
Meta-analysis of GWA Studies

Yurii Aulchenko

Outline

- Introduction: why meta-GWA?
- Methodology
 - Meta-analysis methods
 - Joint vs. meta-analysis
 - Random vs. fixed effects
 - Specific of analysis of individual study
 - Technology: what to report for meta-GWA?

Outline of meta-GWAS

Avoid bias: all results reported (no selection on P-values, betas, etc.)

Meta-data

Study	SNP	n	β	s.e.
1	rs355456	2640	0.11	0.032
2	rs355456	2370	0.08	0.041
3	rs355456	1310	-0.01	0.030
1	rs765865	2644	0.01	0.044
2	rs765865	2311	-0.03	0.037
3	rs765865	1312	0.02	0.055
1	rs485698	2583	0.001	0.029
2	rs485698	879	-0.12	0.033

Inverse variance meta-analysis

Available from each of N studies

- β_i (*i*=, ..., N): effect estimates
- $-s_i$ (*i*=, ..., N) standard errors of the estimates

Compute weights as $w_i = \frac{1}{s_i^2}$

Pooled estimate of the effect is

$$\beta = \frac{\sum_{i=1}^{N} w_i \beta_i}{\sum_{i=1}^{N} w_i}$$

 $s^2 = \frac{1}{\sum_{i=1}^N w_i}$

Pooled estimate of the standard error

Pooled Z-test value

$$Z = \frac{\beta}{s} = \frac{\sum_{i=1}^{N} w_i \beta_i}{\sqrt{\sum_{i=1}^{N} w_i}}$$

Z-test based meta-analysis

- We do not quite believe that the effect estimates are consistent across studies because of differences in e.g. study design
- Use only "significance and sign" as characterized by study specific value of the Z-test (Z_i)
 - Compute a study weight as the square root of the number of subjects used $w_i = \sqrt{n_i}$

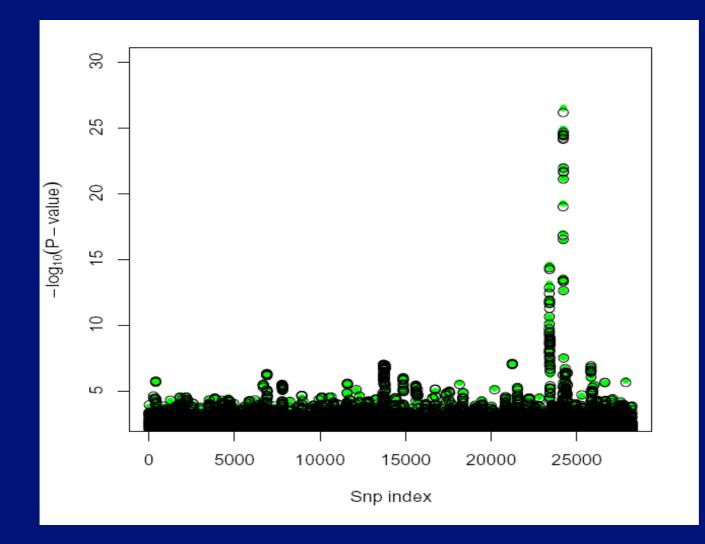
Pooled Z-score is

$$Z = \frac{\sum_{i=0}^{N} w_i Z_i}{\sqrt{\sum_{i=0}^{N} w_i^2}}$$

Genomic Control with inverse variance

- K studies reporting reporting results for M SNPs. For particular study k, SNP m
 - effect estimate ($\beta_{\rm km}$) and
 - its standard error (s_{km}) is reported
- Compute $T_{\rm km}^2 = (\beta_{\rm km} / s_{\rm km})^2$
- For each study *k* estimate GC λ_k : - λ_k = Median(T_{k1}^2 , T_{k2}^2 ,... T_{kM}^2) /0.455
- For each study *k* marker *m*, adjust standard error by λ_k : - $s'_{km}^2 = \lambda_k * s_{km}^2$
- Perform meta-analysis using corrected standard errors

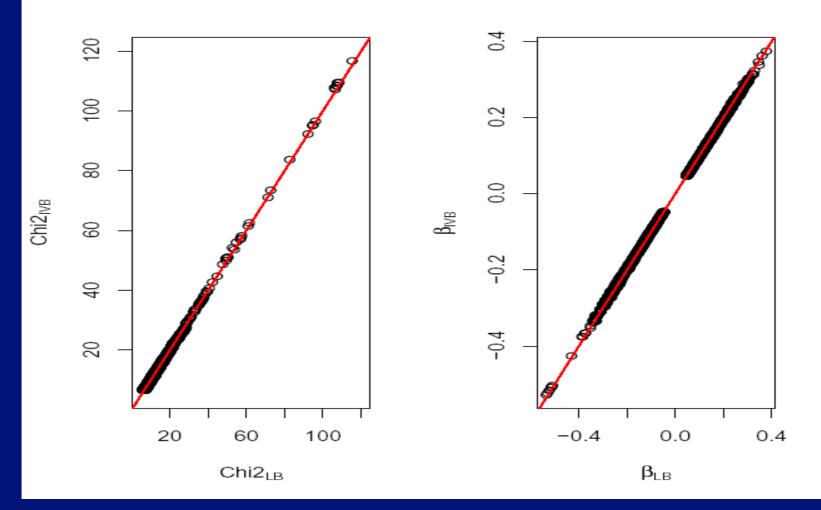
GC with Z-test meta-analysis


K studies reporting reporting results for M SNPs. For particular study *k*, SNP *m*

- Z-statistics value (Z_{km}) and
- Number of subjects $(n_{\rm km})$ is reported
- For each study *k* estimate GC λ_k : - λ_k = Median($Z_{k1}^2, Z_{k2}^2, \dots, Z_{kM}^2$) /0.455
- For each study *k* marker *m* re-compute Z scores - $Z'_{km} = Z_{km} / Sqrt(\lambda_k)$
- Perform meta-analysis using Z-score method

Outline

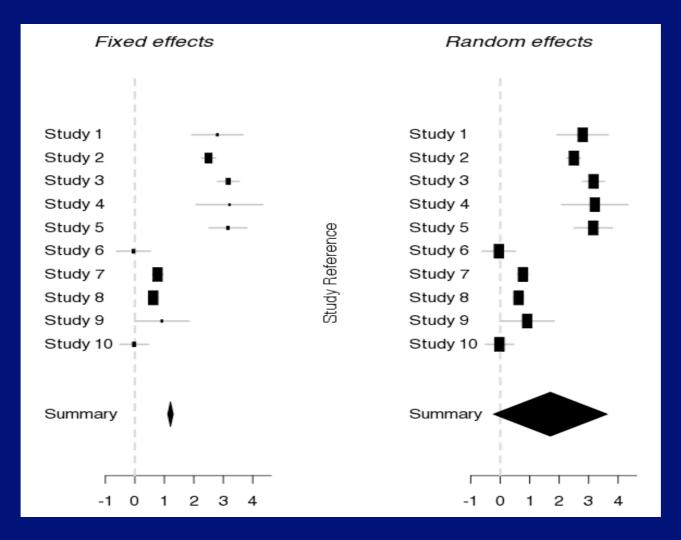
- Introduction
- Methodology
 - Meta-analysis methods
 - Joint vs. meta-analysis
 - Random vs. fixed effects
 - Specific of analysis of individual study
 - Technology: what to report for meta-GWA?


Joint less powerful than Meta?

•Green – *metaanalysis*

• Black – *joint analysis*

Joint vs Meta: chi2's and beta's


Chi2: slope=0.999+/-2E-04

beta: slope=1.016+/-1E-04

Outline

- Introduction
- Methodology
 - Meta-analysis methods
 - Joint vs. meta-analysis
 - Random vs. fixed effects
 - Specific of analysis of individual study
 - Technology: what to report for meta-GWA?

Fixed vs Random

Standard meta-analysis tests

Consider *k* studies with corresponding SNP effects β_i , *i* = 1, ..., *k*

Fixed effect model null hypothesis: $\beta 1 = \beta 2 = ... = \beta k = 0$ Alternative: $\beta 1 = \beta 2 = ... = \beta k = \beta \not\models 0$

- Random effect model assumes that $\beta 1, \ldots, \beta k$ arises from a N ($\mu, \sigma 2$)
- Null hypothesis: $\mu = 0$
- Alternative: $\mu > 0$ (you are not interested in that!)
- Actually, for gene-discovery you are interested in alternative $\beta \neq 0$ in one or more populations, and you do not care if these are heterogeneous!

Outline

- Introduction
- Methodology
 - Meta-analysis methods
 - Joint vs. meta-analysis
 - Random vs. fixed effects
 - Specific of analysis of individual study
 - Technology: what to report for meta-GWA?

Analysis of individual study

- Meta-data: extract information the best way you can
- What is minimally needed for meta-analysis?
 - Number of people measured for the trait and the SNP genotype and Z-test values
 - AND/OR
 - Unbiased effect estimates and standard errors
- <Slight> inflation of the test statistic can be corrected using Genomic Control in meta-GWAS

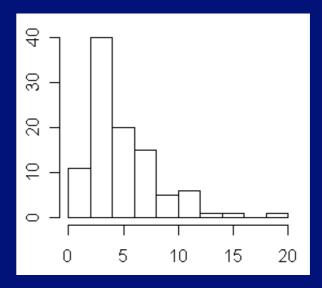
Best analysis providing the required characteristics!

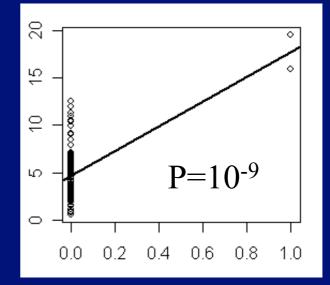
QC for meta-GWAS

- Unit of meta-data: SNP characteristics
- Only exclude data points for which QC characteristics **can not** be reported in meta-data (and effectively used in metaGWA analysis)
- This usually translates to:
- (a) Identify and exclude "bad" samples
 - Use SNP and individual-level filters to identify "bad" samples
 - Exclude "bad" samples, but keep all SNPs
- (b) Perform GWA, report SNP-level QC characteristics (call rate, P-value HWE, AF, etc.)

Trait's distribution

Significance derived based on effect estimate and standard error (e.g. Z-test) is correct


– when number of measurements is very large


and/or

- trait's residuals are distributed normally

Outliers generate false positives in individual GWAS

- (a) Presence of outliers(b) Small number of people(c) Rare polymorphisms
 - => False-positive association

Solution for individual study

Trait's transformation:

- Log-transformation: y' = log y
- Square root transformation: y' = sqrt(y)
- Box-Cox transformation y

$$egin{aligned} &(\lambda) = \left\{ egin{aligned} &(y^\lambda-1)/\lambda, & ext{if }\lambda
eq 0 \ &\log y, & ext{if }\lambda = 0 \end{aligned}
ight. \end{aligned}$$

- Rank-transformation to Normal
 - Ranks projected to Normal
 - Guarantees perfect fit to Normal in absence of ties

<u>Empirical procedures</u>: they do not rely on normality assumption (but can not use in meta unless some new methods are developed)

Meta-analysis: large numbers are good!

- The larger are the numbers, the more non-normality you can afford
- If the number of cohorts and total number of subjects studied in meta-analysis is really large, say
 - Each study > 1,000 subjects
 - In total, > 20,000 subjects
 - In total, >10 cohorts
 - Then there is little problem in (moderate) non-normality of the trait distribution
- False positives due to combination of rare allele and nonnormality can be easily detected: you will see a huge effect coming from a single study
- ... thus checking heterogeneity may be a good idea ... at least for your "top" hits

Outline

- Introduction
- Methodology
 - Meta-analysis methods
 - Joint vs. meta-analysis
 - Random vs. fixed effects
 - Specific of analysis of individual study

Technology: what to report for meta-GWA?

Meta-data: what to report?

For meta-analysis one needs

- Effect estimate
- Estimate's standard error
- Number of people measured for both trait and SNP

Suggested format 1:

Study	n	β	s.e.	Р
1	2644	0.11	0.032	0.0005
2	2311	80.0	0.030	0.0003
3	2375	-0.12	0.028	0.0001
Meta	7330	0.01	0.013	0.45

Reference & Effective alleles

Study	Ref.	Eff.	n	β	s.e.
1	А	G	2644	0.11	0.032
2	А	G	2311	0.08	0.030
3	G	A	2375	-0.12	0.028

Study	Ref.	Eff.	n	β	s.e.	Р
1	А	G	2644	0.11	0.032	0.0005
2	А	G	2311	0.08	0.030	0.0003
3	А	G	2375	+0.12	0.028	0.0001
Meta	А	G	7330	0.10	0.013	10 ⁻⁹

Suggested format 2

- Effect estimates (sign of Z) should be reported for the same allele (A/T/G/C) across all studies
- ...or individual study results should provide enough information about reference and effective allele
- E.g. report coding A_1A_2 where A_1 is always reference

Study	Ref.	Eff.	n	β	s.e.	Р
1	А	G	2644	0.11	0.032	0.0005
2	А	G	2311	0.08	0.030	0.0003
3	А	G	2375	0.12	0.028	0.0001
Meta	А	G	7330	0.10	0.013	10 ⁻⁹

No association again?

Study	Ref.	Eff.	n	β	s.e.	Р
1	А	Т	2644	0.11	0.032	0.0005
2	А	Т	2311	0.08	0.030	0.0003
3	А	Т	2375	-0.12	0.028	0.0001
Meta	А	Т	7330	0.01	0.013	0.45

Specifics of A/T and G/C SNPs

-						
Study	Ref.	Eff.	Strand	n	β	s.e.
	А	Т	+	2644	0.11	0.032
	А	Т	+	2311	0.08	0.030
3	A	т	-	2375	-0.12	0.028
	А	Т	+	2644	0.11	0.032
2	А	Т	+	2311	80.0	0.030
3	Т	Α	+	2375	-0.12	0.028
	A	Т	+	2644	0.11	0.032
2	А	т	+	2311	80.0	0.030
3	А	т	+	2375	0.12	0.028
Veta	А	Т	+	7330	0.10	0.013

Minimal suggested format

From analysis:

- SNP name
- Reference allele
- Effective allele
- Strand
- Genomic build
- Number of people with trait & genotype
- Effect estimate
- Standard error of the effect estimate
- From QC:
 - Call rate
 - P-value HWE
 - Effective allele frequency

Software

MetABEL

- by Yurii Aulchenko & Maksim Struchalin
- Inverse variance method
- http://mga.bionet.nsc.ru/~yurii/ABEL/

METAL

- by Goncalo Abecasis
- Z-score method
- Inverse variance method
- http://www.sph.umich.edu/csg/abecasis/Metal/index.html

R library "rmeta"

- by Thomas Lamley
- General wide-scope meta-analysis library
- Implements multiple methods and great forest-plot graphics
- Not quite suited for meta-GWAS

Conclusions

- Meta-analysis of GWAS is a powerful tool to detect common loci, even of small effect
- Meta is almost as powerful as joint analysis
- Use fixed effects models for meta-GWA; new tests are coming
- Large numbers are good
- Bio-informatics matters: mind the build, strand, and coding