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Genetic structure

• A population has structure when there are 
large-scale systematic differences in ancestry 
and/or groups of individuals with more, 
recent shared ancestors than one would 
expect in a randomly mating population

• Shared ancestry corresponds to relatedness, 
or kinship, so population structure can be 
described in terms of patterns of kinship 
among groups of individuals
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Measuring kinship

• Alleles that have descended from a single 
ancestral allele are said to be identical by 
descent (IBD)

• Coefficient of kinship, kij, between two 
individuals i and j is defined as the 
probability that two alleles sampled sampled 
at random from each individual are IBD

• For unrelated individuals, k = 0; in inbred 
lines, k = 1
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Coefficient of 
relationship

• In outbred populations (no inbreeding), 
the relationship coefficient defined as 
rij=2·kij , has a simple interpretation as the 
expected proportion of genome i an j share 
IBD

• This coefficient is easily computed from 
pedigree information, e.g. r = 1/2 for 
parent-offspring and sib-pairs; r = 1/4 for 
half-sibs and grandparent-grandchild pairs
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Example 1: pedigree
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No pedigree known

• The definition of kinship readily extends 
to any groups of individuals

• The problem is that we may not know the 
true underlying “pedigree”

• In case genomic data are available, we 
can estimate kinship from these
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Genotypic correlation 
estimator of kinship

	 Kinship between i and j is computed with

	 where xl is the column vector of genotypes (coded as count of 
“A” alleles) at l-th SNP and pl is the frequency of the “A” 
allele

	 Basically, this matrix tells how similar are 
the genomes of people involved

10 W. ASTLE ET AL.

Genotype of i aa Aa AA aa Aa AA aa Aa AA
Genotype of j aa aa aa Aa Aa Aa AA AA AA
IBS Coe�cient 1 1/2 0 1/2 1/2 1/2 0 1/2 1

Table 1

Identity-by state (IBS) coe�cients at a single diallelic locus, defined as the probability that
alleles drawn at random from i and j match, which gives 0.5 in the case of a pair of

heterozygotes. Another definition, based on the number of alleles in common between i and j,
gives 1 for a pair of heterozygotes.

genome-wide covariances of allele counts. Specifically, writing x as a column vec-
tor over individuals and letting the subscript index the L loci (rather than indi-
viduals), then

(2.2) K̂ =
1
L

LX

l=1

(xl � 2pl1)(xl � 2pl1)T

4pl(1� pl)

is an unbiased and positive semi-definite estimator for the kinship matrix K.
Entries in K̂ can also be interpreted in terms of excess allele sharing beyond
that expected for unrelated individuals, given the allele fractions. According to
Ritland (1996), who considers similar estimators and gives a generalisation to
loci with more than two alleles, (2.2) was first given in Li and Horvitz (1953) but
only for inbreeding coe�cients.

In practice we do not know the allele fractions pl. The natural estimators
assume outbred and unrelated individuals, deviation from which can exaggerate
the downward bias in the Kij estimates that arises from the overfitting e↵ect
of estimating the pl from the same data. To reduce the first problem, one could
iteratively re-estimate the pl after making an initial estimate of K with

p̂l =
1T K̂�1xl

1T K̂�11
.

Although the correlations arising from shared ancestry are in principle positive,
because of bias arising from estimation of the pl, o↵-diagonal entries of (2.2) can
be negative, a property that has caused some authors to shun such estimators
of K (Milligan, 2003; Yu et al., 2006; Zhao et al., 2007). Rousset (2002) also
criticises the model underlying (2.1) in the context of certain population genetics
models, but does not propose an alternative estimator of genetic covariance in
actual populations. For the purpose of modelling phenotypic correlations, geno-
typic correlations seem intuitively appropriate and the interpretation of Kij as
a probability seems unimportant. Under the interpretation of K̂ij as excess al-
lele sharing, negative values correspond to individuals sharing fewer alleles than
expected given the allele frequencies.

Table 1 shows the probability that alleles chosen at random from each of two
individuals match, or are identical by state (IBS), at a genotyped diallelic locus.
The genome-wide average IBS probability can be expressed as

(2.3)
1

2L

LX

l=1

(xl � 1)(xl � 1)T +
1
2
.

If the mutation rate is low, IBS usually arises as a result of IBD, and (2.3) can
be regarded as an MME of the pedigree-based kinship coe�cient in the limiting

imsart-sts ver. 2008/08/29 file: sts-paper.tex date: September 9, 2009
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Correlation estimator

• The allele frequencies used are estimated 
from the sample, but the “true” ancestral 
allele frequencies are not known

• This leads to the fact that the estimates of 
kinship thus obtained can be negative

• Does not make sense in probability definition 
of kinship

• Does make sense in interpretation of kinship 
as an excess allele sharing
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Genomic kinship for 
HapMap individuals

CEU YRI JPT CHB

Using only 
JPT+CHB data:

Using all data
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IBS estimator of kinship

	 Kinship between i and j is computed with

	 where xl is the column vector of genotypes (coded as count of 
“A” alleles) at l-th SNP

	 If IBS implies IBD, this is kinship estimator
	 Usually less precise than the correlation 

estimator

10 W. ASTLE ET AL.

Genotype of i aa Aa AA aa Aa AA aa Aa AA
Genotype of j aa aa aa Aa Aa Aa AA AA AA
IBS Coe�cient 1 1/2 0 1/2 1/2 1/2 0 1/2 1

Table 1

Identity-by state (IBS) coe�cients at a single diallelic locus, defined as the probability that
alleles drawn at random from i and j match, which gives 0.5 in the case of a pair of

heterozygotes. Another definition, based on the number of alleles in common between i and j,
gives 1 for a pair of heterozygotes.

genome-wide covariances of allele counts. Specifically, writing x as a column vec-
tor over individuals and letting the subscript index the L loci (rather than indi-
viduals), then

(2.2) K̂ =
1
L

LX

l=1

(xl � 2pl1)(xl � 2pl1)T

4pl(1� pl)

is an unbiased and positive semi-definite estimator for the kinship matrix K.
Entries in K̂ can also be interpreted in terms of excess allele sharing beyond
that expected for unrelated individuals, given the allele fractions. According to
Ritland (1996), who considers similar estimators and gives a generalisation to
loci with more than two alleles, (2.2) was first given in Li and Horvitz (1953) but
only for inbreeding coe�cients.

In practice we do not know the allele fractions pl. The natural estimators
assume outbred and unrelated individuals, deviation from which can exaggerate
the downward bias in the Kij estimates that arises from the overfitting e↵ect
of estimating the pl from the same data. To reduce the first problem, one could
iteratively re-estimate the pl after making an initial estimate of K with

p̂l =
1T K̂�1xl

1T K̂�11
.

Although the correlations arising from shared ancestry are in principle positive,
because of bias arising from estimation of the pl, o↵-diagonal entries of (2.2) can
be negative, a property that has caused some authors to shun such estimators
of K (Milligan, 2003; Yu et al., 2006; Zhao et al., 2007). Rousset (2002) also
criticises the model underlying (2.1) in the context of certain population genetics
models, but does not propose an alternative estimator of genetic covariance in
actual populations. For the purpose of modelling phenotypic correlations, geno-
typic correlations seem intuitively appropriate and the interpretation of Kij as
a probability seems unimportant. Under the interpretation of K̂ij as excess al-
lele sharing, negative values correspond to individuals sharing fewer alleles than
expected given the allele frequencies.

Table 1 shows the probability that alleles chosen at random from each of two
individuals match, or are identical by state (IBS), at a genotyped diallelic locus.
The genome-wide average IBS probability can be expressed as

(2.3)
1

2L

LX

l=1

(xl � 1)(xl � 1)T +
1
2
.

If the mutation rate is low, IBS usually arises as a result of IBD, and (2.3) can
be regarded as an MME of the pedigree-based kinship coe�cient in the limiting

imsart-sts ver. 2008/08/29 file: sts-paper.tex date: September 9, 2009
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Classical multi-
dimensional scaling

• Given pair-wise distance matrix for a set 
of entities finds out their coordinates in 
an t-dimensional space so that the 
distances in this space are as close as 
possible to the original distances

• Kinship K measures “closeness”, so 
CMDS is applied to (0.5-K)
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CMDS of the pedigree

S1

S2
S3

S4
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CMDS of HapMap data

JPT+CHB

YRI

CEU

PCA of genomic kinship
between HapMap participants
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Nelis et al., PLoS ONE, 2009
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GWAS: why do we bother 
about structure?

Yurii Aulchenko

Monday, February 18, 13



GWAS: why do we bother 
about structure?

Yurii Aulchenko

GWAS of skin color using the HapMap data
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GWAS: why do we bother 
about structure?

Yurii Aulchenko

GWAS of skin color using the HapMap data

GWAS without any association
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ESP29 25.08.2010 Yurii Aulchenko
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Methods to deal with 
stratification

• Structured association: populations are 
well-defined, well-separated

• EIGENSTRAT: populations may be less 
well-defined and separated

• Mixed models: very complex structure, 
relatives, genetic isolates

• Genomic control (does not explicitly correct 
for dependencies): correcting residual, small 
degree of stratification
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Outline

Confounding in GWA studies

Genomic Control 

Structured Association

EigenSTRAT 

Mixed Models
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Skin color scan

ESP29 25.08.2010 Yurii Aulchenko

GWAS of skin color using the HapMap data

GWAS without any association

Monday, February 18, 13



Genomic control

• If a test statistic is distributed as χ2
1 under the null 

hypothesis of no association, it has been demonstrated that 
under stratification, the test statistic is distributed as χ2

1 up 
to some scaling constant λ 

• Estimate λ from the vector of test statistics {T2
1, T2

2, T2
3, … , 

T2
N-1, T2

N} obtained from GWAS

• The GC-corrected test statistic T2/λ is distributed as χ2
1
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Estimators of λ

• Mean estimator: mean(T2)

• Median estimator: median(T2)/0.455

• Regression estimator: slope of regression 
of observed T2 on the expected

• Mean is more effective than median under 
the null

• ... but there is a little problem
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Trimmed mean estimator

• The idea is to remove the highest test values from 
consideration, and use the mean estimator then

• Following Astle and Balding (2009)

14 W. ASTLE ET AL.
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Fig 5. Q-Q plots for likelihood ratio tests of association in logistic regression (equivalent to the
Armitage trend test), at 2 000 null SNPs simulated under a three-island model with F

ST

= 1%.
From Island 1 there are 200 controls and 100 cases. Each of the remaining 700 individuals is
admixed, the ith individual having a proportion a

i

of their ancestry from Island 2, the remainder
from Island 3, where the a

i

are independent and Uniform(0,1). The ith admixed individual has a
probability to be a case of 0.3 + 0.5⇥ a

i

, so that case status is positively correlated with Island 2
ancestry. (A) expected versus observed quantiles, unadjusted; (B) expected versus observed after
GC median-adjustment; (C) expected versus observed when the first two principal components
are included as covariates; (D) GC-adjusted versus PC-adjusted quantiles.

the upper tail. For the simulation of Figure 5, the median of the test statistics is
0.59, leading to � = 1.31, a large value reflecting the strong ascertainment bias.

Setakis et al. (2006) pointed out that ascertainment bias can cause median-
adjusted GC to be very conservative. Marchini et al. (2004a) had previously
noticed that for strong population structure GC can be anti-conservative when
the number of test statistics used to estimate � is < 100, and conservative when
the number is � 100. Devlin et al. (2004) ascribed this problem to failure to
account for the uncertainty in the estimate of �, but Marchini et al. (2004b)
noted that this may not be the most important cause of the problem (see also
below). To allow for this uncertainty, Devlin et al. (2004) suggested using the
sample mean to estimate �, since the mean-adjusted test statistics have an F1,m

null distribution. In the absence of true associations, Dadd et al. (2009) found
mean-adjusted GC to be slightly superior to median adjustment. However, the
median is more robust to true positives than the mean. As a compromise, Clayton
et al. (2005) proposed adjusting on a trimmed mean, discarding say the highest
5% or 10% of test statistics.

Lemma 1. The mean of the smallest 100q% values in a large random sample

of �2
1 statistics has expected value

1
q
d3(d�1

1 (q))

imsart-sts ver. 2008/08/29 file: sts-paper.tex date: September 9, 2009
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where dk, is the distribution function of a �2
k random variable.

Proof. Let X ⇠ �2
1 then,

E
⇣
X|X < d�1

1 (q)
⌘

=
Z d�1

1 (q)

0
x

1
q
p

2⇡

e�
x

2

p
x

dx

=
Z d�1

1 (q)

0

1
q
p

2⇡

p
xe�

x

2 dx

=
1
q
d3(d�1

1 (q)).

A limitation of all GC methods is that they do not distinguish markers at
which the pattern of association is correlated with the underlying pedigree, from
those at which the pedigree does not contribute to the association and so for
which no adjustment should be necessary. Figure 5(B-C) shows that median-
GC-adjustment performs similarly to PC-adjustment (see Section 3.6 below) in
countering the overall inflation of test statistics, but the corrected statistics can
be very di↵erent (Figure 5(D)) because PC-adjustment is SNP-specific. GC often
shows reduced power to detect association compared to rival methods of adjusting
for population structure.

In the remainder of this section we show connections between � and the kinship
of study subjects. The Armitage test statistic can be written as T 2/V , where T
is the di↵erence between the allele fractions in the samples of n1 cases and n0

controls,

T =
X

i

✓
yi

n1
� 1� yi

n0

◆
xi,

V is an estimate of the variance of T ,

V =
✓ 1

n0
+

1
n1

◆0

@ 1
n

X

i

x2
i �

"
1
n

X

i

xi

#2
1

A ,

and n = n0 + n1. In the following we assume retrospective ascertainment, so
that the case/control status y is fixed by the study design, while the allele count
xi is random. Devlin and Roeder (1999) noticed that E[T ] = 0, irrespective of
population structure, but that Var[T ] can be inflated relative to V . In general,

(3.4) Var[T ] =
X

i,j

 
yiyj

n2
1

+
(1� yi)(1� yj)

n2
0

� (yi � yj)2

n1n0

!

Cov(xi, xj),

and substituting (2.1) into (3.4) leads to

Var[T ] =
4p(1� p)

n0n1
(D + R).

where

D =
X

i

✓
n0

n1
yi +

n1

n0
(1� yi)

◆
Kii � min

✓
n0

n1
,
n1

n0

◆
Tr[K],

R =
X

i6=j

✓
n0

n1
yiyj +

n1

n0
(1� yi)(1� yj)

◆
Kij �

X

i6=j

(yi � yj)2Kij .(3.5)
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Estimate(!) = mean(lower 95% of T2)/0.759

Monday, February 18, 13



Two uses of the GC

• GC is a method to correct the test statistic, 
and hence have interpretable p-values

• What may be even more important - 
deviation of ! from 1 tells that something 
went wrong with the analysis

• For example, high values (! > 1.05) is an 
indicator that the analysis model failed to 
account for the sample structure, and other 
model should be used
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Few notes on GC

• GC assumes that stratification acts in the same 
manner across all loci, which is not always true

• Inflation factor λ depends on samples size. Special 
methods should be used when number of people 
typed for different SNPs is different 

• In present form, GC works only for additive model 
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Outline

Confounding in GWA studies

Genomic Control 

Structured Association

EigenSTRAT 

Mixed Models
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Structured association

• Identify genetic populations (strata)
• Do stratified analysis; e.g. Cochran-Mantel-

Haenszel test; stratified score test 
(GenABEL::qtscore with ‘strata’); or meta-
analysis of results obtained in different strata

• Apply GC to correct for residual inflation 
(1 < λ < 1.05)

• Potential problems: strata not always known a 
priori or easily identified, they also may be not 
well-defined

Monday, February 18, 13



Outline

Confounding in GWA studies

Genomic Control 

Structured Association

EigenSTRAT 

Mixed Models

Monday, February 18, 13



PCA of genomic kinship

JPT+CHB

YRI

CEU

PCA of genomic kinship
between HapMap participants
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Nelis et al., PLoS ONE, 2009
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EigenStrat and 
PCA-adjustment

• Estimate genetic relations between the study 
participants using genomic data; compute pair-
wise distance matrix; perform CMDS

• Is equivalent to extraction of principal components 
(PC) of variation from genotypic matrix

• In analysis of association...
• EIGENSTRAT: adjust both phenotypes and genotypes 

for these PCs 
• PCA: include  principal axes of variation  as covariates 

in regression model

• Apply GC to correct for residual inflation (1 < λ < 
1.05)
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How many axes to use?

• Rule of thumb: 10

• Use the ones significantly associated with 
the trait

• Stop when λ ~ 1

• ...

• If difficult to decide - think of using 
Mixed Models
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Mixed model

Vector of quantitative phenotype Y
	 	 	 Y = µ + βg g + G + e

g: genotype indicator vector gi in {0,1,2}
βg: additive affect of the allele

e: random residual effect ~ MVN(0, Iσe
2 )

G: random polygenic effect ~ MVN(0, Φ σG
2 )
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Comparison for a 
population-based study

Mixed Models (MM) Genome-wide feasible MM Optimal algebraic kernels and implementation Conclusions

Use of MM in population-based studies

Genomic control � for di↵erent methods (Kang etl., 2010)

Kang et al., Nat Genet, 2010
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Mixed Models for GWAS
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Mixed Models for GWAS

• Excellent method to account for complex 
genetic structure, such as found in special 
populations or in family-based studies
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Mixed Models for GWAS

• Excellent method to account for complex 
genetic structure, such as found in special 
populations or in family-based studies

• Complex structures found in large 
“population based” studies

• May be very computationally extensive 
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ESP29 25.08.2010 Yurii Aulchenko
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Summary: software & 
functions

• Genomic control: for additive models, implemented in any 
GWAS software, or do it yourself. For other models: we work on 
that … may be released late this year

• Stratified analysis: qtscore() of GenABEL; also you can do 
separate analyses and then meta-analyse

• Genomic kinship matrix (base for EIGENSTRAT, PC-
adjustment): PLINK’s ‘IBD’, GenABEL’s ibs() function

• EIGENSTRAT: EIGENSTRAT, GenABEL’s egscore() function

• Adjustment for PCs: any GWA software supporting covariates

• Mixed-models: GenABEL’s mmscore & grammar, Merlin (but 
with pedigree…); MixABEL’s GWFGLS and FMM; EMMAX; 
FaST-LMM
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