IBD computations in large pedigrees

February 23, 2006, pm Yurii Aulchenko

IBD computation in large pedigrees

Is part of a problem of computation of the likelihood function of a pedigree

Computation of the likelihood

- X matrix of phenotypes (trait, marker data) of pedigree members
- G matrix of underlying genotypes of pedigree members
- Likelihood:

 $\Sigma_{all G} P(X|G)P(G)$

Complexity

- How much is "all G"?
 - Number of genotypes possible for a founder
 - by
 - number of inheritance patterns

Complexity

• How much is "all G"?

Number of genotypes possible for a founder:

- One trait locus, 1 marker with 10 alleles:
 - 2*2*10*10 = 400 combinations
- One trait locus, 5 markers with 10 alleles:

 $-4*100^{5} = 40,000,000,000$ combinations

- Number of inheritance patterns
 - 5 non-founders = 2^{2*5} = 1024
 - 15 non founders = 2^{2*15} = 1,073,741,824

Computation time

- Sibship of 5:
 - -1 marker => 2 sec.
 - 2 markers => 4.5 hours
 - 3 markers => 5 years
- Trait locus + 2 markers
 - 6 sibs => 18 hours
 - 8 sibs => 12 days
 - 10 sibs => ½ year

 A computational technique which reduces the complexity of computations by sequential computations over conditionally independent events

Elston-Stewart peeling

- For parts of pedigree, compute probability conditional on all possible genotypes of members who connect this part to the rest
- Computation time
 - ~ No_people * (no_possible_genotypes) *
 (no_loop-breakers)
 - Grows
 - linear with no. people
 - exponential with no. markers

Computation time for ESalgorithm

Lander-Green peeling

- For particular marker (phenotype), compute probability for all pedigree members conditional on flanking genotypes
- Computation time
 - ~ No_loci * (no_possible_inheritance_patterns) Grows
 - Exponential with no. people
 - Linear with no. markers

Computation time for LGalgorithm

Limitations of exact methods

- E-S algorithm:
 - 3-4 markers and 2-3 loops is absolute maximum

- LG algorithm:
 - BIT-SIZE ~ 20-28
 - BIT-SIZE = (2*no_non-founders no_founders)

Markov Chain Monte-Carlo

- A technique to compute approximate probabilities
- Can run well for few hundreds of people and few dozens of loops (takes weeks to finish)
- Very efficient on pedigrees ~50-70 people

 Results depend on the choice of random numbers

Programs for IBD computation

- Exact IBD using Elston-Stewart algorithm MERLIN, ALLEGRO, GENEHUNTER
- Exact single-marker IBD for zero-loop pedigrees

SOLAR

MCMC approxmation
 SIMWALK2: great results, but very slow
 LOKI: can be faster, but user has to control convergence