ studies)
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Using MM'’s in structured populations

Structure of NFBC66 sample (Kang etl., 2010)
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Figure 1 Scatter plots of the first two principal components against
latitude and longitude. Only individuals of known ancestry are included
in the plot. Latitude and longitude are defined as the average latitude
and longitude of the parents’ birthplaces. Colors indicate linguistic or

geographic subgroups.




Using MM’s in structured populations

Genomic control ) for different methods (Kang etl., 2010)

Table 1 Comparison of genomic control inflation factors obtained
with different models

Genomic control inflation factor

Phenotype Uncorrected IBD < 0.1 ES100 EMMAX
CRP 1.007 1.007 1.019 0.993
TG 1.023 1.010 1.019 1.002
INS 1.029 1.022 1.013 1.005
DBP 1.031 1.019 1.028 1.007
BMI 1.031 1.024 1.016 0.995
GLU 1.045 1.033 1.030 1.008
HDL 1.052 1.056 1.036 1.004
SBP 1.066 1.056 1.021 1.006
LDL 1.098 1.089 1.040 1.002
Height 1.187 1.151 1.074 1.003

ES100, EIGENSOFT correcting for 100 principal components; IBD < 0.1, uncorrected
analysis after excluding 611 individuals whose PLINK's IBD estimates with another
individual is greater than 0.1; phenotype abbreviations are CRP, C-reactive protein;
TG, triglyceride; INS, insulin plasma levels; DBP, diastolic blood pressure; BMI, body
mass index; GLU, glucose; HDL, high-density lipoprotein; SBP, systolic blood pressure;
LDL, low density lipoprotein.
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Estimation of ¢

Estimation of relationship matrix ¢

o If pedigree is know, ® can be easily estimated from these data

@ Genome-wide information provides means to do so in absence
of pedigree information as well

@ One of the most accepted methods assumes computation of

glk gjk - Pk)
%= Z Pk(l — Pk)

which was shown to be unbiased estimator of kinship
@ In human genetically isolated populations it seems that using
the "genomic kinship” provides is better than pedigree-based
kinship
@ The plain IBS matrix works better in highly structured
populations such as plants EOT
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Summary

Summary of MM-based methods

@ Fast implementations of LRT-based VC test are available now
(MixABEL::FMM of W. Astle, FaST-LMM of Lippert et al.).
These are theoretically superior!

@ Two-Step FASTA-like approximations are excellent unless
SNPs have large effects. Speed-up achieved cf. LRT is 5-20
times. Implementations include ProbABEL,
MixABEL::GWFGLS, GenABEL::mmscore, EMMAX,
P3D/Tassel, FaST-LMM

@ Grammar type of analyses have superior speed and can be use
to analyze tens of millions of SNPs in many thousands of
individuals. Caution should be exercised when analyzing data
with uneven relationship structure (e.g. plants lines/stocks
data).
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Summary

Summary of advantages of use of MM in GWAS

@ MM can account well for complicated relationship structure.
Such structure is typical for family-based design, genetically
isolated populations, outbred animal data, but can also be
found in contemporary large "population-based” studies.

@ The advantages of use of MM will become more and more
visible with increased sample sizes

@ MM provides natural means to study complex designs, such as
twin data and repeated measurements

@ Use of optimal algebraic kernels and effective implementation
will be critical for effective analysis of statistically complex
problems
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