DEALING WITH

CORRELATED TESTS

YURII AULCHENKO
YURII [DOT] AULCHENKO [AT] GMAIL [DOT] COM

STANDARD SCENARIO

- You run GWAS analysis of a single trait
- The sample was genotyped using 500 k SNP chip and imputed using HapMap panel to 2.5×10^{6} variants
- What is your threshold p-value to claim genome-wide significance?

STANDARD SCENARIO

- You run GWAS analysis of a single trait
- The sample was genotyped using 500 k SNP chip and imputed using HapMap panel to 2.5×10^{6} variants
- What is your threshold p-value to claim genome-wide significance?
- p-values $<5 \times 10^{-8}$ are "significant"

META-GWAS OF TWO STUDIES

WHAT IS SIGNIFICANCE THRESHOLD?

- You analyzed 4 phenotypes (e.g. HDL, LDL, TC, TG)

WHAT IS SIGNIFICANCE THRESHOLD?

- You analyzed 4 phenotypes (e.g. HDL, LDL, TC, TG)
- You have analyzed 22,000 phenotypes ('omics' scenario)

WHAT IS SIGNIFICANCE THRESHOLD?

- You analyzed 4 phenotypes (e.g. HDL, LDL, TC, TG)
- You have analyzed 22,000 phenotypes ('omics' scenario)
- You analyzed multiple SNPs in a region, and would like to have regional p-value

What is significance THRESHOLD?

- You analyzed 4 phenotypes (e.g. HDL, LDL, TC, TG)
- You have analyzed 22,000 phenotypes ('omics' scenario)
- You analyzed multiple SNPs in a region, and would like to have regional p-value
- You did GWAS using several different models (e.g. additive and genotypic)

REGIONAL ASSOCIATIONS

GWAS OF TWO (CORRELATED) TRAITS

R2=0.66

R2 $=\mathbf{0 . 3 3}$

GWAS USING DIFFERENT MODELS

EMPIRICAL P-VALUES

- Empirical techniques to derive null distribution of the test statistic (and thus approximation to exact p-value)
- Typically: permute the phenotypes, repeat analysis, ... 1000s of times

EMPIRICAL P-VALUES

- Empirical techniques to derive null distribution of the test statistic (and thus approximation to exact p-value)
- Typically: permute the phenotypes, repeat analysis, ... 1000s of times
- If your GWAS analysis takes 5 minutes, deriving empirical thresholds will take few days

EMPIRICAL P-VALUES

- Empirical techniques to derive null distribution of the test statistic (and thus approximation to exact p-value)
- Typically: permute the phenotypes, repeat analysis, ... 1000s of times
- If your GWAS analysis takes 5 minutes, deriving empirical thresholds will take few days
- ... some "single" analyses do take days!

Empirical P-VALUES

Am J Hum Genet. 2005 Mar;76(3):399-408. Epub 2005 Jan 11.
Rapid simulation of P values for product methods and multiple-testing adjustment in association studies.
Seaman SR, Müller-Myhsok B.

- Very smart speed-up was suggested by SSR \& BMM
- Addresses very wide range of "typical" analysis scenarios
- It could be that ...
- your scenario does not fall into "typical" ones
- your data are not permutable (e.g. in structured populations)

P-ACT (Conneely, Boehnke, 2007)

- P-value Adjusted for Correlated Tests
- The idea is the the distribution of the Z-statistic from correlated tests follow multivariate normal distribution, characterized by some correlation matrix
- Hence the "overall" p-value can be computed as an integral over this distribution

P-ACT

$$
P_{\text {Act }}=\left\{\begin{array}{ll}
1-P\left[\max \left(Z_{1}, \ldots, Z_{L}\right)<\Phi^{-1}\left(1-P_{\min }\right)\right] \\
1-P\left[\max \| Z_{1}\left|, \ldots,\left|Z_{L}\right|<\boldsymbol{\Phi}^{-1}\left(1-\frac{P_{\min }}{2}\right)\right]\right. & \text { for one-sided tests } \\
\text { for two-sided tests }
\end{array}\right. \text {, }
$$

- Sanity checks passed:

P-ACT

$$
P_{\text {ACT }}=\left\{\begin{array}{ll}
1-P\left[\max \left(Z_{1}, \ldots, Z_{L}\right)<\boldsymbol{\Phi}^{-1}\left(1-P_{\min }\right)\right] \\
1-P\left[\max \| Z_{1}\left|, \ldots,\left|Z_{L}\right|<\boldsymbol{\Phi}^{-1}\left(1-\frac{P_{\min }}{2}\right)\right]\right. & \text { for one-sided tests } \\
\text { for two-sided tests }
\end{array},\right.
$$

- Sanity checks passed:
- If tests are not correlated, doing P-ACT becomes equivalent to Bonferroni / Sidak correction

P-ACT

$$
P_{\text {Acr }}=\left\{\begin{array}{ll}
1-P\left[\max \left(Z_{1}, \ldots, Z_{L}\right)<\Phi^{-1}\left(1-P_{\min }\right)\right] \\
1-P\left[\max \| Z_{1}\left|, \ldots,\left|Z_{L}\right|<\boldsymbol{\Phi}^{-1}\left(1-\frac{P_{\min }}{2}\right)\right]\right. & \text { for one-sided tests } \\
\text { for two-sided tests }
\end{array},\right.
$$

- Sanity checks passed:
- If tests are not correlated, doing P-ACT becomes equivalent to Bonferroni/Sidak correction
- If statistics are perfectly correlated, PACT is equivalent to single-test p-value

EstimAting S

- How do you know S (the correlation matrix for Z)?
- Different models on the same data and analysis of multiple traits: estimable directly from the analysis results
- Analysis of multiple SNPs: Conneely and Boehnke demonstrated that S is proportional to the genotypic correlation matrix

SIMULATIONS: MULTIPLE SNPS

Type I Error Rate and Power When 20 HNF1A SNPs Are Tested for Association with Binary Traits

Disease SNP	$\text { MAF } r^{2} \text { total }^{\mathrm{a}} r^{2}{ }_{\text {max }}{ }^{\mathrm{b}}$			One Binary Trait Tested						Five Binary Traits Tested On Additive Model		
				On Additive Model			On Three Models					
				PŠidák	$P_{\text {ACT }}$	$P_{\text {perm }}$	PŠidák	$P_{\text {ACT }}$	${ }^{\text {perm }}$	PŠidák	$P_{\text {ACT }}$	$P_{\text {perm }}$
None (type I error) 0301	. 0503	. 0507	. 0247	. 0500	. 0508	. 0259	. 0495	. 0502
Most common SNP	. 48	. 88	. 78	. 899	. 927	. 925	. 859	. 911	. 910	. 806	. 857	. 859
Moderately frequent SNP	. 20	. 93	. 19	. 419	. 535	. 538	. 338	. 482	. 484	. 280	.385	. 377
Least common SNP	. 04	. 91	. 79	. 878	. 916	. 915	. 811	. 874	. 874	. 686	. 772	. 773
SNP least predicted by others	. 05	. 42	. 35	. 387	. 475	. 476	. 296	. 401	. 402	. 220	. 304	. 299

${ }^{\mathrm{a}} r^{2}{ }_{\text {total }}=$ Proportion of variance in disease SNP allele count explained by the other 19 SNPs.
${ }^{\mathrm{b}} r^{2}{ }_{\text {max }}=$ Maximum pairwise r^{2} between disease SNP and each of the other 19 SNPs.

SIMULATIONS: MULTIPLE TRAITS

Type I Error Rate and Power When 10 Correlated Quantitative Traits Are Tested for Association

Trait Correlation Structure	10 Traits Tested for Association with									
	One SNP and a Covariate						20 Correlated HNF1A SNPs			
	Type I Error Rate			Power			Type I Error Rate		Power	
	$P_{\text {Šidák }}$	$P_{\text {ACT }}$	$P_{\text {perm }}$	$P_{\text {Šidák }}$	$P_{\text {ACT }}$	$P_{\text {perm }}$	PŠidák	$P_{\text {ACT }}$	$P_{\text {Šidák }}$	${ }_{\text {ACT }}$
Independent traits	. 0498	. 0499	. 0496	. 819	. 819	. 816	. 0325	. 0514	. 780	. 821
Equicorrelated traits	. 0302	. 0502	. 0503	. 826	. 880	. 878	. 0216	. 0507	. 778	. 852
Autocorrelated traits	. 0393	. 0494	. 0495	. 820	. 842	. 839	. 0274	. 0499	. 777	. 833
Independent blocks of traits	. 0386	. 0497	. 0501	. 824	. 850	. 848	. 0264	. 0501	. 779	. 836
Negatively correlated blocks of traits	. 0327	. 0496	. 0500	. 825	. 870	. 868	. 0234	. 0503	. 779	. 846
Five binary and five quantitative traits	. 0341	. 0491	. 0488	. 825	. 864	. 860	. 0263	. 0517	. 781	. 844

SUMMARY P-ACT

- Approximates exact p-value very well
- Is computationally much faster than permutations
- Caution: P-ACT requires integration over high-D multivariate normal. Numerically, the results become not stable / reliable when the Zvalues are very large and / or there are too many dimensions

SIMES-TYPE METHODS ADDRESSING SITUATION

```
Am J Hum Genet. 2011 March 11; 88(3): 283-293.

GATES: A Rapid and Powerful Gene-Based Association Test Using Extended Simes Procedure

Miao-Xin Li, \({ }^{1,2,3}\) Hong-Sheng Gui, \({ }^{1}\) Johnny S.H. Kwan, \({ }^{1}\) and Pak C. Sham \({ }^{1,2,3, *}\)

Published online 2013 January 24. doi: 10.1371/journal.pgen. 1003235
TATES: Efficient Multivariate Genotype-Phenotype Analysis for Genome-Wide Association Studies
Sophie van der Sluis, \({ }^{1, *}\) Danielle Posthuma, \({ }^{1,2,3}\) and Conor V. Dolan \({ }^{4,5}\)

\section*{SIMES/GATES/TATES}

Given \(p\) - ascending vector of (correlated) \(p\)-values, define overall \(p_{G}\) as
\[
P_{G}=\operatorname{Min}\left(\frac{m_{e} P_{(j)}}{m_{e(j)}}\right) \text {, }
\]
where \(m_{e}\) is the effective number of independent p values among the \(m\) SNPs and \(m_{e(j)}\) is the effective number of independent \(p\)-values among the top \(j\) SNPs. The value of \(m_{e}\) is estimated to be equal to
\[
M-\sum_{i=1}^{M}\left[I\left(\lambda_{i}>1\right)\left(\lambda_{i}-1\right)\right] \lambda_{i}>0
\]
where \(I(x)\) is an indicator function and \(\lambda_{i}\) is the \(i^{\text {th }}\) eigenvalue of the \(p\) value correlation coefficient matrix [ \(\rho_{i, j}\) ] of SNP-based statistic tests

\section*{SUMMARY}
- Ideally: empirical \(p\)-values. Best tool in class is WGPERMER (Stephan Ripke, Bertram Muller-Myhsok)
- If not, consider P-ACT. This is easily implemented in R. Do test the stability of the results!
- If not, consider Simes / GATES / TATES. Easily implemented in R. The methods are new: do sanity checks.```

