# DEALING WITH GENETIC (SUB)STRUCTURE IN GWAS 

YURII AULCHENKO<br>YURII [DOT] AULCHENKO [AT] GMAIL [DOT] COM

## GENETIC STRUCTURE

- A population has structure when there are large-scale systematic differences in ancestry and / or groups of individuals with more, recent shared ancestors than one would expect in a randomly mating population
- Shared ancestry corresponds to relatedness, or kinship, so population structure can be described in terms of patterns of kinship among groups of individuals


## MEASURING KINSHIP

- Alleles that have descended from a single ancestral allele are said to be identical by descent (IBD)
- Coefficient of kinship, $k_{i j}$, between two individuals $i$ and $j$ is defined as the probability that two alleles sampled sampled at random from each individual are IBD
- For unrelated individuals, $k=0$; in inbred lines, $k=1$


## Coefficient of

 RELATIONSHIP- In outbred populations (no inbreeding), the relationship coefficient defined as $r_{i j}=2 \cdot k_{i j}$, has a simple interpretation as the expected proportion of genome $i$ an $j$ share IBD
- This coefficient is easily computed from pedigree information, e.g. $r=1 / 2$ for parent-offspring and sib-pairs; $r=1 / 4$ for half-sibs and grandparent-grandchild pairs


## EXAMPLE 1: PEDIGREE



## NO PEDIGREE KNOWN

- The definition of kinship readily extends to any groups of individuals
- The problem is that we may not know the true underlying "pedigree"
- In case genomic data are available, we can estimate kinship from these


## GENOTYPIC CORRELATION ESTIMATOR OF KINSHIP

Kinship between $i$ and $j$ is computed with

$$
\hat{K}=\frac{1}{L} \sum_{l=1}^{L} \frac{\left(x_{l}-2 p_{l} \mathbf{1}\right)\left(x_{l}-2 p_{l} \mathbf{1}\right)^{T}}{4 p_{l}\left(1-p_{l}\right)}
$$

where $x_{l}$ is the column vector of genotypes (coded as count of "A" alleles) at $l$-th SNP and $p_{l}$ is the frequency of the " $A$ " allele

Basically, this matrix tells how similar are the genomes of people involved

## CORRELATION ESTIMATOR

- The allele frequencies used are estimated from the sample, but the "true" ancestral allele frequencies are not known
- This leads to the fact that the estimates of kinship thus obtained can be negative
- Does not make sense in probability definition of kinship
- Does make sense in interpretation of kinship as an excess allele sharing


# GENOMIC KINSHIP FOR HAPMAP INDIVIDUALS 

## Using all data

CEU
YRI
JPT
CHB
NA12003 NA12004 NA18502 NA18501 NA18942 NA18940 NA18635 NA18592

| NA12003 | 1.06 | 0.16 | -0.09 | -0.10 | -0.06 | -0.06 | -0.06 | -0.05 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| NA12004 | 0.16 | 1.03 | -0.09 | -0.09 | -0.07 | -0.06 | -0.06 | -0.06 |
| NA18502 | -0.09 | -0.09 | 1.11 | 0.31 | -0.15 | -0.15 | -0.15 | -0.15 |
| NA18501 | -0.10 | -0.09 | 0.31 | 1.13 | -0.15 | -0.14 | -0.15 | -0.15 |
| NA18942 | -0.06 | -0.07 | -0.15 | -0.15 | 1.14 | 0.14 | 0.13 | 0.13 |
| NA18940 | -0.06 | -0.06 | -0.15 | -0.14 | 0.14 | 1.16 | 0.13 | 0.13 |
| NA18635 | -0.06 | -0.06 | -0.15 | -0.15 | 0.13 | 0.13 | 1.16 | 0.14 |
| NA18592 | -0.05 | -0.06 | -0.15 | -0.15 | 0.13 | 0.13 | 0.14 | 1.15 |

# Using only <br> JPT+CHB data: 

NA18942 NA18940 NA18635 NA18592

| NA18942 | 1.00 | 0.00 | -0.01 | -0.01 |
| :--- | ---: | ---: | ---: | ---: |
| NA18940 | 0.00 | 1.01 | -0.02 | -0.02 |
| NA18635 | -0.01 | -0.02 | 1.02 | 0.00 |
| NA18592 | -0.01 | -0.02 | 0.00 | 1.01 |

## IBS ESTIMATOR OF KINSHIP

Kinship between $i$ and $j$ is computed with

$$
\frac{1}{2 L} \sum_{l=1}^{L}\left(x_{l}-\mathbf{1}\right)\left(x_{l}-\mathbf{1}\right)^{T}+\frac{1}{2} .
$$

where $x_{l}$ is the column vector of genotypes (coded as count of " $A$ " alleles) at $l$-th SNP

If IBS implies IBD, this is kinship estimator
Usually less precise than the correlation estimator

## CLASSICAL MULTIDIMENSIONAL SCALING

- Given pair-wise distance matrix for a set of entities finds out their coordinates in an $t$-dimensional space so that the distances in this space are as close as possible to the original distances
- Kinship K measures "closeness", so CMDS is applied to $(0.5-K)$


## CMDS OF THE PEDIGREE



## CMDS OF HAPMAP DATA




Nelis et al., PLoS ONE, 2009

## GWAS: WHY DO WE BOTHER ABOUT STRUCTURE?

## GWAS: WHY DO WE BOTHER ABOUT STRUCTURE?



## GWAS: WHY DO WE BOTHER ABOUT STRUCTURE?




## METHODS TO DEAL WITH STRATIFICATION

- Structured association: populations are well-defined, well-separated
- EIGENSTRAT: populations may be less well-defined and separated
- Mixed models: very complex structure, relatives, genetic isolates
- Genomic control (does not explicitly correct for dependencies): correcting residual, small degree of stratification


## OUTLINE

# Confounding in GWA studies Genomic Control 

## Structured Association

## EigenSTRAT

Mixed Models

## SKIN COLOR SCAN



## GENOMIC CONTROL

- If a test statistic is distributed as $\chi^{2}{ }_{1}$ under the null hypothesis of no association, it has been demonstrated that under stratification, the test statistic is distributed as $\chi^{2}{ }_{1}$ up to some scaling constant $\lambda$
- Estimate $\lambda$ from the vector of test statistics $\left\{\mathrm{T}^{2}{ }_{1}, \mathrm{~T}^{2}{ }_{2}, \mathrm{~T}^{2}{ }_{3}, \ldots\right.$, $\left.\mathrm{T}^{2}{ }_{\mathrm{N}-1}, \mathrm{~T}^{2}{ }_{\mathrm{N}}\right\}$ obtained from GWAS
- The GC-corrected test statistic $\mathrm{T}^{2} / \lambda$ is distributed as $\chi^{2}{ }_{1}$


## EstimAtors of $\lambda$

- Mean estimator: mean $\left(T^{2}\right)$
- Median estimator: median $\left(T^{2}\right) / 0.455$
- Regression estimator: slope of regression of observed $T^{2}$ on the expected
- Mean is more effective than median under the null
- ... but there is a little problem


## TRIMMED MEAN ESTIMATOR

- The idea is to remove the highest test values from consideration, and use the mean estimator then
- Following Astle and Balding (2009)

Lemma 1. The mean of the smallest $100 q \%$ values in a large random sample of $\chi_{1}^{2}$ statistics has expected value

$$
\frac{1}{q} d_{3}\left(d_{1}^{-1}(q)\right)
$$

where $d_{k}$, is the distribution function of a $\chi_{k}^{2}$ random variable.

Estimate $(\lambda)=\operatorname{mean}\left(\right.$ lower $95 \%$ of $\left.T^{2}\right) / 0.759$

## Two Uses of The GC

- GC is a method to correct the test statistic, and hence have interpretable p -values
- What may be even more important deviation of $\lambda$ from 1 tells that something went wrong with the analysis
- For example, high values $(\lambda>1.05)$ is an indicator that the analysis model failed to account for the sample structure, and other model should be used


## FEW NOTES ON GC

- GC assumes that stratification acts in the same manner across all loci, which is not always true
- Inflation factor $\lambda$ depends on samples size. Special methods should be used when number of people typed for different SNPs is different
- In present form, GC works only for additive model
A)

B)



## OUTLINE

## Confounding in GWA studies

 Genomic Control
## Structured Association

## EigenSTRAT

Mixed Models

## STRUCTURED ASSOCIATION

- Identify genetic populations (strata)
- Do stratified analysis; e.g. Cochran-MantelHaenszel test; stratified score test (GenABEL::qtscore with 'strata'); or metaanalysis of results obtained in different strata
- Apply GC to correct for residual inflation ( $1<\lambda<1.05$ )
- Potential problems: strata not always known a priori or easily identified, they also may be not well-defined


## OUTLINE

# Confounding in GWA studies Genomic Control 

## Structured Association

## EigenSTRAT

Mixed Models

## PCA OF GENOMIC KINSHIP




Nelis et al., PLoS ONE, 2009

## EIGENSTRAT AND PCA-ADJUSTMENT

- Estimate genetic relations between the study participants using genomic data; compute pairwise distance matrix; perform CMDS
- Is equivalent to extraction of principal components (PC) of variation from genotypic matrix
- In analysis of association...
- EIGENSTRAT: adjust both phenotypes and genotypes for these PCs
- PCA: include principal axes of variation as covariates in regression model
- Apply GC to correct for residual inflation $(1<\lambda<$ 1.05)


## HOW MANY AXES TO USE?

- Rule of thumb: 10
- Use the ones significantly associated with the trait
- Stop when $\lambda \sim 1$
- If difficult to decide - think of using Mixed Models


## OUTLINE

# Confounding in GWA studies Genomic Control 

## Structured Association

## EigenSTRAT

Mixed Models

## MIXED MODEL

Vector of quantitative phenotype $Y$

$$
Y=\mu+\beta_{g} g+\mathbf{G}+e
$$

$g$ : genotype indicator vector $g_{i}$ in $\{0,1,2\}$
$\beta_{g}$ : additive affect of the allele
$e$ : random residual effect $\sim \operatorname{MVN}\left(\mathbf{0}, \mathrm{I} \mathrm{\sigma}_{e}{ }^{2}\right)$
G: random polygenic effect $\sim \operatorname{MVN}\left(0, \Phi \sigma_{G}{ }^{2}\right)$

## COMPARISON FOR A

 POPULATION-BASED STUDYTable 1 Comparison of genomic control inflation factors obtained with different models

|  | Genomic control inflation factor |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Phenotype | Uncorrected | IBD $<0.1$ | ES100 | EMMAX |
| CRP | 1.007 | 1.007 | 1.019 | 0.993 |
| TG | 1.023 | 1.010 | 1.019 | 1.002 |
| INS | 1.029 | 1.022 | 1.013 | 1.005 |
| DBP | 1.031 | 1.019 | 1.028 | 1.007 |
| BMI | 1.031 | 1.024 | 1.016 | 0.995 |
| GLU | 1.045 | 1.033 | 1.030 | 1.008 |
| HDL | 1.052 | 1.056 | 1.036 | 1.004 |
| SBP | 1.066 | 1.056 | 1.021 | 1.006 |
| LDL | 1.098 | 1.089 | 1.040 | 1.002 |
| Height | 1.187 | 1.151 | 1.074 | 1.003 |

ES100, EIGENSOFT correcting for 100 principal components; IBD $<0.1$, uncorrected analysis after excluding 611 individuals whose PLINK's IBD estimates with another individual is greater than 0.1; phenotype abbreviations are CRP, C-reactive protein; TG, triglyceride; INS, insulin plasma levels; DBP, diastolic blood pressure; BMI, body mass index; GLU, glucose; HDL, high-density lipoprotein; SBP, systolic blood pressure; LDL, Iow density lipoprotein.

Kang et al., Nat Genet, 2010

## Mixed Models for GWAS

## Mixed MODELS FOR GWAS

- Excellent method to account for complex genetic structure, such as found in special populations or in family-based studies


## Mixed MODELS FOR GWAS

- Excellent method to account for complex genetic structure, such as found in special populations or in family-based studies
- Complex structures found in large "population based" studies


## Mixed MODELS FOR GWAS

- Excellent method to account for complex genetic structure, such as found in special populations or in family-based studies
- Complex structures found in large "population based" studies
- May be very computationally extensive



## SUMMARY: SOFTWARE \& FUNCTIONS

- Genomic control: for additive models, implemented in any GWAS software, or do it yourself. For other models: we work on that ... may be released late this year
- Stratified analysis: qtscore() of GenABEL; also you can do separate analyses and then meta-analyse
- Genomic kinship matrix (base for EIGENSTRAT, PCadjustment): PLINK's 'IBD', GenABEL's ibs() function
- EIGENSTRAT: EIGENSTRAT, GenABEL's egscore() function
- Adjustment for PCs: any GWA software supporting covariates
- Mixed-models: GenABEL's mmscore \& grammar, Merlin (but with pedigree...); MixABEL's GWFGLS and FMM; EMMAX; FaST-LMM

