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Areas of expertise

• (infra)Structure and project evaluation 
and advise

• Methodological advise (study design, 
planning of analyses, methods, software)

• Methods, algorithms and software 
development

• Data analyses

• Teaching and training
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Analysis of imputed 
genotypic data in GWAS

• Short review of standard methods
• Methods for analysis of imputed data
• Open questions and problems
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Singe SNP analysis

• Analysis of each SNP in turn 
independent of others

• For each SNP, regression is performed, 
resulting in estimates of regression 
coefficients, their standard errors and 
the p-value
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Linear regression model

The value of the trait in i-th individual is 
assumed to follow linear model

Yi = m + bg gi + ei

where m is intercept, gi is the genotypic 
value (coded as ‘B’ allele dose - 0, 1 or 2), 
and ei is random residual error
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Stepwise selection 
procedure
Describes a class of statistical 
procedures that identify from 
a large set of variables (such 
as SNPs) a subset that 
provides a good fit to a chosen 
statistical model (for example, 
a regression model that 
predicts case–control status) 
by successively including or 
discarding terms from the 
model.

Shrinkage methods
In this approach a prior 
distribution for regression 
coefficients is concentrated at 
zero, so that in the absence 
of a strong signal of 
association, the corresponding 
regression coefficient is 
‘shrunk’ to zero. This mitigates 
the effects of too many 
variables (degrees of freedom) 
in the statistical model.

kinship, with or without an explicit subpopulation effect, 
has recently been found to outperform GC in many set-
tings56. Given large numbers of null SNPs, it becomes 
possible to make precise statements about the (distant) 
relatedness of individuals in a study so that a complete 
solution to the problem of population stratification — 
which has in the past been the cause of much concern 
— is probably not far away.

Tests of association: multiple SNPs
Given L SNPs genotyped in cases and controls at a 
candidate gene that is subject to little recombination, or 
perhaps an LD block within a gene, we might want to 
decide whether or not the gene is associated with the 
disease and/or, given that there is association, find the 
SNP(s) that are closest to the causal polymorphism(s).

Analysing SNPs one at a time can neglect information 
in their joint distribution. This is of little consequence in 
the two extreme cases: when SNPs are widely spaced so 
as to have little or no LD between them or when almost 
all SNPs are typed so that any causal variant is likely 
to be typed in the study. In practice, most studies have 
SNP densities between these two extremes, in which case 
multipoint association analyses have substantial advan-
tages over single-SNP analyses57. I first outline regression 
analyses of unphased SNP genotypes and then move on 
to haplotype-based analyses.

SNP-based logistic regression. Logistic regression analyses 
for L SNPs are a natural extension of the single-SNP anal-
yses that are discussed above: there is now a coefficient 
(β0, β1 or β2) for each SNP, leading to a general test with 
2L df. By constraining the coefficients, tests with L df can 
be obtained. For example, a test for additive effects at each 
SNP is obtained by requiring that each β1 = (β0 + β2) / 2. 
The corresponding score test, also with L df, is a generali-
zation of the Armitage test, and is related to the Hotelling 
T2 statistic56. Another test, with L+1 df, uses only 1 df to 
capture gene-wide dominance effects29.

Covariates such as sex, age or environmental expo-
sures are readily included. Similarly, interactions between 
SNPs can be included. This conveys little benefit, and can 
reduce power to detect an association, if there is a single 
underlying causal variant and little or no recombination 
between SNPs58, but it is potentially useful for investigating 
epistatic effects.

If the number of SNPs is large, tagging to eliminate 
near-redundant SNPs often increases power despite 
some loss of information. Alternatively, the problem 
of too many highly correlated SNPs in the model can 
be addressed using a stepwise selection procedure59 or 
Bayesian shrinkage methods60. However, problems can 
arise in assessing the significance of any chosen model.

Essentially the same issues arise for a continuous 
phenotype; the same sets of coefficients are appropriate 
but they are equated to the expected phenotype value 
rather than the logit of disease risk.

Haplotype-based methods. The multi-SNP analyses 
discussed above can suffer from problems that are 
associated with many predictors, some of which are highly 

correlated. A popular strategy, suggested by the block-
like structure of the human genome, is to use haplotypes 
to try to capture the correlation structure of SNPs in 
regions of little recombination. This approach can lead to 
analyses with fewer degrees of freedom, but this benefit 
is minimized when SNPs are ascertained through a tag-
ging strategy. Perhaps more importantly, haplotypes can 
capture the combined effects of tightly linked cis-acting 
causal variants61.

An immediate problem is that haplotypes are not 
observed; instead, they must be inferred and it can be 
hard to account for the uncertainty that arises in phase 
inference when assessing the overall significance of any 
finding. However, when LD between markers is high, the 
level of uncertainty is usually low.

Given haplotype assignments, the simplest analysis 
involves testing for independence of rows and columns 
in a 2 × k contingency table, where k denotes the number 
of distinct haplotypes62. Alternative approaches can be 
based on the estimated haplotype proportions among 
cases and controls, without an explicit haplotype assign-
ment for individuals63: the test compares the product of 
separate multinomial likelihoods for cases and controls 
with that obtained by combining cases and controls. 
One problem with both these approaches is reliance on 
assumptions of HWE and of near-additive disease risk. 
A different approach, which leads to a test with fewer 
degrees of freedom, is to look for an excess sharing of 
haplotypes among cases relative to controls64. More 
sophisticated haplotype-based analyses treat haplotypes 
as categorical variables in regression analyses65 or 

Figure 3 | Linear regression test of single-SNP 
associations with continuous outcomes. Values of a 
quantitative phenotype for three SNP genotypes, together 
with least-squares regression line. Note that here the line 
gives a predicted trait value for the rare homozygote (2) 
that exceeds the observed values, suggesting some 
deviation away from the assumption of linearity. Analysis of 
variance (ANOVA) does not require linearity of the trait 
means, at the cost of one more degree of freedom. Both 
tests also require the trait variance to be the same for each 
genotype: the graph is suggestive of decreasing variance 
with increasing genotype score, but there is not enough 
data to confirm this, and a mild deviation from this 
assumption is unlikely to have an important adverse effect 
on the validity of the test.
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procedure
Describes a class of statistical 
procedures that identify from 
a large set of variables (such 
as SNPs) a subset that 
provides a good fit to a chosen 
statistical model (for example, 
a regression model that 
predicts case–control status) 
by successively including or 
discarding terms from the 
model.

Shrinkage methods
In this approach a prior 
distribution for regression 
coefficients is concentrated at 
zero, so that in the absence 
of a strong signal of 
association, the corresponding 
regression coefficient is 
‘shrunk’ to zero. This mitigates 
the effects of too many 
variables (degrees of freedom) 
in the statistical model.

kinship, with or without an explicit subpopulation effect, 
has recently been found to outperform GC in many set-
tings56. Given large numbers of null SNPs, it becomes 
possible to make precise statements about the (distant) 
relatedness of individuals in a study so that a complete 
solution to the problem of population stratification — 
which has in the past been the cause of much concern 
— is probably not far away.

Tests of association: multiple SNPs
Given L SNPs genotyped in cases and controls at a 
candidate gene that is subject to little recombination, or 
perhaps an LD block within a gene, we might want to 
decide whether or not the gene is associated with the 
disease and/or, given that there is association, find the 
SNP(s) that are closest to the causal polymorphism(s).

Analysing SNPs one at a time can neglect information 
in their joint distribution. This is of little consequence in 
the two extreme cases: when SNPs are widely spaced so 
as to have little or no LD between them or when almost 
all SNPs are typed so that any causal variant is likely 
to be typed in the study. In practice, most studies have 
SNP densities between these two extremes, in which case 
multipoint association analyses have substantial advan-
tages over single-SNP analyses57. I first outline regression 
analyses of unphased SNP genotypes and then move on 
to haplotype-based analyses.

SNP-based logistic regression. Logistic regression analyses 
for L SNPs are a natural extension of the single-SNP anal-
yses that are discussed above: there is now a coefficient 
(β0, β1 or β2) for each SNP, leading to a general test with 
2L df. By constraining the coefficients, tests with L df can 
be obtained. For example, a test for additive effects at each 
SNP is obtained by requiring that each β1 = (β0 + β2) / 2. 
The corresponding score test, also with L df, is a generali-
zation of the Armitage test, and is related to the Hotelling 
T2 statistic56. Another test, with L+1 df, uses only 1 df to 
capture gene-wide dominance effects29.

Covariates such as sex, age or environmental expo-
sures are readily included. Similarly, interactions between 
SNPs can be included. This conveys little benefit, and can 
reduce power to detect an association, if there is a single 
underlying causal variant and little or no recombination 
between SNPs58, but it is potentially useful for investigating 
epistatic effects.

If the number of SNPs is large, tagging to eliminate 
near-redundant SNPs often increases power despite 
some loss of information. Alternatively, the problem 
of too many highly correlated SNPs in the model can 
be addressed using a stepwise selection procedure59 or 
Bayesian shrinkage methods60. However, problems can 
arise in assessing the significance of any chosen model.

Essentially the same issues arise for a continuous 
phenotype; the same sets of coefficients are appropriate 
but they are equated to the expected phenotype value 
rather than the logit of disease risk.

Haplotype-based methods. The multi-SNP analyses 
discussed above can suffer from problems that are 
associated with many predictors, some of which are highly 

correlated. A popular strategy, suggested by the block-
like structure of the human genome, is to use haplotypes 
to try to capture the correlation structure of SNPs in 
regions of little recombination. This approach can lead to 
analyses with fewer degrees of freedom, but this benefit 
is minimized when SNPs are ascertained through a tag-
ging strategy. Perhaps more importantly, haplotypes can 
capture the combined effects of tightly linked cis-acting 
causal variants61.

An immediate problem is that haplotypes are not 
observed; instead, they must be inferred and it can be 
hard to account for the uncertainty that arises in phase 
inference when assessing the overall significance of any 
finding. However, when LD between markers is high, the 
level of uncertainty is usually low.

Given haplotype assignments, the simplest analysis 
involves testing for independence of rows and columns 
in a 2 × k contingency table, where k denotes the number 
of distinct haplotypes62. Alternative approaches can be 
based on the estimated haplotype proportions among 
cases and controls, without an explicit haplotype assign-
ment for individuals63: the test compares the product of 
separate multinomial likelihoods for cases and controls 
with that obtained by combining cases and controls. 
One problem with both these approaches is reliance on 
assumptions of HWE and of near-additive disease risk. 
A different approach, which leads to a test with fewer 
degrees of freedom, is to look for an excess sharing of 
haplotypes among cases relative to controls64. More 
sophisticated haplotype-based analyses treat haplotypes 
as categorical variables in regression analyses65 or 

Figure 3 | Linear regression test of single-SNP 
associations with continuous outcomes. Values of a 
quantitative phenotype for three SNP genotypes, together 
with least-squares regression line. Note that here the line 
gives a predicted trait value for the rare homozygote (2) 
that exceeds the observed values, suggesting some 
deviation away from the assumption of linearity. Analysis of 
variance (ANOVA) does not require linearity of the trait 
means, at the cost of one more degree of freedom. Both 
tests also require the trait variance to be the same for each 
genotype: the graph is suggestive of decreasing variance 
with increasing genotype score, but there is not enough 
data to confirm this, and a mild deviation from this 
assumption is unlikely to have an important adverse effect 
on the validity of the test.

R E V I E W S

NATURE REVIEWS | GENETICS  VOLUME 7 | OCTOBER 2006 | 787

 F O C U S  O N  S TAT I S T I C A L  A N A LY S I S

m

Tuesday, February 21, 12



Linear regression

SNP genotype

Ph
en

ot
yp

ic
 s

co
re

0 1 2

4.5

4.0

3.5

3.0

2.5

2.0

Stepwise selection 
procedure
Describes a class of statistical 
procedures that identify from 
a large set of variables (such 
as SNPs) a subset that 
provides a good fit to a chosen 
statistical model (for example, 
a regression model that 
predicts case–control status) 
by successively including or 
discarding terms from the 
model.

Shrinkage methods
In this approach a prior 
distribution for regression 
coefficients is concentrated at 
zero, so that in the absence 
of a strong signal of 
association, the corresponding 
regression coefficient is 
‘shrunk’ to zero. This mitigates 
the effects of too many 
variables (degrees of freedom) 
in the statistical model.

kinship, with or without an explicit subpopulation effect, 
has recently been found to outperform GC in many set-
tings56. Given large numbers of null SNPs, it becomes 
possible to make precise statements about the (distant) 
relatedness of individuals in a study so that a complete 
solution to the problem of population stratification — 
which has in the past been the cause of much concern 
— is probably not far away.

Tests of association: multiple SNPs
Given L SNPs genotyped in cases and controls at a 
candidate gene that is subject to little recombination, or 
perhaps an LD block within a gene, we might want to 
decide whether or not the gene is associated with the 
disease and/or, given that there is association, find the 
SNP(s) that are closest to the causal polymorphism(s).

Analysing SNPs one at a time can neglect information 
in their joint distribution. This is of little consequence in 
the two extreme cases: when SNPs are widely spaced so 
as to have little or no LD between them or when almost 
all SNPs are typed so that any causal variant is likely 
to be typed in the study. In practice, most studies have 
SNP densities between these two extremes, in which case 
multipoint association analyses have substantial advan-
tages over single-SNP analyses57. I first outline regression 
analyses of unphased SNP genotypes and then move on 
to haplotype-based analyses.

SNP-based logistic regression. Logistic regression analyses 
for L SNPs are a natural extension of the single-SNP anal-
yses that are discussed above: there is now a coefficient 
(β0, β1 or β2) for each SNP, leading to a general test with 
2L df. By constraining the coefficients, tests with L df can 
be obtained. For example, a test for additive effects at each 
SNP is obtained by requiring that each β1 = (β0 + β2) / 2. 
The corresponding score test, also with L df, is a generali-
zation of the Armitage test, and is related to the Hotelling 
T2 statistic56. Another test, with L+1 df, uses only 1 df to 
capture gene-wide dominance effects29.

Covariates such as sex, age or environmental expo-
sures are readily included. Similarly, interactions between 
SNPs can be included. This conveys little benefit, and can 
reduce power to detect an association, if there is a single 
underlying causal variant and little or no recombination 
between SNPs58, but it is potentially useful for investigating 
epistatic effects.

If the number of SNPs is large, tagging to eliminate 
near-redundant SNPs often increases power despite 
some loss of information. Alternatively, the problem 
of too many highly correlated SNPs in the model can 
be addressed using a stepwise selection procedure59 or 
Bayesian shrinkage methods60. However, problems can 
arise in assessing the significance of any chosen model.

Essentially the same issues arise for a continuous 
phenotype; the same sets of coefficients are appropriate 
but they are equated to the expected phenotype value 
rather than the logit of disease risk.

Haplotype-based methods. The multi-SNP analyses 
discussed above can suffer from problems that are 
associated with many predictors, some of which are highly 

correlated. A popular strategy, suggested by the block-
like structure of the human genome, is to use haplotypes 
to try to capture the correlation structure of SNPs in 
regions of little recombination. This approach can lead to 
analyses with fewer degrees of freedom, but this benefit 
is minimized when SNPs are ascertained through a tag-
ging strategy. Perhaps more importantly, haplotypes can 
capture the combined effects of tightly linked cis-acting 
causal variants61.

An immediate problem is that haplotypes are not 
observed; instead, they must be inferred and it can be 
hard to account for the uncertainty that arises in phase 
inference when assessing the overall significance of any 
finding. However, when LD between markers is high, the 
level of uncertainty is usually low.

Given haplotype assignments, the simplest analysis 
involves testing for independence of rows and columns 
in a 2 × k contingency table, where k denotes the number 
of distinct haplotypes62. Alternative approaches can be 
based on the estimated haplotype proportions among 
cases and controls, without an explicit haplotype assign-
ment for individuals63: the test compares the product of 
separate multinomial likelihoods for cases and controls 
with that obtained by combining cases and controls. 
One problem with both these approaches is reliance on 
assumptions of HWE and of near-additive disease risk. 
A different approach, which leads to a test with fewer 
degrees of freedom, is to look for an excess sharing of 
haplotypes among cases relative to controls64. More 
sophisticated haplotype-based analyses treat haplotypes 
as categorical variables in regression analyses65 or 

Figure 3 | Linear regression test of single-SNP 
associations with continuous outcomes. Values of a 
quantitative phenotype for three SNP genotypes, together 
with least-squares regression line. Note that here the line 
gives a predicted trait value for the rare homozygote (2) 
that exceeds the observed values, suggesting some 
deviation away from the assumption of linearity. Analysis of 
variance (ANOVA) does not require linearity of the trait 
means, at the cost of one more degree of freedom. Both 
tests also require the trait variance to be the same for each 
genotype: the graph is suggestive of decreasing variance 
with increasing genotype score, but there is not enough 
data to confirm this, and a mild deviation from this 
assumption is unlikely to have an important adverse effect 
on the validity of the test.
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Describes a class of statistical 
procedures that identify from 
a large set of variables (such 
as SNPs) a subset that 
provides a good fit to a chosen 
statistical model (for example, 
a regression model that 
predicts case–control status) 
by successively including or 
discarding terms from the 
model.

Shrinkage methods
In this approach a prior 
distribution for regression 
coefficients is concentrated at 
zero, so that in the absence 
of a strong signal of 
association, the corresponding 
regression coefficient is 
‘shrunk’ to zero. This mitigates 
the effects of too many 
variables (degrees of freedom) 
in the statistical model.

kinship, with or without an explicit subpopulation effect, 
has recently been found to outperform GC in many set-
tings56. Given large numbers of null SNPs, it becomes 
possible to make precise statements about the (distant) 
relatedness of individuals in a study so that a complete 
solution to the problem of population stratification — 
which has in the past been the cause of much concern 
— is probably not far away.

Tests of association: multiple SNPs
Given L SNPs genotyped in cases and controls at a 
candidate gene that is subject to little recombination, or 
perhaps an LD block within a gene, we might want to 
decide whether or not the gene is associated with the 
disease and/or, given that there is association, find the 
SNP(s) that are closest to the causal polymorphism(s).

Analysing SNPs one at a time can neglect information 
in their joint distribution. This is of little consequence in 
the two extreme cases: when SNPs are widely spaced so 
as to have little or no LD between them or when almost 
all SNPs are typed so that any causal variant is likely 
to be typed in the study. In practice, most studies have 
SNP densities between these two extremes, in which case 
multipoint association analyses have substantial advan-
tages over single-SNP analyses57. I first outline regression 
analyses of unphased SNP genotypes and then move on 
to haplotype-based analyses.

SNP-based logistic regression. Logistic regression analyses 
for L SNPs are a natural extension of the single-SNP anal-
yses that are discussed above: there is now a coefficient 
(β0, β1 or β2) for each SNP, leading to a general test with 
2L df. By constraining the coefficients, tests with L df can 
be obtained. For example, a test for additive effects at each 
SNP is obtained by requiring that each β1 = (β0 + β2) / 2. 
The corresponding score test, also with L df, is a generali-
zation of the Armitage test, and is related to the Hotelling 
T2 statistic56. Another test, with L+1 df, uses only 1 df to 
capture gene-wide dominance effects29.

Covariates such as sex, age or environmental expo-
sures are readily included. Similarly, interactions between 
SNPs can be included. This conveys little benefit, and can 
reduce power to detect an association, if there is a single 
underlying causal variant and little or no recombination 
between SNPs58, but it is potentially useful for investigating 
epistatic effects.

If the number of SNPs is large, tagging to eliminate 
near-redundant SNPs often increases power despite 
some loss of information. Alternatively, the problem 
of too many highly correlated SNPs in the model can 
be addressed using a stepwise selection procedure59 or 
Bayesian shrinkage methods60. However, problems can 
arise in assessing the significance of any chosen model.

Essentially the same issues arise for a continuous 
phenotype; the same sets of coefficients are appropriate 
but they are equated to the expected phenotype value 
rather than the logit of disease risk.

Haplotype-based methods. The multi-SNP analyses 
discussed above can suffer from problems that are 
associated with many predictors, some of which are highly 

correlated. A popular strategy, suggested by the block-
like structure of the human genome, is to use haplotypes 
to try to capture the correlation structure of SNPs in 
regions of little recombination. This approach can lead to 
analyses with fewer degrees of freedom, but this benefit 
is minimized when SNPs are ascertained through a tag-
ging strategy. Perhaps more importantly, haplotypes can 
capture the combined effects of tightly linked cis-acting 
causal variants61.

An immediate problem is that haplotypes are not 
observed; instead, they must be inferred and it can be 
hard to account for the uncertainty that arises in phase 
inference when assessing the overall significance of any 
finding. However, when LD between markers is high, the 
level of uncertainty is usually low.

Given haplotype assignments, the simplest analysis 
involves testing for independence of rows and columns 
in a 2 × k contingency table, where k denotes the number 
of distinct haplotypes62. Alternative approaches can be 
based on the estimated haplotype proportions among 
cases and controls, without an explicit haplotype assign-
ment for individuals63: the test compares the product of 
separate multinomial likelihoods for cases and controls 
with that obtained by combining cases and controls. 
One problem with both these approaches is reliance on 
assumptions of HWE and of near-additive disease risk. 
A different approach, which leads to a test with fewer 
degrees of freedom, is to look for an excess sharing of 
haplotypes among cases relative to controls64. More 
sophisticated haplotype-based analyses treat haplotypes 
as categorical variables in regression analyses65 or 

Figure 3 | Linear regression test of single-SNP 
associations with continuous outcomes. Values of a 
quantitative phenotype for three SNP genotypes, together 
with least-squares regression line. Note that here the line 
gives a predicted trait value for the rare homozygote (2) 
that exceeds the observed values, suggesting some 
deviation away from the assumption of linearity. Analysis of 
variance (ANOVA) does not require linearity of the trait 
means, at the cost of one more degree of freedom. Both 
tests also require the trait variance to be the same for each 
genotype: the graph is suggestive of decreasing variance 
with increasing genotype score, but there is not enough 
data to confirm this, and a mild deviation from this 
assumption is unlikely to have an important adverse effect 
on the validity of the test.
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by successively including or 
discarding terms from the 
model.

Shrinkage methods
In this approach a prior 
distribution for regression 
coefficients is concentrated at 
zero, so that in the absence 
of a strong signal of 
association, the corresponding 
regression coefficient is 
‘shrunk’ to zero. This mitigates 
the effects of too many 
variables (degrees of freedom) 
in the statistical model.

kinship, with or without an explicit subpopulation effect, 
has recently been found to outperform GC in many set-
tings56. Given large numbers of null SNPs, it becomes 
possible to make precise statements about the (distant) 
relatedness of individuals in a study so that a complete 
solution to the problem of population stratification — 
which has in the past been the cause of much concern 
— is probably not far away.

Tests of association: multiple SNPs
Given L SNPs genotyped in cases and controls at a 
candidate gene that is subject to little recombination, or 
perhaps an LD block within a gene, we might want to 
decide whether or not the gene is associated with the 
disease and/or, given that there is association, find the 
SNP(s) that are closest to the causal polymorphism(s).

Analysing SNPs one at a time can neglect information 
in their joint distribution. This is of little consequence in 
the two extreme cases: when SNPs are widely spaced so 
as to have little or no LD between them or when almost 
all SNPs are typed so that any causal variant is likely 
to be typed in the study. In practice, most studies have 
SNP densities between these two extremes, in which case 
multipoint association analyses have substantial advan-
tages over single-SNP analyses57. I first outline regression 
analyses of unphased SNP genotypes and then move on 
to haplotype-based analyses.

SNP-based logistic regression. Logistic regression analyses 
for L SNPs are a natural extension of the single-SNP anal-
yses that are discussed above: there is now a coefficient 
(β0, β1 or β2) for each SNP, leading to a general test with 
2L df. By constraining the coefficients, tests with L df can 
be obtained. For example, a test for additive effects at each 
SNP is obtained by requiring that each β1 = (β0 + β2) / 2. 
The corresponding score test, also with L df, is a generali-
zation of the Armitage test, and is related to the Hotelling 
T2 statistic56. Another test, with L+1 df, uses only 1 df to 
capture gene-wide dominance effects29.

Covariates such as sex, age or environmental expo-
sures are readily included. Similarly, interactions between 
SNPs can be included. This conveys little benefit, and can 
reduce power to detect an association, if there is a single 
underlying causal variant and little or no recombination 
between SNPs58, but it is potentially useful for investigating 
epistatic effects.

If the number of SNPs is large, tagging to eliminate 
near-redundant SNPs often increases power despite 
some loss of information. Alternatively, the problem 
of too many highly correlated SNPs in the model can 
be addressed using a stepwise selection procedure59 or 
Bayesian shrinkage methods60. However, problems can 
arise in assessing the significance of any chosen model.

Essentially the same issues arise for a continuous 
phenotype; the same sets of coefficients are appropriate 
but they are equated to the expected phenotype value 
rather than the logit of disease risk.

Haplotype-based methods. The multi-SNP analyses 
discussed above can suffer from problems that are 
associated with many predictors, some of which are highly 

correlated. A popular strategy, suggested by the block-
like structure of the human genome, is to use haplotypes 
to try to capture the correlation structure of SNPs in 
regions of little recombination. This approach can lead to 
analyses with fewer degrees of freedom, but this benefit 
is minimized when SNPs are ascertained through a tag-
ging strategy. Perhaps more importantly, haplotypes can 
capture the combined effects of tightly linked cis-acting 
causal variants61.

An immediate problem is that haplotypes are not 
observed; instead, they must be inferred and it can be 
hard to account for the uncertainty that arises in phase 
inference when assessing the overall significance of any 
finding. However, when LD between markers is high, the 
level of uncertainty is usually low.

Given haplotype assignments, the simplest analysis 
involves testing for independence of rows and columns 
in a 2 × k contingency table, where k denotes the number 
of distinct haplotypes62. Alternative approaches can be 
based on the estimated haplotype proportions among 
cases and controls, without an explicit haplotype assign-
ment for individuals63: the test compares the product of 
separate multinomial likelihoods for cases and controls 
with that obtained by combining cases and controls. 
One problem with both these approaches is reliance on 
assumptions of HWE and of near-additive disease risk. 
A different approach, which leads to a test with fewer 
degrees of freedom, is to look for an excess sharing of 
haplotypes among cases relative to controls64. More 
sophisticated haplotype-based analyses treat haplotypes 
as categorical variables in regression analyses65 or 

Figure 3 | Linear regression test of single-SNP 
associations with continuous outcomes. Values of a 
quantitative phenotype for three SNP genotypes, together 
with least-squares regression line. Note that here the line 
gives a predicted trait value for the rare homozygote (2) 
that exceeds the observed values, suggesting some 
deviation away from the assumption of linearity. Analysis of 
variance (ANOVA) does not require linearity of the trait 
means, at the cost of one more degree of freedom. Both 
tests also require the trait variance to be the same for each 
genotype: the graph is suggestive of decreasing variance 
with increasing genotype score, but there is not enough 
data to confirm this, and a mild deviation from this 
assumption is unlikely to have an important adverse effect 
on the validity of the test.
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Significance testing

The estimate of bg and its standard error 
sg are computed using standard methods 
Under the null hypothesis, the test 
statistic T2=(bg/sg)2 is distributed as chi-
squared with 1 degree of freedom (1df)
For specific T2 we know the p-value: the 
probability that bg deviates from zero 
purely by chance
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As a result...
Supplementary Figure 1: Manhattan‐plots for total cholesterol (TC), high‐density lipoprotein (HDL), low‐density 

lipoprotein (LDL) and triglycerides (TG) 
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Multiple testing

• Hence nominal single test p-value 
corresponding to experiment-wise type 
1 error rate of 5% is << 0.05

• Usual practice is to use a fixed 
threshold of 5x10-8

• Note: this threshold is defined for 
GWAS of common variants in a 
population of European ancestry
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Non-additive models

... can be specified using linear model
Yi = m + b1 I(gi=1) + b2 I(gi=2) + ei

where I(gi=k) is an indicator variable 
taking the value of 1 if gi is equal to k and 
zero otherwise
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Non-additive models

In other words, the expected value of 
the trait for the genotype

• AA (gi=0) is m

• AB (gi=1) is m + b1

• BB (gi=2) is m + b2

By varying m, b1 and b2, any three 
genotypic means can be fit
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Stepwise selection 
procedure
Describes a class of statistical 
procedures that identify from 
a large set of variables (such 
as SNPs) a subset that 
provides a good fit to a chosen 
statistical model (for example, 
a regression model that 
predicts case–control status) 
by successively including or 
discarding terms from the 
model.

Shrinkage methods
In this approach a prior 
distribution for regression 
coefficients is concentrated at 
zero, so that in the absence 
of a strong signal of 
association, the corresponding 
regression coefficient is 
‘shrunk’ to zero. This mitigates 
the effects of too many 
variables (degrees of freedom) 
in the statistical model.

kinship, with or without an explicit subpopulation effect, 
has recently been found to outperform GC in many set-
tings56. Given large numbers of null SNPs, it becomes 
possible to make precise statements about the (distant) 
relatedness of individuals in a study so that a complete 
solution to the problem of population stratification — 
which has in the past been the cause of much concern 
— is probably not far away.

Tests of association: multiple SNPs
Given L SNPs genotyped in cases and controls at a 
candidate gene that is subject to little recombination, or 
perhaps an LD block within a gene, we might want to 
decide whether or not the gene is associated with the 
disease and/or, given that there is association, find the 
SNP(s) that are closest to the causal polymorphism(s).

Analysing SNPs one at a time can neglect information 
in their joint distribution. This is of little consequence in 
the two extreme cases: when SNPs are widely spaced so 
as to have little or no LD between them or when almost 
all SNPs are typed so that any causal variant is likely 
to be typed in the study. In practice, most studies have 
SNP densities between these two extremes, in which case 
multipoint association analyses have substantial advan-
tages over single-SNP analyses57. I first outline regression 
analyses of unphased SNP genotypes and then move on 
to haplotype-based analyses.

SNP-based logistic regression. Logistic regression analyses 
for L SNPs are a natural extension of the single-SNP anal-
yses that are discussed above: there is now a coefficient 
(β0, β1 or β2) for each SNP, leading to a general test with 
2L df. By constraining the coefficients, tests with L df can 
be obtained. For example, a test for additive effects at each 
SNP is obtained by requiring that each β1 = (β0 + β2) / 2. 
The corresponding score test, also with L df, is a generali-
zation of the Armitage test, and is related to the Hotelling 
T2 statistic56. Another test, with L+1 df, uses only 1 df to 
capture gene-wide dominance effects29.

Covariates such as sex, age or environmental expo-
sures are readily included. Similarly, interactions between 
SNPs can be included. This conveys little benefit, and can 
reduce power to detect an association, if there is a single 
underlying causal variant and little or no recombination 
between SNPs58, but it is potentially useful for investigating 
epistatic effects.

If the number of SNPs is large, tagging to eliminate 
near-redundant SNPs often increases power despite 
some loss of information. Alternatively, the problem 
of too many highly correlated SNPs in the model can 
be addressed using a stepwise selection procedure59 or 
Bayesian shrinkage methods60. However, problems can 
arise in assessing the significance of any chosen model.

Essentially the same issues arise for a continuous 
phenotype; the same sets of coefficients are appropriate 
but they are equated to the expected phenotype value 
rather than the logit of disease risk.

Haplotype-based methods. The multi-SNP analyses 
discussed above can suffer from problems that are 
associated with many predictors, some of which are highly 

correlated. A popular strategy, suggested by the block-
like structure of the human genome, is to use haplotypes 
to try to capture the correlation structure of SNPs in 
regions of little recombination. This approach can lead to 
analyses with fewer degrees of freedom, but this benefit 
is minimized when SNPs are ascertained through a tag-
ging strategy. Perhaps more importantly, haplotypes can 
capture the combined effects of tightly linked cis-acting 
causal variants61.

An immediate problem is that haplotypes are not 
observed; instead, they must be inferred and it can be 
hard to account for the uncertainty that arises in phase 
inference when assessing the overall significance of any 
finding. However, when LD between markers is high, the 
level of uncertainty is usually low.

Given haplotype assignments, the simplest analysis 
involves testing for independence of rows and columns 
in a 2 × k contingency table, where k denotes the number 
of distinct haplotypes62. Alternative approaches can be 
based on the estimated haplotype proportions among 
cases and controls, without an explicit haplotype assign-
ment for individuals63: the test compares the product of 
separate multinomial likelihoods for cases and controls 
with that obtained by combining cases and controls. 
One problem with both these approaches is reliance on 
assumptions of HWE and of near-additive disease risk. 
A different approach, which leads to a test with fewer 
degrees of freedom, is to look for an excess sharing of 
haplotypes among cases relative to controls64. More 
sophisticated haplotype-based analyses treat haplotypes 
as categorical variables in regression analyses65 or 

Figure 3 | Linear regression test of single-SNP 
associations with continuous outcomes. Values of a 
quantitative phenotype for three SNP genotypes, together 
with least-squares regression line. Note that here the line 
gives a predicted trait value for the rare homozygote (2) 
that exceeds the observed values, suggesting some 
deviation away from the assumption of linearity. Analysis of 
variance (ANOVA) does not require linearity of the trait 
means, at the cost of one more degree of freedom. Both 
tests also require the trait variance to be the same for each 
genotype: the graph is suggestive of decreasing variance 
with increasing genotype score, but there is not enough 
data to confirm this, and a mild deviation from this 
assumption is unlikely to have an important adverse effect 
on the validity of the test.
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Stepwise selection 
procedure
Describes a class of statistical 
procedures that identify from 
a large set of variables (such 
as SNPs) a subset that 
provides a good fit to a chosen 
statistical model (for example, 
a regression model that 
predicts case–control status) 
by successively including or 
discarding terms from the 
model.

Shrinkage methods
In this approach a prior 
distribution for regression 
coefficients is concentrated at 
zero, so that in the absence 
of a strong signal of 
association, the corresponding 
regression coefficient is 
‘shrunk’ to zero. This mitigates 
the effects of too many 
variables (degrees of freedom) 
in the statistical model.

kinship, with or without an explicit subpopulation effect, 
has recently been found to outperform GC in many set-
tings56. Given large numbers of null SNPs, it becomes 
possible to make precise statements about the (distant) 
relatedness of individuals in a study so that a complete 
solution to the problem of population stratification — 
which has in the past been the cause of much concern 
— is probably not far away.

Tests of association: multiple SNPs
Given L SNPs genotyped in cases and controls at a 
candidate gene that is subject to little recombination, or 
perhaps an LD block within a gene, we might want to 
decide whether or not the gene is associated with the 
disease and/or, given that there is association, find the 
SNP(s) that are closest to the causal polymorphism(s).

Analysing SNPs one at a time can neglect information 
in their joint distribution. This is of little consequence in 
the two extreme cases: when SNPs are widely spaced so 
as to have little or no LD between them or when almost 
all SNPs are typed so that any causal variant is likely 
to be typed in the study. In practice, most studies have 
SNP densities between these two extremes, in which case 
multipoint association analyses have substantial advan-
tages over single-SNP analyses57. I first outline regression 
analyses of unphased SNP genotypes and then move on 
to haplotype-based analyses.

SNP-based logistic regression. Logistic regression analyses 
for L SNPs are a natural extension of the single-SNP anal-
yses that are discussed above: there is now a coefficient 
(β0, β1 or β2) for each SNP, leading to a general test with 
2L df. By constraining the coefficients, tests with L df can 
be obtained. For example, a test for additive effects at each 
SNP is obtained by requiring that each β1 = (β0 + β2) / 2. 
The corresponding score test, also with L df, is a generali-
zation of the Armitage test, and is related to the Hotelling 
T2 statistic56. Another test, with L+1 df, uses only 1 df to 
capture gene-wide dominance effects29.

Covariates such as sex, age or environmental expo-
sures are readily included. Similarly, interactions between 
SNPs can be included. This conveys little benefit, and can 
reduce power to detect an association, if there is a single 
underlying causal variant and little or no recombination 
between SNPs58, but it is potentially useful for investigating 
epistatic effects.

If the number of SNPs is large, tagging to eliminate 
near-redundant SNPs often increases power despite 
some loss of information. Alternatively, the problem 
of too many highly correlated SNPs in the model can 
be addressed using a stepwise selection procedure59 or 
Bayesian shrinkage methods60. However, problems can 
arise in assessing the significance of any chosen model.

Essentially the same issues arise for a continuous 
phenotype; the same sets of coefficients are appropriate 
but they are equated to the expected phenotype value 
rather than the logit of disease risk.

Haplotype-based methods. The multi-SNP analyses 
discussed above can suffer from problems that are 
associated with many predictors, some of which are highly 

correlated. A popular strategy, suggested by the block-
like structure of the human genome, is to use haplotypes 
to try to capture the correlation structure of SNPs in 
regions of little recombination. This approach can lead to 
analyses with fewer degrees of freedom, but this benefit 
is minimized when SNPs are ascertained through a tag-
ging strategy. Perhaps more importantly, haplotypes can 
capture the combined effects of tightly linked cis-acting 
causal variants61.

An immediate problem is that haplotypes are not 
observed; instead, they must be inferred and it can be 
hard to account for the uncertainty that arises in phase 
inference when assessing the overall significance of any 
finding. However, when LD between markers is high, the 
level of uncertainty is usually low.

Given haplotype assignments, the simplest analysis 
involves testing for independence of rows and columns 
in a 2 × k contingency table, where k denotes the number 
of distinct haplotypes62. Alternative approaches can be 
based on the estimated haplotype proportions among 
cases and controls, without an explicit haplotype assign-
ment for individuals63: the test compares the product of 
separate multinomial likelihoods for cases and controls 
with that obtained by combining cases and controls. 
One problem with both these approaches is reliance on 
assumptions of HWE and of near-additive disease risk. 
A different approach, which leads to a test with fewer 
degrees of freedom, is to look for an excess sharing of 
haplotypes among cases relative to controls64. More 
sophisticated haplotype-based analyses treat haplotypes 
as categorical variables in regression analyses65 or 

Figure 3 | Linear regression test of single-SNP 
associations with continuous outcomes. Values of a 
quantitative phenotype for three SNP genotypes, together 
with least-squares regression line. Note that here the line 
gives a predicted trait value for the rare homozygote (2) 
that exceeds the observed values, suggesting some 
deviation away from the assumption of linearity. Analysis of 
variance (ANOVA) does not require linearity of the trait 
means, at the cost of one more degree of freedom. Both 
tests also require the trait variance to be the same for each 
genotype: the graph is suggestive of decreasing variance 
with increasing genotype score, but there is not enough 
data to confirm this, and a mild deviation from this 
assumption is unlikely to have an important adverse effect 
on the validity of the test.
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Stepwise selection 
procedure
Describes a class of statistical 
procedures that identify from 
a large set of variables (such 
as SNPs) a subset that 
provides a good fit to a chosen 
statistical model (for example, 
a regression model that 
predicts case–control status) 
by successively including or 
discarding terms from the 
model.

Shrinkage methods
In this approach a prior 
distribution for regression 
coefficients is concentrated at 
zero, so that in the absence 
of a strong signal of 
association, the corresponding 
regression coefficient is 
‘shrunk’ to zero. This mitigates 
the effects of too many 
variables (degrees of freedom) 
in the statistical model.

kinship, with or without an explicit subpopulation effect, 
has recently been found to outperform GC in many set-
tings56. Given large numbers of null SNPs, it becomes 
possible to make precise statements about the (distant) 
relatedness of individuals in a study so that a complete 
solution to the problem of population stratification — 
which has in the past been the cause of much concern 
— is probably not far away.

Tests of association: multiple SNPs
Given L SNPs genotyped in cases and controls at a 
candidate gene that is subject to little recombination, or 
perhaps an LD block within a gene, we might want to 
decide whether or not the gene is associated with the 
disease and/or, given that there is association, find the 
SNP(s) that are closest to the causal polymorphism(s).

Analysing SNPs one at a time can neglect information 
in their joint distribution. This is of little consequence in 
the two extreme cases: when SNPs are widely spaced so 
as to have little or no LD between them or when almost 
all SNPs are typed so that any causal variant is likely 
to be typed in the study. In practice, most studies have 
SNP densities between these two extremes, in which case 
multipoint association analyses have substantial advan-
tages over single-SNP analyses57. I first outline regression 
analyses of unphased SNP genotypes and then move on 
to haplotype-based analyses.

SNP-based logistic regression. Logistic regression analyses 
for L SNPs are a natural extension of the single-SNP anal-
yses that are discussed above: there is now a coefficient 
(β0, β1 or β2) for each SNP, leading to a general test with 
2L df. By constraining the coefficients, tests with L df can 
be obtained. For example, a test for additive effects at each 
SNP is obtained by requiring that each β1 = (β0 + β2) / 2. 
The corresponding score test, also with L df, is a generali-
zation of the Armitage test, and is related to the Hotelling 
T2 statistic56. Another test, with L+1 df, uses only 1 df to 
capture gene-wide dominance effects29.

Covariates such as sex, age or environmental expo-
sures are readily included. Similarly, interactions between 
SNPs can be included. This conveys little benefit, and can 
reduce power to detect an association, if there is a single 
underlying causal variant and little or no recombination 
between SNPs58, but it is potentially useful for investigating 
epistatic effects.

If the number of SNPs is large, tagging to eliminate 
near-redundant SNPs often increases power despite 
some loss of information. Alternatively, the problem 
of too many highly correlated SNPs in the model can 
be addressed using a stepwise selection procedure59 or 
Bayesian shrinkage methods60. However, problems can 
arise in assessing the significance of any chosen model.

Essentially the same issues arise for a continuous 
phenotype; the same sets of coefficients are appropriate 
but they are equated to the expected phenotype value 
rather than the logit of disease risk.

Haplotype-based methods. The multi-SNP analyses 
discussed above can suffer from problems that are 
associated with many predictors, some of which are highly 

correlated. A popular strategy, suggested by the block-
like structure of the human genome, is to use haplotypes 
to try to capture the correlation structure of SNPs in 
regions of little recombination. This approach can lead to 
analyses with fewer degrees of freedom, but this benefit 
is minimized when SNPs are ascertained through a tag-
ging strategy. Perhaps more importantly, haplotypes can 
capture the combined effects of tightly linked cis-acting 
causal variants61.

An immediate problem is that haplotypes are not 
observed; instead, they must be inferred and it can be 
hard to account for the uncertainty that arises in phase 
inference when assessing the overall significance of any 
finding. However, when LD between markers is high, the 
level of uncertainty is usually low.

Given haplotype assignments, the simplest analysis 
involves testing for independence of rows and columns 
in a 2 × k contingency table, where k denotes the number 
of distinct haplotypes62. Alternative approaches can be 
based on the estimated haplotype proportions among 
cases and controls, without an explicit haplotype assign-
ment for individuals63: the test compares the product of 
separate multinomial likelihoods for cases and controls 
with that obtained by combining cases and controls. 
One problem with both these approaches is reliance on 
assumptions of HWE and of near-additive disease risk. 
A different approach, which leads to a test with fewer 
degrees of freedom, is to look for an excess sharing of 
haplotypes among cases relative to controls64. More 
sophisticated haplotype-based analyses treat haplotypes 
as categorical variables in regression analyses65 or 

Figure 3 | Linear regression test of single-SNP 
associations with continuous outcomes. Values of a 
quantitative phenotype for three SNP genotypes, together 
with least-squares regression line. Note that here the line 
gives a predicted trait value for the rare homozygote (2) 
that exceeds the observed values, suggesting some 
deviation away from the assumption of linearity. Analysis of 
variance (ANOVA) does not require linearity of the trait 
means, at the cost of one more degree of freedom. Both 
tests also require the trait variance to be the same for each 
genotype: the graph is suggestive of decreasing variance 
with increasing genotype score, but there is not enough 
data to confirm this, and a mild deviation from this 
assumption is unlikely to have an important adverse effect 
on the validity of the test.
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Stepwise selection 
procedure
Describes a class of statistical 
procedures that identify from 
a large set of variables (such 
as SNPs) a subset that 
provides a good fit to a chosen 
statistical model (for example, 
a regression model that 
predicts case–control status) 
by successively including or 
discarding terms from the 
model.

Shrinkage methods
In this approach a prior 
distribution for regression 
coefficients is concentrated at 
zero, so that in the absence 
of a strong signal of 
association, the corresponding 
regression coefficient is 
‘shrunk’ to zero. This mitigates 
the effects of too many 
variables (degrees of freedom) 
in the statistical model.

kinship, with or without an explicit subpopulation effect, 
has recently been found to outperform GC in many set-
tings56. Given large numbers of null SNPs, it becomes 
possible to make precise statements about the (distant) 
relatedness of individuals in a study so that a complete 
solution to the problem of population stratification — 
which has in the past been the cause of much concern 
— is probably not far away.

Tests of association: multiple SNPs
Given L SNPs genotyped in cases and controls at a 
candidate gene that is subject to little recombination, or 
perhaps an LD block within a gene, we might want to 
decide whether or not the gene is associated with the 
disease and/or, given that there is association, find the 
SNP(s) that are closest to the causal polymorphism(s).

Analysing SNPs one at a time can neglect information 
in their joint distribution. This is of little consequence in 
the two extreme cases: when SNPs are widely spaced so 
as to have little or no LD between them or when almost 
all SNPs are typed so that any causal variant is likely 
to be typed in the study. In practice, most studies have 
SNP densities between these two extremes, in which case 
multipoint association analyses have substantial advan-
tages over single-SNP analyses57. I first outline regression 
analyses of unphased SNP genotypes and then move on 
to haplotype-based analyses.

SNP-based logistic regression. Logistic regression analyses 
for L SNPs are a natural extension of the single-SNP anal-
yses that are discussed above: there is now a coefficient 
(β0, β1 or β2) for each SNP, leading to a general test with 
2L df. By constraining the coefficients, tests with L df can 
be obtained. For example, a test for additive effects at each 
SNP is obtained by requiring that each β1 = (β0 + β2) / 2. 
The corresponding score test, also with L df, is a generali-
zation of the Armitage test, and is related to the Hotelling 
T2 statistic56. Another test, with L+1 df, uses only 1 df to 
capture gene-wide dominance effects29.

Covariates such as sex, age or environmental expo-
sures are readily included. Similarly, interactions between 
SNPs can be included. This conveys little benefit, and can 
reduce power to detect an association, if there is a single 
underlying causal variant and little or no recombination 
between SNPs58, but it is potentially useful for investigating 
epistatic effects.

If the number of SNPs is large, tagging to eliminate 
near-redundant SNPs often increases power despite 
some loss of information. Alternatively, the problem 
of too many highly correlated SNPs in the model can 
be addressed using a stepwise selection procedure59 or 
Bayesian shrinkage methods60. However, problems can 
arise in assessing the significance of any chosen model.

Essentially the same issues arise for a continuous 
phenotype; the same sets of coefficients are appropriate 
but they are equated to the expected phenotype value 
rather than the logit of disease risk.

Haplotype-based methods. The multi-SNP analyses 
discussed above can suffer from problems that are 
associated with many predictors, some of which are highly 

correlated. A popular strategy, suggested by the block-
like structure of the human genome, is to use haplotypes 
to try to capture the correlation structure of SNPs in 
regions of little recombination. This approach can lead to 
analyses with fewer degrees of freedom, but this benefit 
is minimized when SNPs are ascertained through a tag-
ging strategy. Perhaps more importantly, haplotypes can 
capture the combined effects of tightly linked cis-acting 
causal variants61.

An immediate problem is that haplotypes are not 
observed; instead, they must be inferred and it can be 
hard to account for the uncertainty that arises in phase 
inference when assessing the overall significance of any 
finding. However, when LD between markers is high, the 
level of uncertainty is usually low.

Given haplotype assignments, the simplest analysis 
involves testing for independence of rows and columns 
in a 2 × k contingency table, where k denotes the number 
of distinct haplotypes62. Alternative approaches can be 
based on the estimated haplotype proportions among 
cases and controls, without an explicit haplotype assign-
ment for individuals63: the test compares the product of 
separate multinomial likelihoods for cases and controls 
with that obtained by combining cases and controls. 
One problem with both these approaches is reliance on 
assumptions of HWE and of near-additive disease risk. 
A different approach, which leads to a test with fewer 
degrees of freedom, is to look for an excess sharing of 
haplotypes among cases relative to controls64. More 
sophisticated haplotype-based analyses treat haplotypes 
as categorical variables in regression analyses65 or 

Figure 3 | Linear regression test of single-SNP 
associations with continuous outcomes. Values of a 
quantitative phenotype for three SNP genotypes, together 
with least-squares regression line. Note that here the line 
gives a predicted trait value for the rare homozygote (2) 
that exceeds the observed values, suggesting some 
deviation away from the assumption of linearity. Analysis of 
variance (ANOVA) does not require linearity of the trait 
means, at the cost of one more degree of freedom. Both 
tests also require the trait variance to be the same for each 
genotype: the graph is suggestive of decreasing variance 
with increasing genotype score, but there is not enough 
data to confirm this, and a mild deviation from this 
assumption is unlikely to have an important adverse effect 
on the validity of the test.
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Stepwise selection 
procedure
Describes a class of statistical 
procedures that identify from 
a large set of variables (such 
as SNPs) a subset that 
provides a good fit to a chosen 
statistical model (for example, 
a regression model that 
predicts case–control status) 
by successively including or 
discarding terms from the 
model.

Shrinkage methods
In this approach a prior 
distribution for regression 
coefficients is concentrated at 
zero, so that in the absence 
of a strong signal of 
association, the corresponding 
regression coefficient is 
‘shrunk’ to zero. This mitigates 
the effects of too many 
variables (degrees of freedom) 
in the statistical model.

kinship, with or without an explicit subpopulation effect, 
has recently been found to outperform GC in many set-
tings56. Given large numbers of null SNPs, it becomes 
possible to make precise statements about the (distant) 
relatedness of individuals in a study so that a complete 
solution to the problem of population stratification — 
which has in the past been the cause of much concern 
— is probably not far away.

Tests of association: multiple SNPs
Given L SNPs genotyped in cases and controls at a 
candidate gene that is subject to little recombination, or 
perhaps an LD block within a gene, we might want to 
decide whether or not the gene is associated with the 
disease and/or, given that there is association, find the 
SNP(s) that are closest to the causal polymorphism(s).

Analysing SNPs one at a time can neglect information 
in their joint distribution. This is of little consequence in 
the two extreme cases: when SNPs are widely spaced so 
as to have little or no LD between them or when almost 
all SNPs are typed so that any causal variant is likely 
to be typed in the study. In practice, most studies have 
SNP densities between these two extremes, in which case 
multipoint association analyses have substantial advan-
tages over single-SNP analyses57. I first outline regression 
analyses of unphased SNP genotypes and then move on 
to haplotype-based analyses.

SNP-based logistic regression. Logistic regression analyses 
for L SNPs are a natural extension of the single-SNP anal-
yses that are discussed above: there is now a coefficient 
(β0, β1 or β2) for each SNP, leading to a general test with 
2L df. By constraining the coefficients, tests with L df can 
be obtained. For example, a test for additive effects at each 
SNP is obtained by requiring that each β1 = (β0 + β2) / 2. 
The corresponding score test, also with L df, is a generali-
zation of the Armitage test, and is related to the Hotelling 
T2 statistic56. Another test, with L+1 df, uses only 1 df to 
capture gene-wide dominance effects29.

Covariates such as sex, age or environmental expo-
sures are readily included. Similarly, interactions between 
SNPs can be included. This conveys little benefit, and can 
reduce power to detect an association, if there is a single 
underlying causal variant and little or no recombination 
between SNPs58, but it is potentially useful for investigating 
epistatic effects.

If the number of SNPs is large, tagging to eliminate 
near-redundant SNPs often increases power despite 
some loss of information. Alternatively, the problem 
of too many highly correlated SNPs in the model can 
be addressed using a stepwise selection procedure59 or 
Bayesian shrinkage methods60. However, problems can 
arise in assessing the significance of any chosen model.

Essentially the same issues arise for a continuous 
phenotype; the same sets of coefficients are appropriate 
but they are equated to the expected phenotype value 
rather than the logit of disease risk.

Haplotype-based methods. The multi-SNP analyses 
discussed above can suffer from problems that are 
associated with many predictors, some of which are highly 

correlated. A popular strategy, suggested by the block-
like structure of the human genome, is to use haplotypes 
to try to capture the correlation structure of SNPs in 
regions of little recombination. This approach can lead to 
analyses with fewer degrees of freedom, but this benefit 
is minimized when SNPs are ascertained through a tag-
ging strategy. Perhaps more importantly, haplotypes can 
capture the combined effects of tightly linked cis-acting 
causal variants61.

An immediate problem is that haplotypes are not 
observed; instead, they must be inferred and it can be 
hard to account for the uncertainty that arises in phase 
inference when assessing the overall significance of any 
finding. However, when LD between markers is high, the 
level of uncertainty is usually low.

Given haplotype assignments, the simplest analysis 
involves testing for independence of rows and columns 
in a 2 × k contingency table, where k denotes the number 
of distinct haplotypes62. Alternative approaches can be 
based on the estimated haplotype proportions among 
cases and controls, without an explicit haplotype assign-
ment for individuals63: the test compares the product of 
separate multinomial likelihoods for cases and controls 
with that obtained by combining cases and controls. 
One problem with both these approaches is reliance on 
assumptions of HWE and of near-additive disease risk. 
A different approach, which leads to a test with fewer 
degrees of freedom, is to look for an excess sharing of 
haplotypes among cases relative to controls64. More 
sophisticated haplotype-based analyses treat haplotypes 
as categorical variables in regression analyses65 or 

Figure 3 | Linear regression test of single-SNP 
associations with continuous outcomes. Values of a 
quantitative phenotype for three SNP genotypes, together 
with least-squares regression line. Note that here the line 
gives a predicted trait value for the rare homozygote (2) 
that exceeds the observed values, suggesting some 
deviation away from the assumption of linearity. Analysis of 
variance (ANOVA) does not require linearity of the trait 
means, at the cost of one more degree of freedom. Both 
tests also require the trait variance to be the same for each 
genotype: the graph is suggestive of decreasing variance 
with increasing genotype score, but there is not enough 
data to confirm this, and a mild deviation from this 
assumption is unlikely to have an important adverse effect 
on the validity of the test.
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Other 1df models

Dominant B: b1 = b2

Recessive B: b1 = 0
Over-dominant: b2 = 0

... and additive: b2=2 b1
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Interaction models

The value of the trait in i-th individual is 
assumed to follow linear model

Yi = m + bf Fi + bg gi + bfg Fi gi + ei

where m is intercept, Fi is the value of 
some “factor”, gi is the genotypic value, 
and ei is random residual error
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What could “F” be?

• An environment (gene-environment 
interaction)

• Indicator of transmitting parent 
(imprinting models)

• Other genotype (gene-gene)
• ... etc. 
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for the 

• A meta-analysis of genome-
wide association (GWA) data 
from 18 population-based 
cohorts with European 
ancestry (maximum N = 
32,225). 
• Eight further cohorts (N = 

17,102) for replication
• SNP rs6448771 

demonstrated genome-wide 
significant interaction with 
waist-to-hip-ratio (WHR) on 
total cholesterol (TC) with a 
combined P-value of 
4.79×10−9
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Analysis of imputed 
genotypic data in GWAS

• Short review of standard methods
• Methods for analysis of imputed data

• Open questions and problems
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Imputed data

We can not tell the exact genotype, but 
can estimate posterior probability 
distribution: P(g)={pAA,pAB,pBB}
Directly typed SNPs: either AA, AB or 
BB. The probability distribution is 
degenerate (e.g. {0,1,0} that is to say AB)
For imputed SNPs, the distribution is not 
degenerate
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Imputing: guess the “?”

Zheng et al., 2011
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Imputing: guess the “?”

Zheng et al., 2011
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How can we analyze 
imputed data?

• Instead of genotypes, we have 
probabilities that certain person at 
certain locus has certain genotype

• ???
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Best guess

• Best guess: take the genotype with 
maximal posterior probability and treat 
it as if it was true, directly typed

• Drawback: biased estimates, reduced 
power 
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Regression onto 
probabilities

Use the model
E[Yi] = m + b1 P(gi=1) + b2 P(gi=2)
Note this is very similar to model for 
directly typed SNPs, with probabilities 
used instead of indicator variables. 
Different genetic models can be 
formulated in the same way. 
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Maximum likelihood 
based on probabilities

Define individual likelihood as 
Li = SUMgi={0,1,2} P(gi) P(Yi|gi)
Where 
P(Yi|gi) = Normal(E[Yi|gi],s2) 
and 
E[Yi|gi] = m + b1 I(gi=1) + b2 I(gi=2)
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Maximum likelihood 
based on probabilities

Define joint likelihood as the product of 
individual likelihoods
Maximize the likelihood over the 
parameters involved
Maximum Likelihood Ratio test can be 
used to test nested models and draw 
statistical inferences
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Power in large samples 
(small effects)

vs. 
accuracy

vs. MAF

Zheng et al., 2011
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Power in small samples 
(large effects)

vs. 
accuracy

vs. MAF

Zheng et al., 2011
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Analysis of imputed 
genotypic data in GWAS

• Short review of standard methods
• Methods for analysis of imputed data
• Open questions and problems
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Additional problems

• Multi-locus analysis: is problematic as no 
information about joint distribution of 
genotypes is retained after standard 
imputation procedures

• GxE analysis (and expected for other 
interaction analyses) represents a 
methodological challenge
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Conclusions

• Using regression onto genotype 
probabilities is a valid and powerful 
method for standard scenarios

• Use of ML/mixture method can give 
extra power in case of small samples and 
large effects

• Caution should be exercised in 
interaction analyses with imputed data

Tuesday, February 21, 12


