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1 Overview

GenABEL is an R library developed to facilitate Genome-Wide Association (GWA)
analysis of binary and quantitative traits. GenABEL is implemented as an R li-
brary. R is a free, open source language and environment for general-purpose
statistical analysis (available at http://www.r-project.org/). It implements pow-
erful data management and analysis tools. Though it is not strictly necessary
to learn everything about R to run GenABEL, it is highly recommended as this
knowledge will improve flexibility and quality of your analysis.

This tutorial was originally written to serve as a set of exercises for the
”Advances in population-based studies of complex genetic disorders” (GE03)
course of the Netherlands Institute of Health Sciences (Nihes).
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If you read this tutorial not as a part of the GE03 course, and you are eager
to start with you GWA analysis without reading all the not-so-strictly-necessary
staff, start directly from the section 5 (”Genome-wide association analysis”).

Otherwise, you can start with R basics and simple association analyises using
few SNPs in section 2, ”Introduction to R”. In the next section, 4 (”Introduction
to GenABEL ”) you will learn how to work with the gwaa.data-class, which is
used to store GWA data in GenABEL and will perform some simple large-scale
analyses.

In the next section, 5 (”Genome-wide association analysis”), you will do qual-
ity control of genetic data and do association analysis under realistic conditions.
This section is the core of this tutorial.

The section 6 (”GWA in presence of genetic stratification”) is dedicated to
analysis in presence of populational stratification and analysis of family-based
data.

Genetic data imputations are covered in section 8, ”Genetic data imputations”.
The last section, 10 (”Analysis of selected region”), is dedicated to analysis

of haplotype association and analysis of SNP interactions.
Information on importing the data from different formats to GenABEL is given

in appendix A. Answers to exercises are provided in appendix B.
Experienced R users start directly with the section (4, ”Introduction to Gen-

ABEL ”).

2 Introduction to R

In this section we will consider basic R data types and operations, tools for
analysis of qualitative and quantitative traits. Needless to say, that only basic
R functionality may be covered within such short section. If you decide to
improve your knowledge of R, we recommend you excellent manuals, such as
’An introduction to R’, ’Simple R’, ’Practical Regression and Anova using R’,
and others, available free of charge from the R project web-site (http://www.r-
project.org).

In the first parts of this section, we will cover basic types of R objects and
will work with them. Next, we will analyse qualitative and quantitative traits,
using only basic R functionality.

2.1 Basic R data types and operations

On the contrast to many other statistical analysis package, analysis in R is
not based on graphic user interface, but is rather command-based. When you
first start R, a command prompt appears. To get help and overview of R,
type help.start() in the command line and press enter. This will start your
internet browser and open R documentation.

Let us first exploit R as a calculator. You can directly operate with numbers
in R. Try adding three to two:

> 2 + 3

[1] 5

Square roots, base-10 logarithm, and exponentiation can be done straightfor-
wardly with
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> sqrt(5)

[1] 2.236068

> log10(2.24)

[1] 0.350248

> exp(0.35)

[1] 1.419068

The arithmetic operations and functions can be nested:

> exp(log10(sqrt(2 + 3)))

[1] 1.418337

R functions include standard ones, such as logarithms, power, but also a wide
range of statistical function, for example, distribution and probability density
of many distributions.

For any function with name say ’fun’, help may be obtained by typing
’help(fun)’ on the command line. If you do not know the exact name for
the function you look for, try ’help.search("query")’, where query is the
keyword.

Exercise 1 Try to find out what are the functions to do

1. Wilcoxon test

2. Fisher exact test

3. T-test

R help pages have standard layout, documenting usage of the function, ex-
plaining function arguments, providing details of implementation, explaining the
value returned by the function, and giving references and examples of function
usage.

Exercise 2 Explore the help page for the Wilcoxon test and answer the ques-
tions:

1. When exact Wilcoxon test is computed by default?

2. If the default conditions for the exact test are not satisfied, what approxi-
mation is used?
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Most of the documented functions will have examples of their usage at
the end of the ’help’ page, and these examples can be evaluated in R. Try
’example(wilcox.test)’.

One of important R operations is assignment, which is done with ’<-’ oper-
ator. For example, we if want to assign value ’2’ to variable ’a’, and value ’3’ to
the variable ’b’:

> a <- 2

> b <- 3

Typing the variable name in R command line will return its’ value, e.g.

> b

[1] 3

Naturally, evaluation of

> exp(log10(sqrt(a + b)))

[1] 1.418337

gives the expected result we have obtained above using numerical arguments.
Just introduced variables ’a’ and ’b’ contain single values. More practically

important are the variables containg vectors. Let us create an example vector
and experiment with it:

> v <- c(1, 3, 5, 7, 11)

Now, let us try different operations with this vector:

> v + 1

[1] 2 4 6 8 12

> 1/v

[1] 1.0000000 0.3333333 0.2000000 0.1428571 0.0909091

> log(v)

[1] 0.000000 1.098612 1.609438 1.945910 2.397895

It is easy to see that these operations give a vector with elements being the
result of application of the same operation to different initial elements.

What happens if two vectors are supplied as function arguments? Let us
define new vector

> ov <- c(1, 2, 3, 4, 5)

and add it and previous vector up:

> v + ov

[1] 2 5 8 11 16
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multiply them

> v * ov

[1] 1 6 15 28 55

or compute v to the power of ov:

> v^ov

[1] 1 9 125 2401 161051

Here, the operation was done over each of the two corresponding elements
of the vectors, resulting, again, in the vector of the same length.

Other functions may evaluate a vector as a whole an return a single value
as output. For example, to obtain a sum of vector’s elements, use

> sum(v)

[1] 27

Other examples of such functions involve length, returning number of ele-
ments of a vector, mean, returning the mean, var, returning the variance, etc.
For example:

> length(v)

[1] 5

> mean(v)

[1] 5.4

> var(v)

[1] 14.8

One of the most important data operations in R is sub-setting. This refers
to operations which help you deriving a subset of the data. Let us create a
short vector and play a bit with sub-setting. This vector will contain 5 simple
character strings:

> a <- c("I am element 1", "I am element 2", "I am element 3",

+ "I am element 4", "I am element 5")

> a

[1] "I am element 1" "I am element 2" "I am element 3" "I am element 4"
[5] "I am element 5"

To find out what is the value of the i-th element of this vector, you can
sub-set it by a[i]. For example the 3rd elements is:

> a[3]

[1] "I am element 3"
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You can also select bigger sub-sets, e.g. all elements from 2 to 4:

> a[c(2:4)]

[1] "I am element 2" "I am element 3" "I am element 4"

Here, operation c(2:4) is equivalent to ’sequence from 2 to 4’, that is c(2,3,4).
We can easily get disjoint elements; e.g. if you want to retrieve elements 1,

3, and 5, you can do

> dje <- c(1, 3, 5)

> dje

[1] 1 3 5

> a[dje]

[1] "I am element 1" "I am element 3" "I am element 5"

One of very attractive features of R data objects is possibility to derive sub-
sets based on some condition. Let us consider two vectors, tmphgt, containing
the height of some subjects, and tmpids, containing their IDs:

> tmphgt <- c(150, 175, 182, 173, 192, 168)

> tmphgt

[1] 150 175 182 173 192 168

> tmpids <- c("fem1", "fem2", "man1", "fem3", "man2", "man3")

> tmpids

[1] "fem1" "fem2" "man1" "fem3" "man2" "man3"

Imagine you want to derive the IDs of people with height over 170 cm. The
way to do it is to combine several steps. First, you can run the logical function
>170 on the height data:

> vec <- (tmphgt > 170)

> vec

[1] FALSE TRUE TRUE TRUE TRUE FALSE

This returns logical vector whose elements are true, when particular element
of tmphgt satisfies the condition >170. Such logical vector, in turn, may be
applied to sub-set any other vector of the same length1, including itself. If you
want to see what are the heights in people taller than 170 cm, you can use

> tmphgt[vec]

[1] 175 182 173 192

or you can get IDs of these people with
1Actually, you can apply it to a longer vector too, and then the logical vector will be

”expanded” to total length by repeating the original vector head-to-tail. However, we will not
use this in our exercises.
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> tmpids[vec]

[1] "fem2" "man1" "fem3" "man2"

You can combine more than one logical condition to derive sub-sets. For
example, to see what are the IDs of people taller than 170 but shorter than 190
cm, you ca use

> vec <- (tmphgt > 170 & tmphgt < 190)

> vec

[1] FALSE TRUE TRUE TRUE FALSE FALSE

> tmpids[vec]

[1] "fem2" "man1" "fem3"

Other, and easier2 way to do the same is to use which() function. This
function reports which elements pass logical condition. To obtain above results
you can run:

> vec <- which(tmphgt > 170 & tmphgt < 190)

> vec

[1] 2 3 4

> tmpids[vec]

[1] "fem2" "man1" "fem3"

You can remove tmphgt and tmpids variable so they will not interfere with
our future analysis:

> ls()

[1] "a" "b" "dje" "ov" "tmphgt" "tmpids" "v" "vec"

> rm(tmphgt, tmpids)

and check if the removal was successful:

> ls()

[1] "a" "b" "dje" "ov" "v" "vec"

Sub-setting for 2D objects (matrices) is done in similar manner. Let us
construct a simple matrix and do several sub-setting operations on it:

> a <- matrix(c(11, 12, 13, 21, 22, 23, 31, 32, 33), nrow = 3,

+ ncol = 3)

> a

2Because it treats NAs for you
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[,1] [,2] [,3]
[1,] 11 21 31
[2,] 12 22 32
[3,] 13 23 33

To obtain the element in the 2nd row and 2nd column

> a[2, 2]

[1] 22

...the second row and third column:

> a[2, 3]

[1] 32

To obtain the 2x2 set of elements contained in upper left corner, you can do

> a[1:2, 1:2]

[,1] [,2]
[1,] 11 21
[2,] 12 22

Or you can even get the variables, which reside in corners:

> a[c(1, 3), c(1, 3)]

[,1] [,2]
[1,] 11 31
[2,] 13 33

If one of the dimensions is not specified, complete list is returned for this
dimension. For example, here we retrieve the first row

> a[1, ]

[1] 11 21 31

...and third column

> a[, 3]

[1] 31 32 33

...or columns 1 and 3:

> a[, c(1, 3)]

[,1] [,2]
[1,] 11 31
[2,] 12 32
[3,] 13 33
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As well as with vectors, you can sub-set matrices using logical conditions or
indexes. GWA genetic data are stored in matrices, and you can sub-set them
using the methods described above.

For example, if we want to see what elements of a are greater than 21, we
can run

> a > 21

[,1] [,2] [,3]
[1,] FALSE FALSE TRUE
[2,] FALSE TRUE TRUE
[3,] FALSE TRUE TRUE

or obtain these elements by

> a[a > 21]

[1] 22 23 31 32 33

At this point, you can exit R.

Summary:

� You can get a top-level access to R documentation by help.start().
To search help for some keyword key, try help.search(key). To get
description of some function fun, try help(fun).

� You can use R as a powerful calculator.

� It is possible to get sub-sets of vectors and matrices by specifying index
value or a logical condition (of the same length as the vector / matrix)
between square brackets ([, ])

� When you obtain an element of a matrix with [i,j], i is the row and j
is the column of the matrix.

� Function which(A) returns index of the elements of A which are ”true”.

Exercise 3 In this exercise, you will explore few vectors representing different
data on study subjects described in srdta example data set supplied together
with GenABEL . First, you need to load GenABEL by typing

> library(GenABEL)

and load the data by

> data(srdta)
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The vector containing study subjects sex can be accessed through srdta@gtdata@male;
this vector’s value is one when the corresponding person is male and zero other-
wise. The vector containing SNP names can be accessed via srdta@gtdata@snpnames,
chromosome ID – through srdta@gtdata@chromosome and map – through srdta@gtdata@map.
Explore these vectors and answer the questions.

1. What is the ID and sex of the first person in the data set?

2. Of the 22nd person?

3. How many males are observed among first hundred subjects?

4. How many FEMALES are among 4th hundred?

5. What is the male proportion in first 1000 people?

6. What is the FEMALE proportion in second 1000 (1001:2000) people?

7. What is name, chromosome and map position of 33rd maker?

8. What is distance between markers 25 and 26?

2.2 Data frames

Start R with double-click on the file named assocbase.RData. You can see the
names of the loaded objects by using the command ls():

> ls()

[1] "assoc"

You can see that there is a single object the class of the object can be
interrogated by using class function:

> class(assoc)

[1] "data.frame"

Thus, the file you have loaded contains one data frame. A data frame is an R
term for a data table. In such tables, it is usually assumed that rows correspond
to subjects (observations) and columns correspond to variables.

We will investigate the data presented in the assoc data frame. The nice
feature of data frames is that columns carry names for the variables, and the
data stored there can be retrieved by referencing these names. 3 To see what
are the variable names, use the command names():

> names(assoc)

3This may also be true for matrices; more fundamental difference is though that a matrix
always contains variables of the dame type, e.g. character or integer, while a data frame may
contain variables of different types.
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[1] "subj" "sex" "aff" "qt" "snp4" "snp5" "snp6"

The 7 variables correspond to the personal ID, sex, affection status, quanti-
tative trait qt and several SNPs.

A variable from a data frame frame, which has some name name can be ac-
cessed through frame$name. This will return a conventional vector.For example
to see the affection status (aff) in the data frame assoc, use

> assoc$aff

[1] 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0
[38] 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0
[75] 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0
[112] 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1
[149] 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1
[186] 1 1 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0
[223] 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0

Exercise 4 Investigate types of the variables presented in data frame assoc.
For each variable, write down the class.

We can easily check how many people are described in the data set by check-
ing the length of any variable (all variables will be the same length in a data
frame):

> length(assoc$sex)

[1] 250

or through asking to report the dimensionality of the data frame:

> dim(assoc)

[1] 250 7

Here, the first number corresponds to the number of rows (subjects) and the
second to the number of columns (variables).

Let us go into more details and check what are the ID, sex and affection
status for the person 75:

> assoc$subj[75]

[1] 1409

> assoc$sex[75]

[1] 1

> assoc$aff[75]
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[1] 0

Data frame may be thought of as a matrix, or as a collection of vectors. All
sub-setting operations discussed before for vectors/matrices are applicable to a
data frame. Therefore an alternative way to see all the data for person 75 is:

> assoc[75, ]

subj sex aff qt snp4 snp5 snp6
1409 1409 1 0 1.014664 A/B B/A B/B

In the same manner, you can get data for e.g. subjects 5 to 15 (a new data
frame containing data only on first 10 people) by

> assoc[5:15, ]

subj sex aff qt snp4 snp5 snp6
1533 1533 0 0 0.1009220 A/B B/A B/A
2466 2466 1 0 -0.1724321 A/B A/A A/A
2425 2425 0 0 -0.3378473 B/B A/A A/A
1068 1068 0 0 -1.7112925 A/A B/B <NA>
198 198 1 0 -0.4815822 A/B B/A B/A
1496 1496 1 0 1.2281232 A/A B/B B/B
909 909 0 0 0.5993945 A/B B/A B/A
1213 1213 0 0 1.9792190 A/A B/B B/B
181 181 1 0 1.5435921 A/A B/B B/B
1783 1783 0 0 -1.6242738 A/B B/A B/A
1914 1914 0 0 -0.5160331 A/A B/B B/B

As well as with vectors, it is possible to sub-set elements of a data frame
based on (a combination of) logical conditions. For example, if we want to check
what are the IDs of the people with qt over 1.4, we can run

> vec <- which(assoc$qt > 1.4)

> vec

[1] 12 13 33 41 54 68 72 76 89 106 118 142 156 161 175 181 193 219 241

> assoc$subj[vec]

[1] 1213 181 1737 1319 516 1355 186 1426 1284 822 2129 212 1443 704 1648
[16] 1628 562 858 698

Or, if we are interested to see subject-number and SNP information for these
people, we can see that with

> assoc[vec, c(1, 5, 6, 7)]

subj snp4 snp5 snp6
1213 1213 A/A B/B B/B
181 181 A/A B/B B/B
1737 1737 A/A B/B B/B
1319 1319 A/A B/A B/A
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516 516 A/B B/A B/A
1355 1355 A/A B/B B/B
186 186 A/A B/A B/A
1426 1426 A/B B/A B/A
1284 1284 A/A B/B B/B
822 822 A/B B/A B/A
2129 2129 A/B B/A B/A
212 212 A/B B/A B/A
1443 1443 A/A B/B B/B
704 704 A/B B/A B/A
1648 1648 A/B B/A B/A
1628 1628 A/B B/A B/A
562 562 A/A B/B B/B
858 858 A/B B/A B/A
698 698 B/B A/A A/A

here, we select people identified by vec in the first dimension (subjects), and by
c(1,5,6,7) we select first, fifth, sixth and seventh column (variable).

Next, we can check how many of the subjects are males by

> sum(assoc$sex)

[1] 129

and what is male sex proportion:

> sum(assoc$sex)/length(assoc$sex)

[1] 0.516

or

> mean(assoc$sex)

[1] 0.516

or

> sum(assoc$sex == 1)/length(assoc$sex)

[1] 0.516

You can also explore and modify the raw data contained in a data frame
by using fix() command (e.g. fix(assoc)). However, normally this is not
necessary.

The function table(x) produces a frequency table for the variable x. Thus,
we can use

> table(assoc$sex)

0 1
121 129
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which, again, tells us that there are 129 males and 121 females in this data set.
Tables of other qualitative variables, such as affection and SNPs, can be

generated in the same manner.

Exercise 5 Explore qualitative variables presented in assoc

1. How many affected and unaffected are present in the data set?

2. What is the proportion of affected?

3. What is the distribution of snp4?

A more convenient way to access data presented in a data frame is through
”attaching” it to the R search path by

> attach(assoc)

After that, the variables can be accessed directly, e.g.

> table(sex)

sex
0 1

121 129

100100100100As with conventional vectors, conditions may be used to sub-
set variables in a data frame. If for example, you want to check distribution of
number of affected in men and women separately, you can do that by

> table(aff[sex == 1])

0 1
98 31

> table(aff[sex == 0])

0 1
96 25

On R command line pressing the ”up-arrow” button makes the last typed

command re-appear (pressing it one more time will bring you to the one

before the last, so on). This is very handy when you have to repeat the same

analysis of different variables
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Summary:

� The list of available objects can be viewed with ls(); a class of some
object obj can be interrogated with class(obj).

� Simple summary statistics for numeric variables can be generated by using
summary function

� Histogram for some variable var can be generated by hist(var)

� A variable with name name from a data frame frame, can be accessed
through frame$name.

� You can attach the data frame to the search path by attach(frame).
Then the variables contained in this data frame may be accessed directly.
To detach the data frame (because, e.g., you are now interested in other
data frame), use detach(frame).

Exercise 6 An srdta data supplied with GenABEL contains a data frame with
phenotypes. This data frame may be accessed through srdta@phdata. Explore
this data frame and answer the questions

1. What is the value of the 4th variable for subject number 75?

2. What is the value of variable 1 for person 75? Check what is the value of
this variable for the first ten people. Can you guess what variable 1 is?

3. What is sum of the variable 2? Can you guess what it is?

Exercise 7 Explore phdata slot of srdta

1. How many people has age over 65 years?

2. What is the sex distribution in the people over 65 years old?

2.3 Exploratory analysis of qualitative and quantitative
traits

Contingency tables of more then one variable may be generated in R using the
table command we have being using before to explore frequency distributions.
For example, if you want cross-tabulate sex and affection status in the data
frame assoc, you can use
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> table(sex, aff)

aff
sex 0 1
0 96 25
1 98 31

Here, the first variable (sex) is presented in rows and the second (affection
status) in columns.

As is usual case with R, the output may be saved as a new object (of class
’table’, which is a variety of a matrix):

> a <- table(sex, aff)

> a

aff
sex 0 1
0 96 25
1 98 31

and this object may be analysed further.
For example, we can easily get the number of affected male with

> a[2, 2]

[1] 31

Alternatively, we can analyse the resulting contingency table a with more
complex functions. If we want to see proportions in this table, we can use

> prop.table(a)

aff
sex 0 1
0 0.384 0.100
1 0.392 0.124

Needless to say, this is equivalent to

> prop.table(table(assoc$sex, assoc$aff))

0 1
0 0.384 0.100
1 0.392 0.124

In the above table, we see what proportion of people belong to four dif-
ferent classes (affected male, affected female, unaffected male and unaffected
female). We may be though interested in the proportion of males in affected
and unaffected. This may be achieved by

> prop.table(a, 2)

aff
sex 0 1
0 0.4948454 0.4464286
1 0.5051546 0.5535714
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saying us that 55.4% of affected are male.
Alternatively, we may be interested in proportion of affected among males/females.

To answer this question, run

> prop.table(a, 1)

aff
sex 0 1
0 0.7933884 0.2066116
1 0.7596899 0.2403101

saying us that 55.4% of male are affected.
Other useful contingency table analysis function is fisher.test, which im-

plements the Fisher Exact Test of independence:

> fisher.test(a)

Fisher's Exact Test for Count Data

data: a
p-value = 0.547
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.6409648 2.3156591
sample estimates:
odds ratio
1.213747

Exploration of genetic data within base R, though possible, may be a bit
of a pain. For example, we can easily generate contingency table of SNP5 vs
affected status:

> a <- table(aff, snp5)

> a

snp5
aff A/A B/A B/B
0 31 88 71
1 9 26 17

We can also look up what is the proportion of affected among different genotypic
groups

> prop.table(a, 2)

snp5
aff A/A B/A B/B
0 0.7750000 0.7719298 0.8068182
1 0.2250000 0.2280702 0.1931818

showing that proportion of cases is similar in ’A/A’ and ’A/B’ genotypic groups
and somewhat decreased in ’B/B’. It is easy to test if this affection is statistically
independent of genotype by
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> chisq.test(a)

Pearson's Chi-squared test

data: a
X-squared = 0.3874, df = 2, p-value = 0.8239

which gives (insignificant) genotypic association test on two degrees of freedom.
However, testing Hardy-Weinberg equilibrium, testing allelic effects, and

even computation of allelic frequency is not so straightforward. Such specific ge-
netic tests are implemented in special R libraries, such as genetics and GenABEL
and will be covered in later sections of this document.

At this moment we will switch to exploratory analysis of quantitative traits.
We will make use of the srdta data supplied with GenABEL . As you can re-
member from an exercise, the library is loaded with library(GenABEL) and the
data are loaded with data(srdta): Then the phenotypic data frame may be
accessed through srdta@phdata.

Exercise 8 Explore srdta@phdata. How many observations and variables are
presented in the data frame? What are the classes of these variables?

As it was mentioned before, the function summary() generates a summary
statistics for an object. For example, to see summary for trait qt1, we can use

> summary(srdta@phdata$qt1)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
-4.6000 -0.9500 -0.3100 -0.2981 0.3800 3.2000 3.0000

summary is quite useful function which may operate in different ways for

objects of different classes. Try summary(srdta@phdata).

With R, it is also easy to explore the data graphically. For example, the
histogram for qt1 may be generated by

> hist(srdta@phdata$qt1)

(resulting histogram is shown at figure 1)
In similar manner, scatter-plots may be generated. To see relation between

qt1 and qt3, you can run

> plot(srdta@phdata$qt1, srdta@phdata$qt3)

(resulting plot is shown at figure 2)
The mean, median, minimum and maximum of the distribution of the trait

may be found out using functions mean, median, min and max, respectively. The
variance and standard deviation can be computed with var and sd.
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Figure 1: Histogram of qt1
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Figure 2: Scatter-plot of qt1 against qt3
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To compute correlation between two variables (or all variables in a ma-
trix/data frame), use cor.

In GenABEL , there is a special function designed to facilitate phenotypic
quality control. This function takes names of variables and a data frame as
an input, and returns summary statistics, list of outliers (using False Discovery
Rate) and graphs.

For example, to do QC of sex, age and qt3, try

> check.trait(c("sex", "age", "qt3"), srdta@phdata)

--------------------------------
Trait sex has 2500 measurements
Missing: 0 ( 0 %)
Mean = 0.51 ; s.d. = 0.5
NO outliers discovered for trait sex
--------------------------------
Trait age has 2500 measurements
Missing: 0 ( 0 %)
Mean = 50.0378 ; s.d. = 7.060125
NO outliers discovered for trait age
--------------------------------
Trait qt3 has 2489 measurements
Missing: 11 ( 0.44 %)
Mean = 2.60859 ; s.d. = 1.101154
NO outliers discovered for trait qt3

The corresponding graph is depicted at figure ??.

Before you start with the exercise: if a function returns unexpected results,

and you are confident that syntax was right, checking help page is always a

good idea!

Exercise 9 Explore variables in phdata slot of srdta

1. What is the mean, median, minimum and maximum age in the sample?

2. Compare the distribution of qt3 in people younger and older than 65 years.
Use function sd(A) to get standard deviation of A.

3. Produce distributions of different traits. Do you see something special?

4. What is correlation between qt3 and age?
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Figure 3: Quality control graph for sex, age, qt3

2.4 Regression analysis

While contingency tables, bi-plots and correlation are powerful tools to analyse
relations between pairs of variable, a more general framework allowing investiga-
tion of relation of an outcome to multiple predictors is regression. In R, function
lm implements linear regression modelling, and function glm implements gen-
eralised linear regression. In this section, we will use these two functions to
analyse quantitative an binary outcomes.

You can do linear regression to check if trait qt2 has relation with sex and
age by

> a <- lm(srdta@phdata$qt2 ~ srdta@phdata$age + srdta@phdata$sex)

The results of analysis are stored in object ’a’, which has class ’lm’ and
contains may sub-objects:

> class(a)

[1] "lm"

> names(a)

[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "xlevels" "call" "terms" "model"
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At this moment you do not need to understand all these sub-objects; the
meaningful summary of analysis is produced with

> summary(a)

Call:
lm(formula = srdta@phdata$qt2 ~ srdta@phdata$age + srdta@phdata$sex)

Residuals:
Min 1Q Median 3Q Max

-5.6498 -1.7953 -1.0328 -0.3148 883.0808

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.55892 4.41667 -0.353 0.724
srdta@phdata$age 0.14022 0.08668 1.618 0.106
srdta@phdata$sex 1.30377 1.22393 1.065 0.287

Residual standard error: 30.59 on 2497 degrees of freedom
Multiple R-squared: 0.001518, Adjusted R-squared: 0.0007181
F-statistic: 1.898 on 2 and 2497 DF, p-value: 0.1501

You can see that qt2 is not associated with age or sex.
As before, to make easy access to your data (basically, to avoid typing

srdta@phdata before every trait name, you may attach the data to the search
path:

> attach(srdta@phdata)

Then,the above expression to run linear regression analysis simplifies to:

> summary(lm(qt2 ~ age + sex))

Call:
lm(formula = qt2 ~ age + sex)

Residuals:
Min 1Q Median 3Q Max

-5.6498 -1.7953 -1.0328 -0.3148 883.0808

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.55892 4.41667 -0.353 0.724
age 0.14022 0.08668 1.618 0.106
sex 1.30377 1.22393 1.065 0.287

Residual standard error: 30.59 on 2497 degrees of freedom
Multiple R-squared: 0.001518, Adjusted R-squared: 0.0007181
F-statistic: 1.898 on 2 and 2497 DF, p-value: 0.1501

with the same results.
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Analysis of binary outcomes may be performed using glm function, using
binomial family for the error distribution and the link function. For example,
to figure out if your binary trait (bt) is associated with sex and age, you need
to tell that this is binary trait:

> a <- glm(bt ~ age + sex, family = "binomial")

> summary(a)

Call:
glm(formula = bt ~ age + sex, family = "binomial")

Deviance Residuals:
Min 1Q Median 3Q Max

-1.992 -1.091 -0.444 1.094 1.917

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.639958 0.330519 -14.038 < 2e-16 ***
age 0.088860 0.006463 13.749 < 2e-16 ***
sex 0.379593 0.084138 4.512 6.44e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 3450.5 on 2488 degrees of freedom
Residual deviance: 3216.5 on 2486 degrees of freedom
(11 observations deleted due to missingness)

AIC: 3222.5

Number of Fisher Scoring iterations: 4

There is strong association between bt and sex and age. If you want to
characterise the strength of association to a binary trait with Odds Ratios,
take the exponents of the regression coefficient. For example, the odds ratio
associated with male is

> exp(0.3796)

[1] 1.461700

3 Introduction to association analysis in R

When analyzing several (dozens of) SNPs, facilities of base R are sufficient
and efficient for data storage and analysis. Few specific test, such as these
of Hardy-Weinberg Equilibrium (HWE) and Linkage Disequilibrium (LD), are
implemented in different libraries, e.g. genetics and GenABEL .

In this section, we will describe library genetics and will make use of it to
guide you through simple genetic analysis exercise using a small example data
set. In the last part, you will investigate a bigger data set as based on the
knowledge obtained in the first part, and will answer the questions.
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3.1 Exploring genetic data with library genetics

Library genetics was written by Gregory R. Warnes to facilitate analysis of
genetic data in R. This library

� Implements genetic analysis tests, such as test for Hardy-Weinberg equi-
librium and Linkage disequilibrium.

� Implements new data classes, such as genotype, haplotype and LD.data.frame.

� Modifies default R functions, such as summary and plot to correctly anal-
yse and present these new classes.

� Facilitates export of the data from R to the formats supported by such
genetic analysis packages as GenePop and QTDT.

Start R by double-click on the file ge03d1p1.RData. Load library genetics,
which we will need for testing HWE and computations of LD by

> library(genetics)

The file you have loaded contains single data frame assocg. Let us briefly
explore it:

> class(assocg)

[1] "data.frame"

> names(assocg)

[1] "subj" "sex" "aff" "qt" "snp4" "snp5" "snp6"

> dim(assocg)

[1] 250 7

You can see that assocg looks remarkably similar to the previously explored
data frame assoc (section 2.2, page 11). Indeed, they are almost equivalent.
Let us present the data for the subjects 5 to 15 and compare this output to that
presented on page 13:

> assocg[5:15, ]

subj sex aff qt snp4 snp5 snp6
1533 1533 0 0 0.1009220 A/B B/A B/A
2466 2466 1 0 -0.1724321 A/B A/A A/A
2425 2425 0 0 -0.3378473 B/B A/A A/A
1068 1068 0 0 -1.7112925 A/A B/B <NA>
198 198 1 0 -0.4815822 A/B B/A B/A
1496 1496 1 0 1.2281232 A/A B/B B/B
909 909 0 0 0.5993945 A/B B/A B/A
1213 1213 0 0 1.9792190 A/A B/B B/B
181 181 1 0 1.5435921 A/A B/B B/B
1783 1783 0 0 -1.6242738 A/B B/A B/A
1914 1914 0 0 -0.5160331 A/A B/B B/B
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The data are identical. However, the SNP data presented in the new data frame
have special class genotype, as implemented in genetics library:

> class(assocg$snp4)

[1] "genotype" "factor"

Previously, the SNP genotypes were coded as characters. This new way of
presentation allows library genetics to recognise the SNP data as genetic and
analyse them accordingly.

Let us attach the assocg data frame and explore what data analysis advan-
tages are achieved by application of library genetics.

> attach(assocg)

As we noted in section 2.2, testing Hardy-Weinberg equilibrium, testing al-
lelic effects, and even computation of allelic frequency is not so straightforward
in base R. These tests, are, however, easy with library genetics. To see the
allelic frequencies and other summary statistics for a SNP, you can use

> summary(snp4)

Number of samples typed: 243 (97.2%)

Allele Frequency: (2 alleles)
Count Proportion

A 323 0.66
B 163 0.34
NA 14 NA

Genotype Frequency:
Count Proportion

B/B 29 0.12
A/B 105 0.43
A/A 109 0.45
NA 7 NA

Heterozygosity (Hu) = 0.4467269
Poly. Inf. Content = 0.3464355

To check these characteristics in controls and cases separately, you can use

> summary(snp4[aff == 0])

Number of samples typed: 190 (97.9%)

Allele Frequency: (2 alleles)
Count Proportion

A 255 0.67
B 125 0.33
NA 8 NA
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Genotype Frequency:
Count Proportion

B/B 22 0.12
A/B 81 0.43
A/A 87 0.46
NA 4 NA

Heterozygosity (Hu) = 0.4426469
Poly. Inf. Content = 0.3440288

> summary(snp4[aff == 1])

Number of samples typed: 53 (94.6%)

Allele Frequency: (2 alleles)
Count Proportion

A 68 0.64
B 38 0.36
NA 6 NA

Genotype Frequency:
Count Proportion

B/B 7 0.13
A/B 24 0.45
A/A 22 0.42
NA 3 NA

Heterozygosity (Hu) = 0.4643306
Poly. Inf. Content = 0.3541731

Let us check if HWE holds for the SNPs described in this data frame. We
can do exact test for HWE by

> HWE.exact(snp4)

Exact Test for Hardy-Weinberg Equilibrium

data: snp4
N11 = 109, N12 = 105, N22 = 29, N1 = 323, N2 = 163, p-value = 0.666

If you want to check HWE using controls only, you can do it by

> HWE.exact(snp4[aff == 0])

Exact Test for Hardy-Weinberg Equilibrium

data: snp4[aff == 0]
N11 = 87, N12 = 81, N22 = 22, N1 = 255, N2 = 125, p-value = 0.6244

Let us check if the there is LD between snp4 and snp5:
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> LD(snp4, snp5)

Pairwise LD
-----------

D D' Corr
Estimates: 0.2009042 0.9997352 0.8683117

X^2 P-value N
LD Test: 354.3636 0 235

The output shows results of the test for significance of LD, and estimates of the
magnitude of LD (D′ and correlation, r). To obtain r2, you can either square
the correlation manually

> 0.8683117 * 0.8683117

[1] 0.7539652

or simply ask LD() to report it by

> LD(snp4, snp5)$"R^2"

[1] 0.7539652

The latter command is possible because the LD() function actually computes
more things than it reports. This is quite common for R functions. You can
apply names() function to the analysis objects to see (at least part of) what
was actually computed. Try

> ld45 <- LD(snp4, snp5)

and check what are the sub-objects contained in this analysis object

> names(ld45)

[1] "call" "D" "D'" "r" "R^2" "n" "X^2"

[8] "P-value"

Any of these variables can be accessed through object$var syntax, e.g. to
check D′ we can use

> ld45$"D'"
[1] 0.9997352

To check LD for more that two SNPs, we can compute an LD analysis object
by

> ldall <- LD(data.frame(snp4, snp5, snp6))

and later check

> ldall$"P-value"

snp4 snp5 snp6
snp4 NA 0 0
snp5 NA NA 0
snp6 NA NA NA
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to see significance,

> ldall$"D'"

snp4 snp5 snp6
snp4 NA 0.9997352 0.8039577
snp5 NA NA 0.9997231
snp6 NA NA NA

for D′ and

> ldall$"R^2"

snp4 snp5 snp6
snp4 NA 0.7539652 0.5886602
snp5 NA NA 0.8278328
snp6 NA NA NA

for r2.
You can also present e.g. r2 matrix as a plot by

> image(ldall$"R^2")

A more neat way to present it requires specification of the set of threshold
(break points) and colors to be used (you do not need to try this example if you
do not want):

> image(ldall$"R^2", breaks = c(0.5, 0.6, 0.7, 0.8, 0.9, 1), col = heat.colors(5))

Resulting plot is shown at figure 4.

For any R command, you can get help by typing help(command). Try

help(image) if you are interested to understand what are ”breaks” and ”col”;

or try help(heat.colors) to figure this color schema out.

Similar to our HWE checks, we may want to compute (and compare) LD in
cases and controls separately:

> ldcases <- LD(data.frame(snp4, snp5, snp6)[aff == 1, ])

> ldcases$"R^2"

snp4 snp5 snp6
snp4 NA 0.7615923 0.6891558
snp5 NA NA 0.8943495
snp6 NA NA NA

> ldcontr <- LD(data.frame(snp4, snp5, snp6)[aff == 0, ])

> ldcontr$"R^2"

snp4 snp5 snp6
snp4 NA 0.7512458 0.5616395
snp5 NA NA 0.8075894
snp6 NA NA NA
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Figure 4: r2 plot for snp4, snp5 and snp6

and even present it results for cases and controls on the same graph (you do not
need to produce this graph, which is presented at the figure 5):

> image(ldcases$"R^2", breaks = c(0.5, 0.6, 0.7, 0.8, 0.9, 1),

+ col = heat.colors(5))

> image(t(ldcontr$"R^2"), breaks = c(0.5, 0.6, 0.7, 0.8, 0.9, 1),

+ col = heat.colors(5), add = T)

3.2 Example association analysis

Now, after we have described genetic and phenotypic data separately, we are
ready to test association between these two. In previous sections, we showed
that association between a binary trait and genotype may be analysed using
contingency tables (functions table, prop.table, fisher.test, etc.). The
association between a quantitative trait and genotype may be done using cor-
relations, T-test, etc.

However, a more flexible analysis is possible when using regression modelling.
First, we will investigate relation between the quantitative trait qt and the SNPs
by using linear regression

> mg <- lm(qt ~ snp4)

The lm command fits linear regression model to the data and returns an analysis
object. The summary of analysis may be generated with
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Figure 5: r2 plot for snp4, snp5 and snp6. Above diagonal: LD in cases; below:
controls

> summary(mg)

Call:
lm(formula = qt ~ snp4)

Residuals:
Min 1Q Median 3Q Max

-2.63700 -0.62291 -0.01225 0.58922 3.05561

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.081114 0.092517 -0.877 0.382
snp4A/B -0.108366 0.132079 -0.820 0.413
snp4B/B -0.006041 0.201820 -0.030 0.976

Residual standard error: 0.9659 on 240 degrees of freedom
(7 observations deleted due to missingness)

Multiple R-squared: 0.003049, Adjusted R-squared: -0.005259
F-statistic: 0.367 on 2 and 240 DF, p-value: 0.6932

From the summary output, it is clear that the model assumes arbitrary (esti-
mated) effects of the genotypes AA, AB and BB. Neither effect of AB nor BB
is significant in this case. The global test on two degrees of freedom (bottom of
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the output) is also not significant.
If you want to include some covariate into your model, e.g. sex, you can

easily do that by adding the term to the formula:

> summary(lm(qt ~ sex + snp4))

Call:
lm(formula = qt ~ sex + snp4)

Residuals:
Min 1Q Median 3Q Max

-2.664422 -0.624169 -0.008752 0.597045 3.080857

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.110298 0.115260 -0.957 0.340
sex 0.053018 0.124493 0.426 0.671
snp4A/B -0.104429 0.132628 -0.787 0.432
snp4B/B -0.002452 0.202340 -0.012 0.990

Residual standard error: 0.9676 on 239 degrees of freedom
(7 observations deleted due to missingness)

Multiple R-squared: 0.003805, Adjusted R-squared: -0.0087
F-statistic: 0.3043 on 3 and 239 DF, p-value: 0.8223

You can also allow for interaction by using the ”*” operator

> summary(lm(qt ~ sex * snp4))

Call:
lm(formula = qt ~ sex * snp4)

Residuals:
Min 1Q Median 3Q Max

-2.570485 -0.645961 -0.002641 0.610938 3.019696

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.20579 0.13834 -1.487 0.138
sex 0.22649 0.18647 1.215 0.226
snp4A/B 0.05222 0.19024 0.274 0.784
snp4B/B 0.18071 0.28576 0.632 0.528
sex:snp4A/B -0.30191 0.26566 -1.136 0.257
sex:snp4B/B -0.35508 0.40531 -0.876 0.382

Residual standard error: 0.9684 on 237 degrees of freedom
(7 observations deleted due to missingness)

Multiple R-squared: 0.01041, Adjusted R-squared: -0.01047
F-statistic: 0.4984 on 5 and 237 DF, p-value: 0.7773

Note that both main effects of sex and snp4, and also effects of interaction are
estimated in this model.
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Of interest in genetic studies may be three other models: additive, dominant
and recessive.

The additive model assumes that the difference between mean trait’s values
between ’AA’ and ’BB’ is twice the difference between ’AA’ and ’BB’, that is
the mean value of the trait for heterozygous genotypes is right in between the
two homozygotes. To test additive model, we first need to recode the predictor
(genotype) as a numeric factor to be used as covariate. This can be easy done
with function as.numeric:

> add4 <- as.numeric(snp4) - 1

We can check if recoding was done correctly by producing the table

> table(snp4, add4)

add4
snp4 0 1 2
A/A 109 0 0
A/B 0 105 0
B/B 0 0 29

Now to test the additive model run

> summary(lm(qt ~ add4))

Call:
lm(formula = qt ~ add4)

Residuals:
Min 1Q Median 3Q Max

-2.54813 -0.62104 -0.02754 0.60584 3.00652

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.10476 0.08710 -1.203 0.230
add4 -0.03563 0.09133 -0.390 0.697

Residual standard error: 0.9651 on 241 degrees of freedom
(7 observations deleted due to missingness)

Multiple R-squared: 0.0006313, Adjusted R-squared: -0.003516
F-statistic: 0.1522 on 1 and 241 DF, p-value: 0.6968

The model assuming dominant action of the ’A’ allele means that the means
of genotypes ’AA’ and ’AB’ are the same. This is equivalent to the model of
recessive action of ’B’ allele. To code SNP4 according to this model, we can use
function replace:

> dom4 <- add4

> dom4[dom4 == 2] <- 1

> table(snp4, dom4)

dom4
snp4 0 1
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A/A 109 0
A/B 0 105
B/B 0 29

To test association with a binary outcome, we will use function glm with
binomial family:

> summary(glm(aff ~ snp4, family = "binomial"))

Call:
glm(formula = aff ~ snp4, family = "binomial")

Deviance Residuals:
Min 1Q Median 3Q Max

-0.7433 -0.7204 -0.6715 -0.6715 1.7890

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.3749 0.2386 -5.761 8.35e-09 ***
snp4A/B 0.1585 0.3331 0.476 0.634
snp4B/B 0.2297 0.4952 0.464 0.643
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 254.91 on 242 degrees of freedom
Residual deviance: 254.58 on 240 degrees of freedom
(7 observations deleted due to missingness)

AIC: 260.58

Number of Fisher Scoring iterations: 4

To make a test of global significance of the SNP effect, you can use

> anova(glm(aff ~ snp4, family = "binomial"), test = "Chisq")

Analysis of Deviance Table

Model: binomial, link: logit

Response: aff

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 242 254.908
snp4 2 0.329 240 254.579 0.848

In the manner similar to that described for quantitative traits, additive and
dominance/recessive models can be tested by proper coding of the genotypic
variable, e.g. to test the additive model, use
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> summary(glm(aff ~ as.numeric(snp4), family = "binomial"))

Call:
glm(formula = aff ~ as.numeric(snp4), family = "binomial")

Deviance Residuals:
Min 1Q Median 3Q Max

-0.7548 -0.7139 -0.6747 -0.6747 1.7842

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.4913 0.4164 -3.581 0.000342 ***
as.numeric(snp4) 0.1272 0.2268 0.561 0.574994
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 254.91 on 242 degrees of freedom
Residual deviance: 254.60 on 241 degrees of freedom
(7 observations deleted due to missingness)

AIC: 258.60

Number of Fisher Scoring iterations: 4

Now you have learned all commands necessary to answer the questions of
the next section.

Exit R by typing q() command (do not save image) and and proceed to the
self exercise.

3.3 Exercise

Start R by double-click over the file ge03d1p2.RData. Explore the data frame
present and answer the questions.

Exercise 10 How many SNPs are described in this data frame?

Exercise 11 What is the frequency (proportion) of snp1 allele A? What is its
frequency in these affected (aff==1)?

Exercise 12 How many cases and controls are present?

Exercise 13 If all subjects are used to test HWE, are there any SNPs out of
HWE at nominal P ≤ 0.05? Which ones?

Exercise 14 If only controls are used to test the SNPs which are out of HWE
in total sample, are these still out of HWE?

Exercise 15 Which SNP pairs are in strong LD (r2 ≥ 0.8)?

Exercise 16 For SNPs in strong LD, what is r2 for separate samples of cases
and controls?
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Exercise 17 Is there significant association between affection status and sex?
What is P -value for association?

Exercise 18 Is association between the disease and qt significant?

Exercise 19 Which SNPs are associated with the quantitative trait qt at nom-
inal P ≤ 0.05? Use 2 d.f. test.

Exercise 20 Test each SNP for association with the affection status, using 2
d.f. test. Which SNPs are significantly associated at nominal P ≤ 0.05? How
can you describe the model of action of the significant SNPs?

Exercise 21 For the SNPs selected in previous question, test association using
additive model. Which SNPs are still associated?

Exercise 22 If you adjust the analysis under additive model (question 21) for
significant covariates which you discovered in questions 17 and 18, are these
findings still significant?

Exercise 23 Test association between aff and snp5 and snp10, allowing for the
SNPs interaction effect. Use arbitrary (not an additive) model. Do you observe
significant interaction? How can you describe the model of concert action of
snp5 and snp10?

4 Introduction to GenABEL

In this section, you will become familiar with the GenABEL library, designed for
GWA analysis. Compared to genetics package, it provides specific facilities
for storage and manipulation of large amounts of data, very fast tests for GWA
analysis, and special functions to analyse and graphically present the results of
GWA analysis (thus ”analysis of analysis”).

Start R and load GenABEL library using command

> library(GenABEL)

After that, load the data with the command

> data(srdta)

4.1 General description of gwaa.data-class

The object you have loaded, srdta, belongs to the gwaa.data class. This is a
special class developed to facilitate GWA analysis.

In GWA analysis, different types of data are used. These include the pheno-
typic and genotypic data on the study participants and chromosome and location
of every SNP. For every SNP, it is desirable to know the details of coding (what
are alleles? – A, T, G, C? – and what is the strand – ’+’ or ’-’, ’top’ or ’bot’?
– this coding is for).

One could attempt to store all phenotypes and genotypes together in a single
table, using, e.g. one row per study subject; than the columns will correspond
to study phenotypes and SNPs. For a typical GWA data set, this would lead
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to a table of few thousands rows and few hundreds of thousands of columns.
Such a format is generated when one downloads HapMap data for a region. To
store GWA data in such tables internally, within R, proves to be inefficient. In
GenABEL, special data class, gwaa.data-class is used to store GWA data. The
structure of this data class is shown at the figure 6.

An object of some class has ”slots”which may contain actual data or objects
of other classes. The information stored at a particular slot of an object can
be accessed by command object@slot.

At the first level, a gwaa.data-class object has slot phdata, which contains
all phenotypic information in a data frame (data.frame-class object). The
rows of this data frame correspond to study subjects, and the columns corre-
spond to the variables. There are two default variables, which are always present
in phdata. The first of these is ”id”, which contains study subject identification
code. This identification code can be arbitrary character, but every person must
be coded with an unique ID. The second default variable is ”sex”, where males
are coded with ones (”1”) and females are coded with zero (”0”). It is important
to understand that this data frame is not supposed to be directly modified by
the user. In particular, it is extremely important to remember that one should
not directly add subjects to the table, change the values of ”id” and ”sex”, and
change the order of subjects in phdata unless this one is really understands the
way GenABEL works. One also should not run such data manipulation functions
as merge, cbind and rbind – exactly because they may change the number of
subjects or interfere with the order. On the other hand, it is OK to add more
variables to the data frame through direct computations, for example, if one
wishes to add computed body mass index, it is OK to run the command like

obj@phdata$bmi <- obj@phdata$weight/((obj@phdata$height)2̂)
To add many variables to phdata, special GenABEL function add.phdata

should be used.
The other slot of an object of gwaa.data-class is slot gtdata, which con-

tains all GWA genetic information in an object of class snp.data class (figure
6). This class, in turn, has slots nids, containing the number of study sub-
jects, idnames, containing all ID names of these subjects, nsnps, containing
the number of SNPs typed, snpnames, containing the SNP names, chromosome,
containing the name of the chromosome the SNPs belong to and slot map with
map position of SNPs, and slot male, containing the sex code for the subjects
(1=male, 0=female). The latter is identical to the ”sex” variable contained in
the phdata, but is duplicated here because many operations with purely genetic
data, in particular these concerning analysis of sex chromosomes, depend on
the sex. The strand information is presented in the slot strand. GenABEL codes
strand as ”+” (forward), ”-” (reverse) or ”u” (unknown). Of cause, if you prefer
top/bottom coding, this information may be stored in the same form – you will
just need to remember that ”+” corresponds to e.g. ”top”, and ”-” to ”bottom”
strand. The allelic coding is presented in slot coding. Coding for every al-
lele is presented with a pair of characters, for example ”AG”. Thus, for such
polymorphism, you may expect ”AA”, ”AG” and ”GG” genotypes to be found
in population. The order (that is ”AG” vs ”GA”) is important – the first allele
reported is the one which will be used as a reference in association analysis, and
thus the effects are reported for the second allele. To avoid memory overheads,
the strand and coding information is internally stored as snp.strand-class and
snp.coding-class. Information can be converted to human-readable format
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object
gwaa.data-class
All GWA data

object@gtdata
snp.data-class
All genetic data

object@phdata
data.frame-class
Phenotypic data


object@gtdata@nids
integer
# of people in study


object@gtdata@male
vector of integer
Sex (1=male, 0=female)

object@gtdata@idnames
vector of character
IDs of study participants

object@gtdata@nsnps
integer
# of SNPs in study


object@gtdata@snpnames
vector of character
IDs of study SNPs

object@gtdata@chromosome
vector of character
Chromosome label (1, 2, ... X)

object@gtdata@map
vector of double
SNPs map positions

object@gtdata@gtps
snp.mx-class
Genotypic data in compressed format

Figure 6: Structure of gwaa.data-class. In every box, first line contains the ob-
ject and slot names, second line describes the class of this object, and third line
describes what information is contained. NEEDS TO BE UPDATED WITH
object@gtdata@coding; snp.coding-class; snp allele coding and ob-
ject@gtdata@strand; snp.strand-class; snp allele strand
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using as.character function.
If, for example, you would like to know, how many SNPs were included in

the study (slot nsnps of the slot gtdata of srdta), you need to run command

> srdta@gtdata@nsnps

[1] 833

Thus, 833 SNPs were typed in the study. You can access information stored in
any slot in this manner.

You may want to read the general GenABEL man page using help(GenABEL).
To see help on gwaa.data-class, you can use help("gwaa.data-class") (mind
the quotation marks!).

Summary:

� An object of some class has ”slots” which may contain actual data or
objects of other classes. The information stored at a particular slot of an
object can be accessed by command object@slot.

� GenABEL uses special data class, gwaa.data-class, to store GWA data.

Exercise 24 Explore srdta.

1. How many people are included in the study?

2. How many of these are males?

3. How many are females?

4. What is male proportion?

Exercise 25 Explore slot containing map (map) and slot containing SNP names
(snpnames) of the gtdata slot of srdta.

1. What are names of markers located after 2,490,000 b.p.?

2. Between 1,100,000 and 1,105,000 b.p.?
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4.2 Sub-setting and coercing gwaa.data

It is possible to sub-set the object, which stores the GWA data in the manner
similar to the described above. Very primitively, you may think of an object
of class gwaa.data as a matrix whose rows correspond to study subjects and
columns correspond to SNPs studied (though the actual object is a way more
complicated). For example, if we would like to investigate what is the content
of srdta for the first 5 people and 3 SNPs, we can run

> ssubs <- srdta[1:5, 1:3]

> class(ssubs)

[1] "gwaa.data"
attr(,"package")
[1] "GenABEL"

> ssubs

id sex age qt1 qt2 qt3 bt
1 p1 1 43.4 -0.58 4.46 1.43 0
2 p2 1 48.2 0.80 6.32 3.90 1
3 p3 0 37.9 -0.52 3.26 5.05 1
4 p4 1 53.8 -1.55 888.00 3.76 1
5 p5 1 47.5 0.25 5.70 2.89 1
@nids = 5
@nsnps = 3
@nbytes = 2
@idnames = p1 p2 p3 p4 p5
@snpnames = rs10 rs18 rs29
@chromosome = 1 1 1
@coding = 08 0b 0c
@strand = 01 01 02
@map = 2500 3500 5750
@male = 1 1 0 1 1
@gtps =
40 40 40
40 40 00

As you can see, by sub-setting we obtained a smaller object of gwaa.data-
class, with all its slots. Most of the information is straightforward and does
not need further explanation.

There are though three slots which are not human-readable, i.e. @cod-
ing, @strand, and @gtps. These are coded using new classes based in R raw
data type; these can be converted in human-readable format using a variety of
’as.*’ functions. For example, to see human-readable information on coding and
strand, let us try

> as.character(ssubs@gtdata@coding)

rs10 rs18 rs29
"TG" "GA" "GT"
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This tells what alleles are observed in the three SNPs, and which alleles will be
used as a reference in association analysis.

To see the strand, use

> as.character(ssubs@gtdata@strand)

rs10 rs18 rs29
"+" "+" "-"

The slot gtps contains the SNP data, and is not readable, because the
information is compressed (each element contains data on up to four genotypes).
To get human-readable information, an object of class snp.data-class (e.g.
srdta@gtdata) can be coerced to a character using the same as.character()
function:

> as.character(ssubs@gtdata)

rs10 rs18 rs29
p1 "T/T" "G/G" "G/G"
p2 "T/T" "G/G" NA
p3 "T/T" "G/G" NA
p4 "T/T" "G/G" NA
p5 "T/T" "G/A" "G/G"

For @gtps conversion to other formats are possible as well. Other useful
coercion is to ”numeric”:

> as.numeric(ssubs@gtdata)

rs10 rs18 rs29
p1 0 0 0
p2 0 0 NA
p3 0 0 NA
p4 0 0 NA
p5 0 1 0

You can see that conversion to numeric data type uses information on both
underlying genotypes and coding. When coding is ”GA”, as is for the rs18
(the second SNP), homozygotes for the first allele, as specified by coding (”G”)
are converted to zeros (”0”), heterozygotes are converted to ones (”1”), and
homozygotes for the second allele (”A”) are converted to twos (”2”). Clearly,
when numerically converted data are used for association analysis, the effects
will be estimated for the second allele, while first will be used as a reference.

Genotypic data converted to standard R ”numeric” format can be used in
any further analysis. Homozygotes of one type are coded as ”0”, heterozygotes
are coded as ”1” and other type of homozygotes is coded as ”2”. You can think
of this as the number of allele of ”B” type.

Several useful genetic analysis libraries were developed for R. These include
genetics (analysis of linkage disequilibrium and many other useful functions)
and haplo.stats (analysis of association between traits and haplotypes). These
use there own genetic data formats.

One can translate GenABEL genetic data to the format used by ”genetics”
library by as.genotype():
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> as.genotype(ssubs@gtdata)

rs10 rs18 rs29
p1 T/T G/G G/G
p2 T/T G/G <NA>
p3 T/T G/G <NA>
p4 T/T G/G <NA>
p5 T/T G/A G/G

To translate GenABEL data to the format used by ”haplo.stats” you can use
function as.hsgeno()

> as.hsgeno(ssubs@gtdata)

rs10.a1 rs10.a2 rs18.a1 rs18.a2 rs29.a1 rs29.a2
p1 1 1 1 1 1 1
p2 1 1 1 1 NA NA
p3 1 1 1 1 NA NA
p4 1 1 1 1 NA NA
p5 1 1 1 2 1 1

Actually, most users will not need the latter function, as GenABEL provides a
functional interface to ”haplo.stats” (such GenABEL functions as scan.haplo()
and scan.haplo.2D()).

It is possible to select sub-sets of gwaa.data-class based not only on index
(e.g. first 10 people and SNP number 33), but also based on names.

For example, if we would like to retrieve phenotypic data on people with IDs
”p141”, ”p147” and ”p2000”, we can use

> srdta[c("p141", "p147", "p2000"), ]@phdata

id sex age qt1 qt2 qt3 bt
141 p141 0 47.2 0.51 5.23 2.17 0
147 p147 0 43.2 0.14 4.47 1.73 0
2000 p2000 0 43.1 -1.53 2.78 2.70 1

here, the first part of expression sub-sets srdta on selected IDs, and the sec-
ond tells which part of the retrieved sub-set we want to see. You can try
srdta[c("p141","p147","p2000"),], but be prepared to see long output, as
all information will be reported.

In similar manner, we can also select on SNP name. For example, if we are
interested to see information on SNPs ”rs10” and ”rs29” for above people, we
can run

> srdta[c("p141", "p147", "p2000"), c("rs10", "rs29")]

id sex age qt1 qt2 qt3 bt
141 p141 0 47.2 0.51 5.23 2.17 0
147 p147 0 43.2 0.14 4.47 1.73 0
2000 p2000 0 43.1 -1.53 2.78 2.70 1
@nids = 3
@nsnps = 2
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@nbytes = 1
@idnames = p141 p147 p2000
@snpnames = rs10 rs29
@chromosome = 1 1
@coding = 08 0c
@strand = 01 02
@map = 2500 5750
@male = 0 0 0
@gtps =
40 40

To see the actual genotypes for the above three people and two SNPs, use

> as.character(srdta[c("p141", "p147", "p2000"), c("rs10", "rs29")])

rs10 rs29
p141 "T/T" "G/G"
p147 "T/T" "G/G"
p2000 "T/G" "G/T"

or

> as.numeric(srdta[c("p141", "p147", "p2000"), c("rs10", "rs29")])

rs10 rs29
p141 0 0
p147 0 0
p2000 1 1

Exercise 26 Explore genotypes for SNP ”rs114”.

1. What is the coding and which allele is the reference one?

2. What is the frequency of non-reference (”effective”) allele in total sam-
ple?

3. What is the frequency of effective allele in male?

4. What is the frequency of effective allele in female?

5. What is the frequency of the reference allele in total sample, males and
females?

Summary:

� It is possible to obtain subsets of objects of gwaa.data-class and
snp.data-class using standard 2D sub-setting model [i,j], where i
corresponds to study subjects and j corresponds to SNPs.
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� It is possible to provide ID and SNP names instead of indexes when sub-
setting an object of class gwaa.data-class.

� Function as.numeric() converts genotypic data from snp.data-class to
regular integer numbers, which can be used in analysis with R.

� Function as.character() converts genotypic data from snp.data-class
to character format.

� Function as.genotype() converts genotypic data from snp.data-class
to the format used by library genetics.

� Function as.hsgeno() converts genotypic data from snp.data-class to
the format used by library haplo.stats.

4.3 Exploring genetic data

Implementation of function summary() to snp.data class is very useful in genetic
data exploration and quality control (QC). Let us try application of this function
to the ssubs:

> a <- summary(ssubs)

> a

$phdata
id sex age qt1

Length:5 Min. :0.0 Min. :37.90 Min. :-1.55
Class :character 1st Qu.:1.0 1st Qu.:43.40 1st Qu.:-0.58
Mode :character Median :1.0 Median :47.50 Median :-0.52

Mean :0.8 Mean :46.16 Mean :-0.32
3rd Qu.:1.0 3rd Qu.:48.20 3rd Qu.: 0.25
Max. :1.0 Max. :53.80 Max. : 0.80

qt2 qt3 bt
Min. : 3.26 Min. :1.430 Min. :0.0
1st Qu.: 4.46 1st Qu.:2.890 1st Qu.:1.0
Median : 5.70 Median :3.760 Median :1.0
Mean :181.55 Mean :3.406 Mean :0.8
3rd Qu.: 6.32 3rd Qu.:3.900 3rd Qu.:1.0
Max. :888.00 Max. :5.050 Max. :1.0

$gtdata
NoMeasured CallRate Q.2 P.11 P.12 P.22 Pexact Fmax Plrt

rs10 5 1.0 0.0 5 0 0 1 0.0000000 1.0000000
rs18 5 1.0 0.1 4 1 0 1 -0.1111111 0.7386227
rs29 2 0.4 0.0 2 0 0 1 0.0000000 1.0000000

Chromosome
rs10 1
rs18 1
rs29 1
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In the first section, the summary is generated for phenotypic data. In the
second section, summary is generated for genotypic data. In this section, NoMea-
sured refers to the number of genotypes scores, CallRate to the proportion of
these, Q.2 is the frequency of the ’B’ allele. The counts in three genotypic classes
are provided next. Pexact refers to exact P-value for the test of Hardy-Weinberg
equilibrium.

As you’ve seen above, an object of the class gwaa.data-class or snp.data-
class is sub-settable in standard manner: [i,j], where i is an index of a study
subject and j is an index of a SNP. Importantly, i could be a list of indexes:

> vec <- which(srdta@phdata$age >= 65)

> vec

[1] 64 122 186 206 207 286 385 386 492 514 525 536 545 565 613
[16] 632 649 673 701 779 799 981 1008 1131 1186 1223 1281 1383 1471 1489
[31] 1501 1565 1584 1673 1679 1782 1821 1832 1866 1891 1953 2081 2085 2140 2224
[46] 2268 2291 2384 2420 2453

> summary(srdta@gtdata[vec, 1:3])

NoMeasured CallRate Q.2 P.11 P.12 P.22 Pexact Fmax
rs10 48 0.96 0.1354167 36 11 1 1.0000000 0.02131603
rs18 47 0.94 0.2765957 25 18 4 0.7245853 0.04298643
rs29 45 0.90 0.1555556 32 12 1 1.0000000 -0.01503759

Plrt Chromosome
rs10 0.8843626 1
rs18 0.7697067 1
rs29 0.9188943 1

This shows summary of first three genotypes for people with age greater then or
equal to 65 y.o. The same result may be achieved by sub-setting using a vector
of logical values:

> vec <- (srdta@phdata$age >= 65)

> table(vec)

vec
FALSE TRUE
2450 50

> summary(srdta@gtdata[vec, 1:3])

NoMeasured CallRate Q.2 P.11 P.12 P.22 Pexact Fmax
rs10 48 0.96 0.1354167 36 11 1 1.0000000 0.02131603
rs18 47 0.94 0.2765957 25 18 4 0.7245853 0.04298643
rs29 45 0.90 0.1555556 32 12 1 1.0000000 -0.01503759

Plrt Chromosome
rs10 0.8843626 1
rs18 0.7697067 1
rs29 0.9188943 1

or a list with IDs of study subjects:
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> vec1 <- srdta@gtdata@idnames[vec]

> vec1

[1] "p64" "p122" "p186" "p206" "p207" "p286" "p385" "p386" "p492"
[10] "p514" "p525" "p536" "p545" "p565" "p613" "p632" "p649" "p673"
[19] "p701" "p779" "p799" "p981" "p1008" "p1131" "p1186" "p1223" "p1281"
[28] "p1383" "p1471" "p1489" "p1501" "p1565" "p1584" "p1673" "p1679" "p1782"
[37] "p1821" "p1832" "p1866" "p1891" "p1953" "p2081" "p2085" "p2140" "p2224"
[46] "p2268" "p2291" "p2384" "p2420" "p2453"

> summary(srdta@gtdata[vec1, 1:3])

NoMeasured CallRate Q.2 P.11 P.12 P.22 Pexact Fmax
rs10 48 0.96 0.1354167 36 11 1 1.0000000 0.02131603
rs18 47 0.94 0.2765957 25 18 4 0.7245853 0.04298643
rs29 45 0.90 0.1555556 32 12 1 1.0000000 -0.01503759

Plrt Chromosome
rs10 0.8843626 1
rs18 0.7697067 1
rs29 0.9188943 1

Let us explore the object returned by summary function when applied to
snp.data class in more details:

> a <- summary(srdta@gtdata[vec1, 1:3])

> class(a)

[1] "data.frame"

Thus, the object returned is a data.frame. Therefore it should have dimensions
and names:

> dim(a)

[1] 3 10

> names(a)

[1] "NoMeasured" "CallRate" "Q.2" "P.11" "P.12"
[6] "P.22" "Pexact" "Fmax" "Plrt" "Chromosome"

Indeed, we derived 8 characteristics (”NoMeasured”, ”CallRate”, ”Q.2”, ”P.11”,
”P.12”, ”P.22”, ”Pexact”, ”Chromosome”) for the first 3 SNPs.

Exercise 27 Test if Hardy-Weinberg equilibrium holds for the first 10 SNPs

1. Total sample

2. In cases (bt is 1)

3. In controls (bt is 0)
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Figure 7: Histogram of the call rate

Let us analyse the distribution of call rate in the whole study. For this, we
first need to obtain the vector of call rates:

> sumgt <- summary(srdta@gtdata)

> crate <- sumgt[, "CallRate"]

This vector may be presented by a histogram

> hist(crate)

which shows that most SNPs have call rate between 93 and 97% (figure 7).
As next step, you would like to produce a summary table, showing how many

markers had call rate lower than, say, 93%, between 93 and 95%, between 95
and 99% and more than 99%. You can use catable() command for that:

> catable(crate, c(0.93, 0.95, 0.99))

X<=0.93 0.93<X<=0.95 0.95<X<=0.99 X>0.99
No 0 415.000 418.000 0
Prop 0 0.498 0.502 0

Similar procedure may be applied to see deviation from HWE:

> hwp <- sumgt[, "Pexact"]

> catable(hwp, c((0.05/srdta@gtdata@nsnps), 0.01, 0.05, 0.1))

48



X<=6.00240096038415e-05 6.00240096038415e-05<X<=0.01 0.01<X<=0.05
No 2.000 7.000 23.000
Prop 0.002 0.008 0.028

0.05<X<=0.1 X>0.1
No 31.000 770.000
Prop 0.037 0.924

The first cut-off category will detect SNPs which are deviating from HWE
at the Bonferroni-corrected P-level.

However, for these data it will make more sense to table cumulative distri-
bution:

> catable(hwp, c((0.05/srdta@gtdata@nsnps), 0.01, 0.05, 0.1), cum = T)

X<=6.00240096038415e-05 X<=0.01 X<=0.05 X<=0.1 all X
No 2.000 9.000 32.000 63.000 833
Prop 0.002 0.011 0.038 0.076 1

If you would like to investigate the minor allele frequency (MAF) distribu-
tion, the same logic would apply. First, derive MAF with

> afr <- sumgt[, "Q.2"]

> maf <- pmin(afr, (1 - afr))

Next, generate histograms for frequency and MAF:

> par(mfcol = c(2, 1))

> hist(afr)

> hist(maf)

(shown at the figure 8) and then generate table describing frequency distribution:

> catable(afr, c(0.01, 0.05, 0.1, 0.2, 0.5, 0.8, 0.9, 0.95, 0.99))

X<=0.01 0.01<X<=0.05 0.05<X<=0.1 0.1<X<=0.2 0.2<X<=0.5 0.5<X<=0.8
No 22.000 53.000 99.000 132.000 313.000 187.000
Prop 0.026 0.064 0.119 0.158 0.376 0.224

0.8<X<=0.9 0.9<X<=0.95 0.95<X<=0.99 X>0.99
No 18.000 8.00 1.000 0
Prop 0.022 0.01 0.001 0

> catable(maf, c(0, 0.01, 0.05, 0.1, 0.2), cum = T)

X<=0 X<=0.01 X<=0.05 X<=0.1 X<=0.2 all X
No 0 22.000 76.000 183.00 333.0 833
Prop 0 0.026 0.091 0.22 0.4 1

Note that we used ”0” as the first category – this will give you the number
of monomorhic SNPs which we recommend to exclude from analysis.

Other function, perid.summary, produces summary SNP statistics per per-
son. Let us try producing this summary for the first 10 people:

> perid.summary(srdta[1:10, ])
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Figure 8: Histogram of the call rate
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NoMeasured CallPP Het
p1 790 0.9483794 0.2012658
p2 792 0.9507803 0.2525253
p3 783 0.9399760 0.3793103
p4 789 0.9471789 0.3929024
p5 790 0.9483794 0.3341772
p6 787 0.9447779 0.2337992
p7 794 0.9531813 0.3690176
p8 793 0.9519808 0.2976040
p9 788 0.9459784 0.3324873
p10 797 0.9567827 0.3412798

This table lists the number of genotypes scored for the person, call rate, and
heterozygosity. The outliers who have increased average heterozygosity may be
suggestive of contaminated DNA samples.

Let us analyse the distribution of heterozygosity:

> het <- perid.summary(srdta)$Het

> mean(het)

[1] 0.3309457

> catable(het, c(0.1, 0.25, 0.3, 0.35, 0.5))

X<=0.1 0.1<X<=0.25 0.25<X<=0.3 0.3<X<=0.35 0.35<X<=0.5 X>0.5
No 7.000 73.000 339.000 1281.000 800.00 0
Prop 0.003 0.029 0.136 0.512 0.32 0

> plot(het)

The resulting histogram is presented in figure 9. It is easy to see that few
people have very low heterozygosity, but there are no outliers with extremely
high values.

In this section, we covered low-level functions summary and perid.summary.
Base on these, an upper-level genetic data quality control function, check.marker,
is based. That function will be covered in the next section.

Summary:

� When summary() function is applied to an object of snp.data-class,
it return summary statistics for SNPs, including exact test for Hardy-
Weinberg equilibrium.

� When perid.summary() function is applied to an object of snp.data-
class, it return per-person summary statistics, including the call rate
within this person and its’ heterozygosity.
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Figure 9: Histogram of heterozygosity
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Exercise 28 Characterise the distribution of call rates within study subjects
and produce a histogram. How many people have call rate below 93%?

5 Genome-wide association analysis

In the first parts of this section you will be guided through a GWA analysis of a
small data set. In the last part you will investigate a larger data set by yourself,
do a verification study and will answer the questions. All data sets used assume
a study in a relatively homogeneous population. Try to finish the first part in
the morning and the second part in the afternoon.

Though only few thousands of markers located at four small chromosomes
are used in the scan, we still going to call it Genome-Wide (GW), as the amount
of data we will use is approaches the amount to be expected in a real experiment.
However, because the regions are small, and the LD between SNPs is high, some
specific features (e.g. relatively high residual inflation, which occurs because
large proportion of SNPs are in LD with the reuly associated ones) are specific
features of this data set, which are not observed in true GWA studies.

Start R and load GenABEL library by typing

> library(GenABEL)

and load the data which we will use in this section by

> data(ge03d2ex)

Investigate the objects loaded by command

> ls()

[1] "ge03d2ex"

The ge03d2ex is an object of the class gwaa.data:

> class(ge03d2ex)

[1] "gwaa.data"
attr(,"package")
[1] "GenABEL"

To check what are the names of variables in the phenotypic data frame, use

> names(ge03d2ex@phdata)

[1] "id" "sex" "age" "dm2" "height" "weight" "diet" "bmi"

We can attach this data frame to the R search path by

> attach(ge03d2ex@phdata)
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5.1 Data descriptives and first round of GWA analysis

Let us investigate what are the traits presented in the data frame loaded and
what are the characteristics of the distribution by using specific GenABEL func-
tion descriptive.trait:

> descriptives.trait(ge03d2ex)

No Mean SD
id 136 NA NA
sex 136 0.529 0.501
age 136 49.069 12.926
dm2 136 0.632 0.484
height 135 169.440 9.814
weight 135 87.397 25.510
diet 136 0.059 0.236
bmi 135 30.301 8.082

You can see that phenotypic frame contains the data on 136 people; the
data on sex, age, height, weight, diet and body mass index (BMI) are available.
Our trait of interest is dm2 (type 2 diabetes). Note that every single piece
of information in this data set is simulated; however, we tried to keep our
simulations in a way we think the control of T2D may work.

You can produce a summary for cases and controls separately and compare
distributions of the traits by

> descriptives.trait(ge03d2ex, by = dm2)

No(by.var=1) Mean SD No(by.var=0) Mean SD Ptt Pkw
id 86 NA NA 50 NA NA NA NA
sex 86 0.593 0.494 50 0.420 0.499 0.053 0.052
age 86 50.250 12.206 50 47.038 13.971 0.179 0.205
dm2 86 NA NA 50 NA NA NA NA
height 86 170.448 10.362 49 167.671 8.586 0.097 0.141
weight 86 93.587 27.337 49 76.534 17.441 0.000 0.000
diet 86 0.058 0.235 50 0.060 0.240 0.965 0.965
bmi 86 32.008 8.441 49 27.304 6.463 0.000 0.001

Pexact
id NA
sex 0.074
age NA
dm2 NA
height NA
weight NA
diet 1.000
bmi NA

Here, the by argument specifies the grouping variable. You can see that cases
and controls are different in weight, which is expected, as T2D is associated
with obesity.

Similarly, you can produce grand GW descriptives of the marker data by
using
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> descriptives.marker(ge03d2ex)

$`Minor allele frequency distribution`
X<=0.01 0.01<X<=0.05 0.05<X<=0.1 0.1<X<=0.2 X>0.2

No 146.000 684.000 711.000 904.000 1555.000
Prop 0.036 0.171 0.178 0.226 0.389

$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X

No 46.000 71.000 125.000 275.000 4000
Prop 0.011 0.018 0.031 0.069 1

$`Distribution of porportion of successful genotypes (per person)`
X<=0.9 0.9<X<=0.95 0.95<X<=0.98 0.98<X<=0.99 X>0.99

No 1.000 0 0 135.000 0
Prop 0.007 0 0 0.993 0

$`Distribution of porportion of successful genotypes (per SNP)`
X<=0.9 0.9<X<=0.95 0.95<X<=0.98 0.98<X<=0.99 X>0.99

No 37.000 6.000 996.000 1177.000 1784.000
Prop 0.009 0.002 0.249 0.294 0.446

$`Mean heterozygosity for a SNP`
[1] 0.2582298

$`Standard deviation of the mean heterozygosity for a SNP`
[1] 0.1592255

$`Mean heterozygosity for a person`
[1] 0.2476507

$`Standard deviation of mean heterozygosity for a person`
[1] 0.04291038

It is of note that we can see inflation of the proportion of the tests for HWE
at particular threshold, as compared to the expected. This may indicate poor
genotyping quality and/or genetic stratification.

We can test the GW marker characteristics in controls by

> descriptives.marker(ge03d2ex, ids = (dm2 == 0))

$`Minor allele frequency distribution`
X<=0.01 0.01<X<=0.05 0.05<X<=0.1 0.1<X<=0.2 X>0.2

No 233.000 676.000 671.000 898.000 1522.000
Prop 0.058 0.169 0.168 0.225 0.381

$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X

No 0 3.000 14.000 98.000 4000
Prop 0 0.001 0.003 0.025 1
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$`Distribution of porportion of successful genotypes (per person)`
X<=0.9 0.9<X<=0.95 0.95<X<=0.98 0.98<X<=0.99 X>0.99

No 0 0 0 50 0
Prop 0 0 0 1 0

$`Distribution of porportion of successful genotypes (per SNP)`
X<=0.9 0.9<X<=0.95 0.95<X<=0.98 0.98<X<=0.99 X>0.99

No 37.000 49.000 1523.000 0 2391.000
Prop 0.009 0.012 0.381 0 0.598

$`Mean heterozygosity for a SNP`
[1] 0.2555009

$`Standard deviation of the mean heterozygosity for a SNP`
[1] 0.1618707

$`Mean heterozygosity for a person`
[1] 0.2525720

$`Standard deviation of mean heterozygosity for a person`
[1] 0.04714886

Apparently, HWE distribution holds better in controls than in the total sample.
Let us check whether there are indications that deviation from HWE is due

to cases. At this stage we are only interested in HWE distribution table, and
therefore will ask to report only table two:

> descriptives.marker(ge03d2ex, ids = (dm2 == 1))[2]

$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X

No 45.000 79.00 136.000 268.000 4000
Prop 0.011 0.02 0.034 0.067 1

It seems that indeed excessive number of markers are out of HWE in cases. If no
laboratory procedure (e.g. DNA extraction, genotyping, calling) were done for
cases and controls separately, this may indicate possible heterogeneity specific
for cases.

It may be interesting to plot a χ2−χ2 plot contrasting observed and expected
distributions for the test for HWE in cases. First, we need to compute summary
SNP statistics by

> s <- summary(ge03d2ex@gtdata[(dm2 == 1), ])

Note the you have produced the summary for the gtdata slot of ge03d2ex;
this is the slot which actually contain all genetic data in special compressed
format.

You can see first 10 elements of this very long table by

> s[1:10, ]
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NoMeasured CallRate Q.2 P.11 P.12 P.22 Pexact
rs7435137 84 0.9767442 0.52380952 17 46 21 0.510978370
rs7725697 85 0.9883721 0.01176471 83 2 0 1.000000000
rs664063 86 1.0000000 0.08720930 71 15 0 1.000000000
rs4670072 60 0.6976744 0.11666667 53 0 7 0.001701645
rs546570 84 0.9767442 0.89880952 1 15 68 1.000000000
rs7908680 83 0.9651163 0.03012048 78 5 0 1.000000000
rs166732 83 0.9651163 0.04216867 76 7 0 1.000000000
rs4257079 86 1.0000000 0.07558140 73 13 0 1.000000000
rs5150804 84 0.9767442 0.39880952 31 39 14 0.820496827
rs3508821 83 0.9651163 0.20481928 52 28 3 1.000000000

Fmax Plrt Chromosome
rs7435137 -0.09772727 0.3699602726 1
rs7725697 -0.01190476 0.8773691192 3
rs664063 -0.09554140 0.2308999066 2
rs4670072 1.00000000 0.0002510899 X
rs546570 0.01830931 0.8693645189 2
rs7908680 -0.03105590 0.6935168932 1
rs166732 -0.04402516 0.5787401988 1
rs4257079 -0.08176101 0.3022863648 1
rs5150804 0.03177183 0.7710793180 2
rs3508821 -0.03565062 0.7419587406 2

Note that the column before the last provides P-exact we need. We can extract
these to a separate vector by

> pexcas <- s[, "Pexact"]

and produce the χ2 − χ2 plot and estimate inflation factor by command est-
lambda(), which operates with a vector of P-values or χ2s:

> estlambda(pexcas)

$estimate
[1] 1.068184

$se
[1] 0.02614764

By default, this function also produces a χ2 − χ2 plot, at which you can see
some extreme deviation of observed from expected. The resulting plot (figure 10)
shows extreme deviation for high values of the test. Looking at the λ estimate,
we indeed see inflation of the test statistics.

You can repeat this test for the controls, if time permits.

The ’se’ produced by estlambda can not be used to test if inflation is significant

and make conclusions about presence of stratification.

Let us first try do GWA scan using raw (before quality control) data. We
will use the score test, as implemented in the qtscore() funcrtion of GenABEL
for testing:
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Figure 10: χ2 − χ2 plot for the exact test for HWE. Black line of slope 1:
expected under no inflation; Red line: fitted slope.

> an0 <- qtscore(dm2, ge03d2ex, trait = "binomial")

The first argument used describes the model; here it is rather simple — the
affection status, dm2, is supposed to depend on SNP genotype only.

You can see what objects are returned by this function by using

> names(an0)

[1] "chi2.1df" "chi2.2df" "P1df" "P2df" "Pc1df"
[6] "Pc2df" "lambda" "effB" "effAB" "effBB"
[11] "N" "snpnames" "idnames" "map" "chromosome"
[16] "formula" "family"

Here, P1df, P2df and Pc1df are most interesting; the first two are vectors of 1
and 2 d.f. P-values obtained in the GWA analysis, the last one is 1 d.f. P-value
corrected for inflation factor λ (which is presented in lambda object).

Let us see if there is evidence for the inflation of the test statistics

> an0$lambda

$estimate
[1] 1.047846

$iz0
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qtscore(dm2, ge03d2ex, binomial)
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Figure 11: −log10(P −value) from the genome scan before QC procedure. Raw
analysis: black; corrected analysis: green

[1] 1.002987

$iz2
[1] 0.8084199

The estimate of λ is 1.05, suggesting inflation of the test and some degree of
stratification.

We can plot the results of analysis by

> plot(an0)

The resulting plot is presented in the figure 11. By default, −log10(P−value) on
1 d.f. are presented; see help to figure out how this behaviour can be changed.

We can also add the corrected P-values to the plot with

> add.plot(an0, df = "Pc1df", col = "green")

You can also generate a descriptive table for the ”top” (as ranked by P-value)
results by

> descriptives.scan(an0)

Chromosome Position N effB P1df Pc1df effAB effBB
rs1719133 1 4495479 136 0.337293 0.000280 0.000386 0.400424 0.000000
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rs2975760 3 10518480 134 3.803800 0.000298 0.000411 3.454545 10.000000
rs7418878 1 2808520 136 3.081231 0.000974 0.001274 3.605128 4.871795
rs5308595 3 10543128 133 3.982550 0.001054 0.001375 3.317143 Inf
rs4804634 1 2807417 132 0.434115 0.001197 0.001552 0.524064 0.173913
rs3224311 2 6009769 135 3.158317 0.001329 0.001716 3.415179 4.250000
rs26325 3 10617781 135 0.097428 0.001331 0.001719 0.109772 NA
rs8835506 2 6010852 132 3.177208 0.001532 0.001966 3.490385 4.125000
rs3925525 2 6008501 135 2.984169 0.001940 0.002464 3.238095 4.121212
rs2521089 3 10487652 135 2.502395 0.002052 0.002601 2.571770 4.772727

P2df
rs1719133 0.000633
rs2975760 0.001143
rs7418878 0.002264
rs5308595 0.004593
rs4804634 0.003696
rs3224311 0.002941
rs26325 0.001331
rs8835506 0.003162
rs3925525 0.004555
rs2521089 0.006966

Here you see top 10 results, sorted by P-value with 1 d.f. If you want to sort
by the corrected P-value, you can use descriptives.scan(an0,sort="Pc1df");
to see more then 10 (e.g. 25) top results, use descriptives.scan(an0,top=25).
You can combine all these options. Large part of results reports NA as effect
estimates and 9.99 as P-value for 2 d.f. test – for these markers only two out of
three possible genotypes were observed, and consequently 2 d.f. test could not
be performed.

Now let us apply emp.qtscore() function, which computes empirical GW
(or experiment-wise) significance

> an0.e <- emp.qtscore(dm2, ge03d2ex)

100%

> descriptives.scan(an0.e, sort = "Pc1df")

Chromosome Position N effB P1df Pc1df effAB effBB P2df
rs1719133 1 4495479 136 -0.265206 0.43 0.53 -0.208088 -0.737500 1
rs2975760 3 10518480 134 0.234065 0.44 0.55 0.275510 0.409091 1
rs7418878 1 2808520 136 0.208910 0.85 0.93 0.280741 0.326840 1
rs5308595 3 10543128 133 0.244552 0.88 0.95 0.256483 0.462366 1
rs4804634 1 2807417 132 -0.205045 0.93 0.96 -0.119383 -0.384524 1
rs3224311 2 6009769 135 0.213363 0.94 0.97 0.277863 0.315152 1
rs26325 3 10617781 135 -0.487537 0.94 0.97 -0.487537 NA 1
rs8835506 2 6010852 132 0.211200 0.96 0.99 0.279622 0.307692 1
rs7435137 1 4259040 134 0.073451 1.00 1.00 0.116637 0.146169 1
rs7725697 3 10806991 135 0.375940 1.00 1.00 0.375940 NA 1

None of the SNPs hits GW significance. If, actually, any did pass the thresh-
old, we could not trust the results, because the distribution of the HWE test
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and presence of inflation factor for the association test statistics suggest that the
data may contain multiple errors (indeed they do). Therefore before association
analysis we need to do rigorous Quality Control (QC).

Note that at certain SNP, corrected P-values become equal to 1 – at this
point order is arbitrary because sorting could not be done.

Summary:

� The descriptives family of functions was developed to facilitate produc-
tion of tables which can be directly used in a manuscript — it is possible
to save the output as a file, which can be open by Excel or Word. See e.g.
help(descriptives.trait) for details.

� The inflation of test statistics compared to null (1 d.f.) may be estimated
with estlambda function.

5.2 Genetic data QC

The major genetic data QC function of GenABEL is check.marker(). We will try
to run it; the output is rather self-explaining. As it was detailed at the lecture,
in the first round of the QC we do not want to check for HWE. This can be
achieved by setting HWE P-value selection threshold to zero (p.level=0):

> qc1 <- check.marker(ge03d2ex, p.level = 0)

Excluding people/markers with extremely low call rate...
4000 markers and 136 people in total
0 people excluded because of call rate < 0.1
6 markers excluded because of call rate < 0.1
Passed: 3994 markers and 136 people

Running sex chromosome checks...
197 heterozygous X-linked male genotypes found
1 X-linked markers are likely to be autosomal (odds > 1000 )
2 male are likely to be female (odds > 1000 )
0 female are likely to be male (odds > 1000 )
If these people/markers are removed, 0 heterozygous male genotypes are left
Passed: 3993 markers and 134 people

no X/Y/mtDNA-errors to fix

RUN 1
3993 markers and 134 people in total
304 (7.613323%) markers excluded as having low (<1.865672%) minor allele frequency
36 (0.9015778%) markers excluded because of low (<95%) call rate
0 (0%) markers excluded because they are out of HWE (P <0)
1 (0.7462687%) people excluded because of low (<95%) call rate
Mean autosomal HET is 0.2747262 (s.e. 0.03721277)
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3 (2.238806%) people excluded because too high autosomal heterozygosity (FDR <1%)
Excluded people had HET >= 0.4856887
Mean IBS is 0.7734414 (s.e. 0.02122081), as based on 2000 autosomal markers
1 (0.7462687%) people excluded because of too high IBS (>=0.95)
In total, 3653 (91.4851%) markers passed all criteria
In total, 130 (97.01493%) people passed all criteria

RUN 2
3653 markers and 130 people in total
69 (1.888858%) markers excluded as having low (<1.923077%) minor allele frequency
0 (0%) markers excluded because of low (<95%) call rate
0 (0%) markers excluded because they are out of HWE (P <0)
0 (0%) people excluded because of low (<95%) call rate
Mean autosomal HET is 0.2745297 (s.e. 0.01722736)
0 people excluded because too high autosomal heterozygosity (FDR <1%)
Mean IBS is 0.7715355 (s.e. 0.01741012), as based on 2000 autosomal markers
1 (0.7692308%) people excluded because of too high IBS (>=0.95)
In total, 3584 (98.11114%) markers passed all criteria
In total, 130 (100%) people passed all criteria

RUN 3
3584 markers and 130 people in total
0 (0%) markers excluded as having low (<1.923077%) minor allele frequency
0 (0%) markers excluded because of low (<95%) call rate
0 (0%) markers excluded because they are out of HWE (P <0)
0 (0%) people excluded because of low (<95%) call rate
Mean autosomal HET is 0.2745297 (s.e. 0.01722736)
0 people excluded because too high autosomal heterozygosity (FDR <1%)
Mean IBS is 0.7707034 (s.e. 0.01772056), as based on 2000 autosomal markers
1 (0.7692308%) people excluded because of too high IBS (>=0.95)
In total, 3584 (100%) markers passed all criteria
In total, 130 (100%) people passed all criteria

The computation of all pairwise proportion of alleles identical-by-state (IBS)

by ibs() function, which is also called by check.markers() may take quite some

time, which is proportional to the square of the number of subjects. This

is not a problem with the small number of people we use for this example

or when modern computers are used. However, the computers in the Nihes

computer room are very old. Therefore be prepared to wait for long time

when you will do a self-exercise with 1,000 people.

From the output you can see that QC starts with checking the data for SNPs
and people with extremely low call rate. Six markers are excluded from further
analysis due to very low call rate. Next, X-chromosomal errors are identified.
The function finds out that all errors (heterozygous male X-genotypes) are due
to two people with wrong sex assigned and one marker, which looks like an
autosomal one. This actually could be a marker from pseudoautosomal region,
which should have been arranged as a separate ”autosome”.
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Then, the procedure finds the markers with low call rate (≤ 0.95) across
people, markers with low MAF (by default, low MAF is defined as less than few
copies of the rare allele, see help for details); people with low call rate (≤ 0.95)
across SNPs, people with extreme heterozygosity (at FDR 0.01) and these who
have GW IBS ≥ 0.95. These default parameters may be changed if you wish
(consult help).

Because some of the people fail to pass the tests, the data set is not guaran-
teed to be really ”clean”after single iteration, e.g. some marker may not pass the
call threshold after we exclude few informative (but apparently wrong) people.
Therefore the QC is repeated iteratively until no further errors are found.

You can generate short summary of QC by marker and by person through

> summary(qc1)

$`Per-SNP fails statistics`
NoCall NoMAF NoHWE Redundant Xsnpfail

NoCall 42 0 0 0 0
NoMAF NA 373 0 0 0
NoHWE NA NA 0 0 0
Redundant NA NA NA 0 0
Xsnpfail NA NA NA NA 1

$`Per-person fails statistics`
IDnoCall HetFail IBSFail isfemale ismale isXXY

IDnoCall 1 0 0 0 0 0
HetFail NA 3 0 0 0 0
IBSFail NA NA 1 0 0 0
isfemale NA NA NA 2 0 0
ismale NA NA NA NA 0 0
isXXY NA NA NA NA NA 0

Note that the original data, ge03d2ex, are not modified during the proce-
dure; rather, check.markers() generate a list of markers and people which pass
or do not pass certain QC criteria. The objects returned by check.markers()
are:

> names(qc1)

[1] "nofreq" "nocall" "nohwe" "Xmrkfail" "hetfail" "idnocall"
[7] "ibsfail" "isfemale" "ismale" "snpok" "idok" "call"

The element idok provides the list of people who passed all QC criteria,
and snpok provides the list of SNPs which passed all criteria. You can easily
generate a new data set, which will consist only of these people and markers by

> data1 <- ge03d2ex[qc1$idok, qc1$snpok]

If there are any residual sporadic X-errors (male heterozygosity), these can
be fixed (set to NA) by

> data1 <- Xfix(data1)

no X/Y/mtDNA-errors to fix
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Applying this function does not make any difference for the example data set,
but you will need to use it for the bigger data set.

At this point, we are ready to work with the new, cleaned, data set data1.
However, if we try

> length(dm2)

[1] 136

we can see that the original phenotypic data are attached to the search path
(there are only 130 people left in the ’clean’ data set). Therefore we need to
detach the data by

> detach(ge03d2ex@phdata)

and attach new data by

> attach(data1@phdata)

At this stage, let us check if the first round of QC solves the problem of
inflated test for HWE, which may be the case if this inflation is due to genotypic
errors we managed to eliminate:

> descriptives.marker(data1)[2]

$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X

No 43.000 66.000 124.000 253.000 3584
Prop 0.012 0.018 0.035 0.071 1

> descriptives.marker(data1[dm2 == 1])[2]

$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X

No 46.000 72.00 125.000 235.000 3584
Prop 0.013 0.02 0.035 0.066 1

> estlambda(summary(data1@gtdata[dm2 == 1, ])[, "Pexact"])

$estimate
[1] 1.102509

$se
[1] 0.02784137

Apparently, the distribution (figure 12) looks better (note the scale difference
between the graphs), but the test statistics is still inflated.

5.3 Finding genetic sub-structure

Now, we are ready for the second round of QC, detection of genetic outliers which
may contaminate our data. We will detect genetic outliers using a technique,
which resembles the one suggested by Price at al.

As a first step, we will compute a matrix of genomic kinship between all
pairs of people, using only autosomal markers by
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Figure 12: χ2 − χ2 plot for the exact test for HWE. Black line of slope 1:
expected under no inflation; Red line: fitted slope.

> data1.gkin <- ibs(data1[, data1@gtdata@chromosome != "X"], weight = "freq")

You can see the 5x5 upper left sub-matrix by

> data1.gkin[1:5, 1:5]

id199 id300 id403 id415 id666
id199 0.497044383 3265.00000000 3264.00000000 3252.00000000 3268.000000
id300 -0.012711493 0.49531467 3271.00000000 3260.00000000 3274.000000
id403 -0.012653681 -0.01258717 0.51882653 3258.00000000 3273.000000
id415 -0.002906311 0.01344947 -0.02541456 0.56778632 3262.000000
id666 -0.019453258 -0.02094126 0.02115588 -0.02037597 0.568936

This step may take few minutes on large data sets or when using old com-

puters!

The numbers below the diagonal show genomic kinship (IBD), the numbers
on the diagonal correspond to 0.5 plus the genomic homozigosity, and the num-
bers above the diagonal tell how many SNPs were typed successfully for both
subjects (thus the IBD estimate is derived using this number of SNPs).

Second, we transform this matrix to a distance matrix using standard R
command
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> data1.dist <- as.dist(0.5 - data1.gkin)

Finally, we perform Classical Multidimensional Scaling by

> data1.mds <- cmdscale(data1.dist)

by default, the first two principal components are computed and returned.

This may take few minutes on large data sets or when using old computers!

We can present the results graphically by

> plot(data1.mds)

The resulting plot is presented in figure 13. Each point on the plot corre-
sponds to a person, and the 2D distances between points were fitted to be as
close as possible to these presented in the original IBS matrix. You can see that
study subjects clearly cluster in two groups.

You can identify the points belonging to clusters by

> km <- kmeans(data1.mds, centers = 2, nstart = 1000)

> cl1 <- names(which(km$cluster == 1))

> cl2 <- names(which(km$cluster == 2))

> cl1

[1] "id199" "id300" "id403" "id415" "id666" "id689" "id765" "id830"
[9] "id908" "id980" "id994" "id1193" "id1423" "id1505" "id1737" "id1827"
[17] "id1841" "id2068" "id2094" "id2115" "id2151" "id2317" "id2618" "id2842"
[25] "id2894" "id2985" "id3354" "id3368" "id3641" "id3831" "id3983" "id4097"
[33] "id4328" "id4380" "id4395" "id4512" "id4552" "id4710" "id4717" "id4883"
[41] "id4904" "id4934" "id4961" "id5014" "id5078" "id5274" "id5275" "id5454"
[49] "id5853" "id5926" "id5969" "id6237" "id6278" "id6352" "id6501" "id6554"
[57] "id6663" "id6723" "id7499" "id7514" "id7541" "id7598" "id7623" "id7949"
[65] "id8059" "id8128" "id8281" "id8370" "id8400" "id8433" "id8772" "id8880"
[73] "id8890" "id8957" "id8996" "id9082" "id9901" "id9930" "id1857" "id2528"
[81] "id4862" "id9184" "id5677" "id6407" "id5472" "id2135" "id8545" "id4333"
[89] "id1670" "id1536" "id6917" "id6424" "id3917" "id9628" "id9635" "id4729"
[97] "id5190" "id6399" "id6062" "id620" "id1116" "id6486" "id41" "id677"
[105] "id4947" "id9749" "id6428" "id7488" "id5949" "id2924" "id5783" "id4096"
[113] "id903" "id9049" "id185" "id1002" "id362" "id9014" "id5044" "id2749"
[121] "id5437" "id2286" "id4743" "id4185" "id8330" "id6934"

> cl2

[1] "id2097" "id6954" "id2136" "id858"

Four outliers are presented in the smaller cluster.

Now you will need to use the BIGGER cluster for to select study subjects.

Whether this will be cl1 or cl2 in you case, is totally random.
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Figure 13: Mapping samples on the space of the first two Principle Components
resulting from analysis of genomic kinship. Red dots identify genetic outliers

We can form a data set which is free from outliers by using only people from
the bigger cluster:

> data2 <- data1[cl2, ]

After we dropped the outliers, we need to repeat QC using check.markers().
At this stage, we want to allow for HWE checks (we will use only controls and
exclude markers with FDR ≤ 0.2):

> qc2 <- check.marker(data2, hweids = (data2@phdata$dm2 == 0),

+ fdr = 0.2)

Excluding people/markers with extremely low call rate...
3584 markers and 126 people in total
0 people excluded because of call rate < 0.1
0 markers excluded because of call rate < 0.1
Passed: 3584 markers and 126 people

Running sex chromosome checks...
0 heterozygous X-linked male genotypes found
0 X-linked markers are likely to be autosomal (odds > 1000 )
0 male are likely to be female (odds > 1000 )
0 female are likely to be male (odds > 1000 )
If these people/markers are removed, 0 heterozygous male genotypes are left
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Passed: 3584 markers and 126 people

no X/Y/mtDNA-errors to fix

RUN 1
3584 markers and 126 people in total
39 (1.088170%) markers excluded as having low (<1.984127%) minor allele frequency
0 (0%) markers excluded because of low (<95%) call rate
0 (0%) markers excluded because they are out of HWE (FDR <0.2)
0 (0%) people excluded because of low (<95%) call rate
Mean autosomal HET is 0.2776518 (s.e. 0.01673776)
0 people excluded because too high autosomal heterozygosity (FDR <1%)
Mean IBS is 0.7717277 (s.e. 0.01283029), as based on 2000 autosomal markers
1 (0.7936508%) people excluded because of too high IBS (>=0.95)
In total, 3545 (98.91183%) markers passed all criteria
In total, 126 (100%) people passed all criteria

RUN 2
3545 markers and 126 people in total
0 (0%) markers excluded as having low (<1.984127%) minor allele frequency
0 (0%) markers excluded because of low (<95%) call rate
0 (0%) markers excluded because they are out of HWE (FDR <0.2)
0 (0%) people excluded because of low (<95%) call rate
Mean autosomal HET is 0.2776518 (s.e. 0.01673776)
0 people excluded because too high autosomal heterozygosity (FDR <1%)
Mean IBS is 0.7696476 (s.e. 0.01287892), as based on 2000 autosomal markers
1 (0.7936508%) people excluded because of too high IBS (>=0.95)
In total, 3545 (100%) markers passed all criteria
In total, 126 (100%) people passed all criteria

> summary(qc2)

$`Per-SNP fails statistics`
NoCall NoMAF NoHWE Redundant Xsnpfail

NoCall 0 0 0 0 0
NoMAF NA 39 0 0 0
NoHWE NA NA 0 0 0
Redundant NA NA NA 0 0
Xsnpfail NA NA NA NA 0

$`Per-person fails statistics`
IDnoCall HetFail IBSFail isfemale ismale isXXY

IDnoCall 0 0 0 0 0 0
HetFail NA 0 0 0 0 0
IBSFail NA NA 1 0 0 0
isfemale NA NA NA 0 0 0
ismale NA NA NA NA 0 0
isXXY NA NA NA NA NA 0
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If the procedure did not run, check previous Note.

Indeed, in the updated data set few markers do not pass our QC criteria and
we need to drop a few markers. This is done by

> data2 <- data2[qc2$idok, qc2$snpok]

This is going to be our final analysis data set, therefore let us attach the phe-
notypic data to the search path, then we do not need to type data2@phdata$...
to access dm2 status or other variables:

> detach(data1@phdata)

> attach(data2@phdata)

5.4 GWA association analysis

Let us start again with descriptives of the phenotypic and marker data

> descriptives.trait(data2, by = dm2)

No(by.var=1) Mean SD No(by.var=0) Mean SD Ptt Pkw
id 78 NA NA 48 NA NA NA NA
sex 78 0.603 0.493 48 0.438 0.501 0.074 0.072
age 78 50.508 12.406 48 46.378 13.865 0.095 0.103
dm2 78 NA NA 48 NA NA NA NA
height 78 170.454 10.580 47 167.988 8.610 0.158 0.212
weight 78 94.047 26.806 47 77.273 17.427 0.000 0.000
diet 78 0.064 0.247 48 0.062 0.245 0.972 0.972
bmi 78 32.188 8.291 47 27.485 6.539 0.001 0.001

Pexact
id NA
sex 0.097
age NA
dm2 NA
height NA
weight NA
diet 1.000
bmi NA

You can see that relation to weight is maintained in this smaller, but hope-
fully cleaner, data set; moreover, relation to age becomes boundary significant.

If you check descriptives of markers (only HWE part shown)

> descriptives.marker(data2)[2]

$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X

No 1 2.000 27.000 111.000 3545
Prop 0 0.001 0.008 0.031 1
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you can see that the problems with HWE are apparently fixed; we may guess
that these were caused by the Wahlund’s effect.

Run the score test on the cleaned data by

> data2.qt <- qtscore(dm2, data2)

and check lambda

> data2.qt$lambda

$estimate
[1] 1.029865

$iz0
[1] 0.9956654

$iz2
[1] 0.7809572

there is still some inflation, which is explained by the fact that we investigate
only few short chromosomes with high LD and few causative variants.

Produce the association analysis plot by

> plot(data2.qt, df = "Pc1df")

(figure 14).
Produce the scan summary by

> descriptives.scan(data2.qt, sort = "Pc1df")

Chromosome Position N effB P1df Pc1df effAB
rs1719133 1 4495479 126 -0.273830 0.000295 0.000361 -0.219091
rs4804634 1 2807417 123 -0.217143 0.001017 0.001204 -0.092504
rs8835506 2 6010852 123 0.228338 0.001097 0.001296 0.311111
rs3925525 2 6008501 126 0.221933 0.001425 0.001673 0.295894
rs3224311 2 6009769 126 0.221933 0.001425 0.001673 0.295894
rs2975760 3 10518480 125 0.219461 0.001542 0.001806 0.250000
rs4534929 1 4474374 125 -0.188960 0.001650 0.001929 -0.152980
rs1013473 1 4487262 126 0.189561 0.001979 0.002302 0.271483
rs8258863 1 4735725 125 -0.381808 0.002520 0.002913 -0.381808
rs1048031 1 4485591 124 -0.187133 0.002715 0.003132 -0.134126

effBB P2df
rs1719133 -0.729730 0.000780
rs4804634 -0.394737 0.002320
rs8835506 0.311111 0.001742
rs3925525 0.310036 0.002664
rs3224311 0.310036 0.002664
rs2975760 0.388889 0.005889
rs4534929 -0.401042 0.006290
rs1013473 0.385396 0.005528
rs8258863 NA 0.002520
rs1048031 -0.388158 0.008869
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Figure 14: −log10(CorrectedP − value) from the genome scan after the QC
procedure

Comparison with the top 10 from the scan before QC shows that results
changed substantially with only few markers overlapping.

You can see similar results when accessing empirical GW significance:

> data2.qte <- emp.qtscore(dm2, data2)

100%

> descriptives.scan(data2.qte, sort = "Pc1df")

Chromosome Position N effB P1df Pc1df effAB effBB P2df
rs1719133 1 4495479 126 -0.273830 0.43 0.50 -0.219091 -0.729730 0.69
rs4804634 1 2807417 123 -0.217143 0.81 0.89 -0.092504 -0.394737 0.96
rs8835506 2 6010852 123 0.228338 0.87 0.89 0.311111 0.311111 0.90
rs3925525 2 6008501 126 0.221933 0.93 0.95 0.295894 0.310036 0.97
rs3224311 2 6009769 126 0.221933 0.93 0.95 0.295894 0.310036 0.97
rs4534929 1 4474374 125 -0.188960 0.95 0.96 -0.152980 -0.401042 1.00
rs2975760 3 10518480 125 0.219461 0.95 0.96 0.250000 0.388889 1.00
rs1013473 1 4487262 126 0.189561 0.97 0.97 0.271483 0.385396 1.00
rs8258863 1 4735725 125 -0.381808 0.97 0.98 -0.381808 NA 1.00
rs5308595 3 10543128 124 0.268559 0.98 0.99 0.279167 0.466667 1.00

Again, none of the SNPs hits GW 5% significance. Still, you can see that
after QC top markers achieve somewhat ”better” significance.
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In the last part, we will do several adjusted and stratified analyses. Only
empirical P-values will be estimated to make the story shorter. To adjust for
sex and age, we can

> data2.qtae <- emp.qtscore(dm2 ~ sex + age, data2)

100%

> descriptives.scan(data2.qtae)

Chromosome Position N effB P1df Pc1df effAB effBB P2df
rs1719133 1 4495479 126 -0.261763 0.58 0.66 -0.232051 -0.622354 0.93
rs4804634 1 2807417 123 -0.208069 0.98 0.99 -0.088001 -0.378040 1.00
rs3925525 2 6008501 126 0.212271 0.99 1.00 0.296617 0.271922 1.00
rs8835506 2 6010852 123 0.215607 0.99 1.00 0.306910 0.270646 0.97
rs3224311 2 6009769 126 0.212271 0.99 1.00 0.296617 0.271922 1.00
rs7435137 1 4259040 125 0.074654 1.00 1.00 0.108004 0.146743 1.00
rs664063 2 7288020 126 -0.096829 1.00 1.00 -0.055526 -0.616330 1.00
rs546570 2 6120257 125 -0.154982 1.00 1.00 0.133319 -0.021663 1.00
rs7908680 1 2311762 123 0.096321 1.00 1.00 0.096321 NA 1.00
rs166732 1 4716343 125 -0.022318 1.00 1.00 -0.022318 NA 1.00

You can see that there is little difference between adjusted and unadjusted
analysis, but this is not always the case; adjustment may make your study much
more powerful when covariates explain a large proportion of environmental trait
variation.

Finally, let us do stratified (by BMI) analysis. We will contracts obese
(BMI ≥ 30) cases to all controls.

> data2.qtse <- emp.qtscore(dm2 ~ sex + age, data2, ids = ((bmi >

+ 30 & dm2 == 1) | dm2 == 0))

100%

> descriptives.scan(data2.qtse, sort = "Pc1df")

Chromosome Position N effB P1df Pc1df effAB effBB P2df
rs1891586 1 2297398 89 -0.252553 0.81 0.89 -0.184492 -0.474411 1
rs794264 1 2534738 88 0.228509 0.91 0.97 0.318452 0.494758 1
rs7435137 1 4259040 89 0.081047 1.00 1.00 0.129850 0.155171 1
rs664063 2 7288020 89 -0.064905 1.00 1.00 -0.015982 -0.514381 1
rs546570 2 6120257 89 -0.123912 1.00 1.00 0.109990 -0.013923 1
rs7908680 1 2311762 87 0.230959 1.00 1.00 0.230959 NA 1
rs166732 1 4716343 88 0.007877 1.00 1.00 0.007877 NA 1
rs4257079 1 3455895 89 0.000073 1.00 1.00 0.000073 NA 1
rs5150804 2 7178160 88 0.043921 1.00 1.00 0.001420 0.120755 1
rs3508821 2 7069507 87 -0.079538 1.00 1.00 -0.006042 -0.451233 1

Again, noting interesting at GW significance level. If we would have had
found something, naturally, we would not known if we mapped a T2D or obesity
gene (or a gene for obesity in presence of T2D, or the one for T2D in presence
of obesity).

At this point, you acquired the knowledge necessary for the self-exercise.
Please close R by q() command and proceed to the next section.
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5.5 GWA exercise

During the exercise, you will work with a larger data set (approximately 1,000
people and 7,000+ SNPs). You are to do complete three-round QC; perform
GWA analysis with dm2 as the outcome of interest and identify 10 SNPs which
you would like to take to the stage 2 (replication) scan. You will do replication
analysis using a confirmatory data set. If you did everything right, the SNPs
which you identified as significant or replicated will be located in know T2D
genes.

Please keep in mind that the data are simulated, and do not take your
findings too seriously!

Start R by going to ”Start -> Programs -> R -> R-2.4.1”. Load GenABEL
library by

> library(GenABEL)

The two data sets we will use in this exercise are part of the GenABEL distri-
bution. The first one (”discovery” set) can be loaded by

> data(ge03d2)

Please move along the lines detailed in the guided exercise and try to answer
following questions:

Exercise 29 How many cases and controls are presented in the original data
set?

Exercise 30 How many markers are presented in the original data set?

Exercise 31 Is there evidence for inflation of the HWE test staistics?

Exercise 32 Perform GWA analysis of the raw data, using assimptotic test
and plot the results. Try to think how you can produce χ2 − χ2 plot for the
P-values on 1 d.f.. What is the estimate of λ for the 1 d.f. test?

Exercise 33 Analyse empirical GW significance. How many SNPs pass genome-
wide significance threshold, after correction for the inflation factor? Write down
the names of these SNPs for further comparison.

Perform complete three steps of the genetic data QC.

Exercise 34 How many male turned apparently female?

Exercise 35 How many sporadic X errors do you still observe even when the fe-
male male and non-X X-markers are removed? (do not forget to Xfix() these!)

Exercise 36 How many ”twin” DNAs did you discover?

Exercise 37 How many genetic outliers did you discover?

After you have finished QC, answer the questions:

Exercise 38 How many cases and controls are presented in the data after QC?

Exercise 39 How many markers are presented in the data after QC?
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Exercise 40 Is there evidence for inflation of the HWE test staistics?

Exercise 41 Perform GWA analysis of the cleaned data, using assimptotic test
and plot the results. What is the estimate of λ for the 1 d.f. test?

Exercise 42 Analyse empirical GW significance. How many SNPs pass genome-
wide significance threshold, after correction for the inflation factor? Do these
SNPs overlap much with the ones ranked at the top before the QC? If not, what
could be the reason?

If time permits, do analysis with adjustment for covariates and stratified
analysis.

Select 10 SNPs which you would like to follow-up. Say, you’ve selected
rs1646456, rs7950586, rs4785242, rs4435802, rs2847446, rs946364, rs299251,
rs2456488, rs1292700, and rs8183220.

Make a vector of these SNPs with

> vec12 <- c("rs1646456", "rs7950586", "rs4785242", "rs4435802",

+ "rs2847446", "rs946364", "rs299251", "rs2456488", "rs1292700",

+ "rs8183220")

Load the stage 2 (replicaton) data set by

> data(ge03d2c)

and select the subset of SNPs you need by

> confdat <- ge03d2c[, vec12]

Analyse the confdat for association with dm2.

Exercise 43 Given the two-stage design, and applying the puristic criteria spec-
ified in the lecture, for how many SNPs you can claim a significant finding?

Exercise 44 Using the same criteria, for how many SNPs you can claim a
replicated finding?

You can check if any of the SNPs you have identified as significant or repli-
cated are the ones which were simulated to be associated with dm2 by using the
command

> show.ncbi(c("snpname1", "snpname2", "snpname3"))

where snpnameX stands for the name of your identified SNP. The ”true” SNPs
can be found on NCBI and are located in known T2D genes (just because we
used these names to name the ”significant” ones).

If time permits, characterise the mode of inheritance of the significant SNPs.
You can convert data from GenABEL format to the format used by dgc.genetics
and genetics libraries by using as.genotype() function. Consult help for
details. Please do not attempt to convert more then few dozens SNPs: the
format of genetics is not compressed, which means conversion may take long
and your low-memory computer may even crash if you attempt to convert the
whole data set.

If time permits, try to do first round of QC allowing for HWE checks (assume
FDR of 0.1 for total sample). In this case, can you still detect stratification in
the ”cleaned” data?
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6 GWA in presence of genetic stratification

Both ethnic admixture and presence of close relationships represents examples
of confounding in association analysis. However, the methods to correct for
stratification as resulting from mixture of subjects coming from different ge-
netic populations, and methods to correct for family relations may be slightly
different, and will be described separately in the next two sections.

6.1 Analysis with ethnic admixture

In previous section we detected genetic stratification by analysis of genomic
kinship matrix and excluded genetic outliers from our further analysis. When
there are only a few such outliers, exclusion them from analysis is a good option.
However, in large studies cases and controls are usually selected across a number
of locations and genetic populations, and stratification is expected by design.
In such case, analysis of association should account for this stratification.

One of the ways to do that is to perform structured association analysis.
In such analysis, effect size estimate and its’ variance is estimated within each
strata separately, and then these estimates are pooled to generate global statis-
tics. The strata can be known from design (e.g. place of birth or ethnicity of
parents) or estimated from GWA data.

Let us do structured association analysis using the data1 data derived in
previous section. First, we need to define the variable which will tell what
population the study subjects belong to. In previous section, we stored the
names of ’outlier’ subjects in variable cl1:

> cl1

[1] "id2097" "id6954" "id2136" "id858"

We can use function %in% to find out what names of subjects are in cl1:

> pop <- as.numeric(data1@phdata$id %in% cl1)

> pop

[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[38] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[75] 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[112] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Now, structured association may be done with qtscore function by specify-
ing strata:

> data1.sa <- qtscore(dm2, data = data1, strata = pop)

We can compare results of analysis excluding outliers (black dots) and structured
association analysis (green) by

> plot(data2.qt, cex = 0.5, pch = 19, ylim = c(1, 5))

> add.plot(data1.sa, col = "green", cex = 1.2)
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qtscore(dm2, data2)
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Figure 15: Comparison of structured association analysis (green), method of
Price et al. (red) and analysis excluding genetic outliers (solid black).

The resulting plot is presented at figure 15.
In this case, there is very little difference, because all people belonging to

the smaller sub-population are cases.
Other way to adjust for genetic (sub)structure is to apply the method of

Price et al., which make use of principal components of the genomic kinship
matrix to adjust both phenotypes and genotypes for possible stratification. In
GenABEL , such analysis is done using egscore function:

> data1.eg <- egscore(dm2, data = data1, kin = data1.gkin)

The analysis plot may be added to the previous one by

> add.plot(data1.eg, col = "red", cex = 1.3)

The resulting plot is presented at figure 15.
Again, the difference between three analysis methods is marginal because

there are no highly differentiated SNPs in the data set, and one sub-population
is presented by cases only. Still, the signals at chromosome one and three slightly
improved, while these at two and X went down.

Exercise 45 Load and analyse the data set presented in file stratified.RData.
GWA data presented in this file concern a study containing data from several
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popualtions. All these populations originate from the same base population some
generations ago. Some of these populations mantained large size and some were
small. There was little (2.5%) migration between populations.

Two traits (quat and bint) ara available for analysis. Investigate relations be-
tween phenotypes and covariates. Perform association analysis using structured
association and egscore. Answer the questions

1. How many SNPs and IDs are presented in the data set?

2. How many SNPs and IDs pass the quality control?

3. Is there evidence for stratification coming from the distribution of GW test
for HWE (what is lambda?)

4. Is there evidence that the test statistics for trait quat is inflated (what is
lambda?)

5. Is there evidence that the test statistics for trait bint is inflated (what is
lambda?)

6. How many genetically distinct populations are present in the data set?
How many people belong to each population?

7. Please make some inferences on the characteristics / history of these pop-
ulations.

8. What is the strongest SNP associated with trait quat? What model (method
and covariates used) gives best results? Is the finding GW-significant?

9. What is the strongest SNP associated with trait bint? What model (method
and covariates used) gives best results? Is the finding GW-significant?

6.2 Analysis of family data

See help for polygenic, mmscore and grammar.

7 Exploring and using public databases

See help for show.ncbi
More functions coming soon.

8 Genetic data imputations

With very dense SNP panels available nowadays, linkage disequilibrium between
neighbouring SNP is high. This allows us, based on the context, predict geno-
types with high degree of accuracy. The genetic data imputations refer to such
prediction of genotypes of missing SNPs,
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The uses of genetic data imputations are basically two-fold. The first sit-
uation concerns imputations of partly missing genotypes of SNPs, typed, in a
study, based on the context provided by SNPs typed in the same study. This
allows decreasing the proportion of missing SNPs, potentially improving the
power of the study. The second situation concerns prediction of genotypes at
SNPs, which were not typed in the study, based on the context provided by the
SNPs typed and using the data coming from another study with more dense
genotyping, which may be potentially done using other population. Though
imputations may be done using the same method under the two scenarios, and
difference between them is quantitative rather than qualitative, for practical
reasons it is useful to distinguish these two situations.

GenABEL is well connected with MACH imputations software, developed by Y.
Li and G. Abecasis. Please read abou MACH at http://www.sph.umich.edu/csg/abecasis/MACH/.

8.1 Imputing partly missing genotypes

Assume you have gwaa.data object ”data” and you want to impute missing
genotypes for chromosome 1. For this, you will first need to export chromosome
one data in MACH format. The MACH data format bears remarkable similarity to
the format used by MERLIN, an excellent linkage analysis program. This is not
surprising: MERLIN was developed by G. Abecasis. Therefore we can export the
data for MACH using our function export.merlin:

> export.merlin(data[,data@gtdata@chromosome=="1"],pedf="chr1.ped",

+ dataf="chr1.dat",mapf="chr1.map")

where the first argument supplies the data to be exported and others specify
the names for the output files containing MACH genetic data (pedigree-file), and
descriptives (data-file). It will also save map information in file ’chr1.map’; this
information is not necessarily used by MACH, but is required by MERLIN, and also
required by GenABEL .

Given the data are exported, we can use MACH for imputations of missing
genotypes. Read MACH documentation for details. Basically, under UNIX, you
need to run command

bash> mach1 -p chr1.ped -d chr1.dat --states 200 --rounds 20
--mle --mldetails --prefix chr1.out

This should produce files, of which we will use chr1.out.mlgeno, containing
the imputed genotypes and chr1.out.mlinfo, containing information about
imputations process, including quality score.

Now we need to read the imputed data back into R environment. First, we
need convert MACH output to GenABEL format:

> convert.snp.mach(pedf="chr1.out.mlgeno",mapf="chr1.map",

+ info="chr1.out.mlinfo",outf="chr1.raw",quality=0.9)

This will convert MACH output to file ’chr1.raw’, containing genotypic data in
GenABEL format. All SNPs with quality < 0.9 will be dropped.
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Conversion of data from MACH to GenABEL format may be a lengthy proce-

dure. You can improve the speed much by replacing all ”/” to space (” ”) in

’chr1.out.mlgeno’.

As soon as conversion is done, you can import the data by

> chr1.imp <- load.gwaa.data(phe="pheno.dat",gen="chr1.raw")

This assumes that your penotypes are in file ”pheno.dat”, probably easiest
way to generate it is by

> save.gwaa.data(data,phen="pheno.dat",geno="tmp.raw")

Later, you can even replace your original data with imputed:

> data@gtdata@gtps[,data@gtdata@chromosome=="1"] <- chr1.imp@gtdata@gtps

8.2 Inferences from other data sets

If you imported your data to GenABEL before version 1.2-6, you will need to
re-load your data to GenABEL , to provide the information about actual coding
and strand (easily available for Affymetrix). Please check documentation for
convert.snp.text, convert.snp.illumina, convert.snp.ped. For the latter two take
care that strand=”file”.

Assume that your data are in gwaa.data object data; you want to impute
SNPs in the region between SNP 100 and 500.

Go to HapMap web-site and download phased haplotype data for the region
between SNP 100 and 500. We have a script which generates MACH input files
from HapMap dump-files (dump2mach.pl, available upon request). Note that
in HapMap phased haplotype data, SNP coding is given for ”+” strand.

Assume that haplotype and SNP file names are reg1.haplo, reg1.snps (read
MACH documentation for details). Check that all of your SNPs (from 100 to
500) are in HapMap data; else generate the vector of indexes/names of the ones
which are in HapMap (only these will pass through MACH). Assuming all 500
are in HapMap, export your regional data in MACH format by:

> export.merlin(data[,c(100:500)],pedf="reg1.ped",

+ dataf="reg1.dat",mapf="reg1.map",strand="+")

To do imputations, in bash type

bash> mach1 -p reg1.ped -d reg1.dat -h reg1.haplo -s reg1.snps
-greedy --rounds 20 --mle --mldetails --prefix reg1.out

This should produce files, of which we will use reg1.out.mlgeno, containing
the imputed genotypes, and reg1.out.mlinfo, containing information about
imputations process, including quality score.

Back in R, convert the data to GenABEL format by:

> convert.snp.mach(pedf="reg1.out.mlgeno",mapf="reg1.large.map",

+ info="reg1.out.mlinfo",outf="reg1.raw",quality=0.9)
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Here, reg1.large.map provides map for all HapMap SNPs in the region (this
one is easily made from the dump-file, or with dump2mach.pl) The above com-
mand will convert MACH output to GenABEL format, dropping all SNPs with
quality < 0.9.

Conversion of data from MACH to GenABEL format may be a lengthy proce-

dure. You can improve the speed much by replacing all ”/” to space (” ”) in

’chr1.out.mlgeno’.

Now, you can import the data by

> reg1.imp <- load.gwaa.data(phe="pheno.dat",gen="reg1.raw")

9 Meta-analysis of GWA scans

9.1 Preparing data for meta-analysis

In this section, we will discuss specifics of analysis when meta-analysis is aimed
at later stage, and perform simple meta-analysis of two data sets. Let us start
with arranging two data sets – basically, we will use cleaned data from the GWA
exercise you did in section 5 (Genome-wide association analysis, page 53), and
split that is two parts.

> data2@gtdata@nids

[1] 126

> mdta1 <- data2[1:40, ]

> mdta2 <- data2[41:data2@gtdata@nids, ]

We will analyse body mass index. Obviously, in meta-analysis of multi-
ple data sets different individual studies will assess different population, will
use slightly different designs, measure different covariates, and so on. There-
fore for quantitative traits, for the purpose of future meta-analysis, it becomes
conventional to analyse data from individual studies using not the raw data,
but pre-adjusted data on the transformed Z-scale (mean of zero and variance
of unity). This argument applies only to studies of quantitative traits and to
meta-analysis – you may and should report effects on the raw scale (e.g. in
centimeters and grams) in analysis of individual studies.

GenABEL implements the ztransform function for the purposes of Z-transformation.
This function takes two (actually three – see help for details) arguments: for-
mula (or just the variable name) and data. ztransform function will perform
(generalised) linear regression using the specified formula, and will transform
the residuals from analysis onto Z-scale by subtracting the mean and division
by the standard deviation.

Let us consider what this function does practically. Let us first transform
BMI from the first set without using covariates:

> x0 <- ztransform(bmi, mdta1)
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Figure 16: Histogram of Z-transformed BMI and scatter-plots of the raw BMI
against Z-transformed BMI. Column 1: Transformation without covariates. Col-
umn 2: Transformation with adjustment for age and sex.

The plot of raw against transformed BMI is given at figure 16, column 1. We
can also do transformation using sex and age-adjusted residuals with

> x1 <- ztransform(bmi ~ sex + age, mdta1)

The plot of raw against transformed BMI is given at figure 16, column 2.
Let us analyse Z-transformed, sex and age-adjusted BMI in the two data

sets, using qtscore function. Analysis of the first study is done with

> zbmi1 <- ztransform(bmi ~ sex + age, mdta1)

> qts1 <- qtscore(zbmi1, mdta1)

and analysis of the second study is done with

> zbmi2 <- ztransform(bmi ~ sex + age, mdta2)

> qts2 <- qtscore(zbmi2, mdta2)

The analysis looks very simple – is not it? However, the real difficulty did
not begin yet. The point is that different studies may use different strands, and,
consequently, allele coding – and one needs to provide this information if this
one wants to do right meta-analysis later on!

Let us summarise all the data required for meta-analysis in a new data frame.
Let us restrict analysis to 1df test. Than, this data frame should contain (1)
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SNP name (2) chromosome (3) position (4) number of people with available data
(5) effect of the allele (6) standard error of the effect (7) P-value for the test
(8) corrected P-value (we will use Genomic Control) (9) coding, with reference
allele coming first (10) strand (11) frequency of the reference allele and, finally,
(11) P-value from the exact test for HWE (that would be good for QC checks
later on).

This can be done by hand, if you prefer greater flexibility, or by running
specifically designed formetascore function, which does the same automati-
cally.

Let us consider this procedure done by hand. In the list of output parame-
ters, two are not directly available – frequency of the reference allele, which can
be computed with

> refallfreq <- 1 - summary(mdta1@gtdata)$Q.2

and the standard error of the effect estimate. Though GenABEL does not report
the s.e., it can be computed from the χ2 value of the test. By definition,

(
β

SEβ

)2

= χ2
1

and thus given value of the χ2 test and knowing the effect, we can compute
standard error with

SEβ =
β√
χ2

Thus, s.e. is

> seeff <- qts1$effB/sqrt(qts1$chi2.1df)

At this moment we can arrange the required data frame:

> mdf1 <- data.frame(name = qts1$snpnames, chrom = qts1$chromosome,

+ pos = qts1$map, N = qts1$N, beta = qts1$effB, seb = seeff,

+ P = qts1$P1df, Pgc = qts1$Pc1df, coding = as.character(mdta1@gtdata@coding),

+ strand = as.character(mdta1@gtdata@strand), freq = refallfreq)

Let us inspect the first 10 raws of the resulting output:

> mdf1[1:5, ]

name chrom pos N beta seb P Pgc
rs7435137 rs7435137 1 4259040 39 0.009839088 0.2099860 0.9626281 0.9626281
rs664063 rs664063 2 7288020 40 0.060907200 0.4372373 0.8892130 0.8892130
rs546570 rs546570 2 6120257 40 0.085793076 0.3903124 0.8260221 0.8260221
rs7908680 rs7908680 1 2311762 40 0.687189053 0.5927490 0.2463235 0.2463235
rs166732 rs166732 1 4716343 39 0.357996993 0.7258854 0.6218807 0.6218807

coding strand freq
rs7435137 CT - 0.500000
rs664063 GC - 0.925000
rs546570 TA + 0.100000
rs7908680 CA - 0.962500
rs166732 TG - 0.974359
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The same result can be achieved by using formetascore function, which
simply performs the above steps, including transformation, for you:

> mdf1 <- formetascore(bmi ~ sex + age, mdta1)

You can see that results are exactly the same as previously:

> mdf1[1:5, ]

name chromosome position strand allele1 allele2 effallele
rs7435137 rs7435137 1 4259040 - C T T
rs664063 rs664063 2 7288020 - G C C
rs546570 rs546570 2 6120257 + T A A
rs7908680 rs7908680 1 2311762 - C A A
rs166732 rs166732 1 4716343 - T G G

effallelefreq n beta sebeta p pgc pexhwe
rs7435137 0.50000000 39 0.009839088 0.2099860 0.9626281 0.9626281 0.5210851
rs664063 0.07500000 40 0.060907200 0.4372373 0.8892130 0.8892130 1.0000000
rs546570 0.90000000 40 0.085793076 0.3903124 0.8260221 0.8260221 1.0000000
rs7908680 0.03750000 40 0.687189053 0.5927490 0.2463235 0.2463235 1.0000000
rs166732 0.02564103 39 0.357996993 0.7258854 0.6218807 0.6218807 1.0000000

call
rs7435137 0.975
rs664063 1.000
rs546570 1.000
rs7908680 1.000
rs166732 0.975

To write all the data to a file, we can use standard R write.table function:

> write.table(mdf1, file = "RData/mdf1.dat")

Similar analysis is applied to the second data set:

> mdf2 <- formetascore(bmi ~ sex + age, mdta2)

We can inspect the first 10 lines of the output with

> mdf2[1:5, ]

name chromosome position strand allele1 allele2 effallele
rs7435137 rs7435137 1 4259040 - C T T
rs664063 rs664063 2 7288020 - G C C
rs546570 rs546570 2 6120257 + T A A
rs7908680 rs7908680 1 2311762 - C A A
rs166732 rs166732 1 4716343 - T G G

effallelefreq n beta sebeta p pgc pexhwe
rs7435137 0.47647059 85 0.17859624 0.1661182 0.2823232 0.3086500 0.1950153
rs664063 0.11176471 85 0.21738279 0.2428760 0.3707678 0.3966962 1.0000000
rs546570 0.95238095 84 -0.48603282 0.3699863 0.1889638 0.2135234 1.0000000
rs7908680 0.01219512 82 -0.03669903 0.7190409 0.9592946 0.9614531 1.0000000
rs166732 0.02941176 85 -0.50183831 0.4582576 0.2734724 0.2997433 1.0000000

call
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rs7435137 1.0000000
rs664063 1.0000000
rs546570 0.9882353
rs7908680 0.9647059
rs166732 1.0000000

For a binary trait, you may want to get similar output, however, you do
not want to transform the data prior to analysis. In this case, use option
transform="no", for example:

> x <- formetascore(dm2 ~ sex + age + bmi, mdta2, trans = "no")

> x[1:5, ]

name chromosome position strand allele1 allele2 effallele
rs7435137 rs7435137 1 4259040 - C T T
rs664063 rs664063 2 7288020 - G C C
rs546570 rs546570 2 6120257 + T A A
rs7908680 rs7908680 1 2311762 - C A A
rs166732 rs166732 1 4716343 - T G G

effallelefreq n beta sebeta p pgc pexhwe
rs7435137 0.47647059 85 0.11037448 0.07460195 0.1390035 0.1463467 0.1950153
rs664063 0.11176471 85 -0.09228152 0.10907306 0.3975235 0.4061780 1.0000000
rs546570 0.95238095 84 0.09704482 0.16527084 0.5570784 0.5642849 1.0000000
rs7908680 0.01219512 82 -0.07089154 0.31881317 0.8240331 0.8271879 1.0000000
rs166732 0.02941176 85 0.05592620 0.20579864 0.7858127 0.7896223 1.0000000

call
rs7435137 1.0000000
rs664063 1.0000000
rs546570 0.9882353
rs7908680 0.9647059
rs166732 1.0000000

9.2 Performing meta-analysis

10 Analysis of selected region

10.1 Exploring linkage disequilibrium

See help for r2fast.

10.2 Haplotype analysis

Use

> gtforld <- as.hsgeno(srdta[, 1:5])

to convert part of your SNPs to haplo.stats format.
You can also use interface function to do sliding widow analysis

> h2 <- scan.haplo("qt1~CRSNP", srdta, snps = c(1:5))

10.3 Analysis of interactions

See help for scan.haplo.2D and scan.glm.2D
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A Importing data to GenABEL

As described in section 4.1, GenABEL gwaa.data-class consist of phenotypic data
frame and an object of snp.data-class, which contains all genetic data. To import
data to GenABEL , you need to prepare two files: one containing the phenotypic,
and the other containing genotypic data.

The phenotype file relates study subject IDs with values of covariates and
outcomes. In the phenotypic data file, the first line gives a description (variable
name) of the data contained in a particular column; the names should better be
unique, otherwise R will change them.

The first column of the phenotype file must contain the subjects’ unique
ID, named ”id”. The IDs listed here, and in the genotypic data file, must be the
same. It is recommended that the id names are given in quotation marks (see
example below), which will save you a possible troubles with e.g. leading zeros.

There also should also be a column named ”sex” and giving sex information
(0 = female, 1 = male). Other columns in the file should contain phenotypic
information.

Missing values should be coded with ”NA”; binary traits should have values
0 or 1.

All subjects present in the genotypic files must be listed in the phenotypic
file as well, because sex information provided by the phenotypic file is an essential
part of the genotypic QC procedure.

An example of few first lines of a phenotype file is as follows:

id sex age bt1 qt qt1
"cd289982" 0 30.33 NA NA 3.93
"cd325285" 0 36.514 1 0.49 3.61
"cd357273" 1 37.811 0 1.65 5.30
"cd872422" 1 20.393 0 1.95 4.07
"cd1005389" 1 28.21 1 0.35 3.90

This file tells us that, for example, person 325286 is female (0 in second
column), and she has ”1” (usually this means a ”case”) value for the trait ”bt1”,
so on. Person 289982 has measurements only for sex, age and qt1, while other
measurements are missing (NA, Not Available).

The second file you need should contains genotypic data. As described in sec-
tion 4.1 (General description of gwaa.data-class, page 37), GenABEL snp.data-
class contains different types of information. For every SNP, information on
map position, chromosome, and strand should be provided. For every person,
every SNP genotype should be provided. GenABEL provides a number of func-
tion to convert these data from different formats to the internal GenABEL raw
format. We will first consider our preferred format, which we informally call
”Illumina”-like.

A.1 Converting from preferred format

We will consider use of convert.snp.illumina procedure; details of other pro-
cedures are given later. Note that what we call ”illumina” format is not really a
proprietary format from that company, it is just one of the possible text output
format from the Illumina BeadStudio; similar formats are accepted/generated
by HapMap and Affymetrix.
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The file of the ”Illumina” format contains SNPs in rows and IDs in columns.
The first line is a ”header”, containing column names. The first three columns
should contain information on SNP name, chromosome, and position. There is
an optional (though highly recommended!) fourth column, containing strand
information (acceptable codes: ”+”, ”-”, ”u”, the last stands for ”unknown”).
After that column, each of the residual ones corresponds to an individual, with
ID as the column name. Genotypes should be presented by two consecutive
characters (no separator).

An example of few first lines of the ”illumina” genotypic file is as follows:

name chr pos strand "cd289982" "cd325285" "cd357273" "cd872422" "cd1005389"
rs1001 1 1235 + AA AG AG AA GG
rs6679 9 2344 + GT GG GG TG GG
rs2401 22 3455 + AA CC CC CC AC
rs123 X 32535 - TT GT TT TT TT
rs6679 XY 2344 - GT GG GG TG GG
rs876 Y 23556 + 00 00 TT GG TT
mitoA1 mt 24245 - AA CC 00 00 00

It is clear that is not quite conventional Illumina file – because in BeadStudio
the alleles are reported using the ”top” strand; rather, this is an Affymetrix
or HapMap-type of a file. Anyways, this file contains all required genotypic
information, and this file format is the preferred one for import. Assume that
the file with the genotypic data is called ”gen0.illu”, and is stored in the directory
”RData”. You can convert the data to GenABEL raw format by

> convert.snp.illumina(inf = "RData/gen0.illu", out = "RData/gen0i.raw",

+ strand = "file")

Reading genotypes from file 'RData/gen0.illu' ...
Writing to file 'RData/gen0i.raw' ...
... done.

Here is the content of the converted file ”gen0i.raw” – internal raw data
representation:

#GenABEL raw data version 0.1
"cd289982" "cd325285" "cd357273" "cd872422" "cd1005389"
rs1001 rs6679 rs2401 rs123 rs6679 rs876 mitoA1
1 9 22 X XY Y mt
1235 2344 3455 32535 2344 23556 24245
04 0c 0f 08 0c 08 0f
01 01 01 02 02 01 02
69 c0
96 40
d5 80
65 40
96 40
07 40
d0 00

86



Note the option strand="file" – it is telling GenABEL that strand informa-
tion is provided in the file.

At this moment, you can load the data into GenABEL . Assume that the
phenotypic file described above is called ”phe0.dat” and the converted genotypic
file in the raw GenABEL format is called ”gen0i.raw”. You can load the data using
the command

> df <- load.gwaa.data(phe = "RData/phe0.dat", gen = "RData/gen0i.raw",

+ force = T)

ids loaded...
marker names loaded...
chromosome data loaded...
map data loaded...
allele coding data loaded...
strand data loaded...
genotype data loaded...
snp.data object created...
assignment of gwaa.data object FORCED; X-errors were not checked!

The option ”force=TRUE” tells that GenABEL should load the data even if it
fins sex errors.

You can inspect the loaded data; let us first look into phenotypic data by by

> df@phdata

id sex age bt1 qt qt1
cd289982 cd289982 0 30.330 NA NA 3.93
cd325285 cd325285 0 36.514 1 0.49 3.61
cd357273 cd357273 1 37.811 0 1.65 5.30
cd872422 cd872422 1 20.393 0 1.95 4.07
cd1005389 cd1005389 1 28.210 1 0.35 3.90

... and than check that the genotypes have imported right:

> g0 <- as.character(df@gtdata)

> g0

rs1001 rs6679 rs2401 rs6679 rs123 mitoA1 rs876
cd289982 "A/A" "G/T" "A/A" "G/T" "T/T" "A/A" NA
cd325285 "A/G" "G/G" "C/C" "G/G" "T/G" "C/C" NA
cd357273 "A/G" "G/G" "C/C" "G/G" "T/T" NA "T/T"
cd872422 "A/A" "G/T" "C/C" "G/T" "T/T" NA "G/G"
cd1005389 "G/G" "G/G" "C/A" "G/G" "T/T" NA "T/T"

> as.character(df@gtdata@strand)

rs1001 rs6679 rs2401 rs6679 rs123 mitoA1 rs876
"+" "+" "+" "-" "-" "-" "+"

> as.character(df@gtdata@coding)

rs1001 rs6679 rs2401 rs6679 rs123 mitoA1 rs876
"AG" "GT" "CA" "GT" "TG" "CA" "TG"
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In a real Illumina file, a coding on the TOP strand is supplied. Then, the
file will normally look like

name chr pos "cd289982" "cd325285" "cd357273" "cd872422" "cd1005389"
rs1001 1 1235 AA AG AG AA GG
rs6679 9 2344 GT GG GG TG GG
rs2401 22 3455 AA CC CC CC AC
rs123 X 32535 TT GT TT TT TT
rs6679 XY 2344 GT GG GG TG GG
rs876 Y 23556 00 00 TT GG TT
mitoA1 mt 24245 AA CC 00 00 00

and the conversion command will be

> convert.snp.illumina(inf = "RData/gen0.illuwos", out = "RData/gen0iwos.raw",

+ strand = "+")

Reading genotypes from file 'RData/gen0.illuwos' ...
Writing to file 'RData/gen0iwos.raw' ...
... done.

In this particular data set, after conversion, the ”+” strand will actually mean
not ”forward”, but TOP – something you should remember for this particular
data. The resulting file will look like this:

You can load the data with

> df <- load.gwaa.data(phe = "RData/phe0.dat", gen = "RData/gen0iwos.raw",

+ force = T)

ids loaded...
marker names loaded...
chromosome data loaded...
map data loaded...
allele coding data loaded...
strand data loaded...
genotype data loaded...
snp.data object created...
assignment of gwaa.data object FORCED; X-errors were not checked!

Obviously, the ”strand” is always ”+” (here it means TOP):

> g1 <- as.character(df@gtdata)

> g1

rs1001 rs6679 rs2401 rs6679 rs123 mitoA1 rs876
cd289982 "A/A" "G/T" "A/A" "G/T" "T/T" "A/A" NA
cd325285 "A/G" "G/G" "C/C" "G/G" "T/G" "C/C" NA
cd357273 "A/G" "G/G" "C/C" "G/G" "T/T" NA "T/T"
cd872422 "A/A" "G/T" "C/C" "G/T" "T/T" NA "G/G"
cd1005389 "G/G" "G/G" "C/A" "G/G" "T/T" NA "T/T"

> as.character(df@gtdata@strand)
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rs1001 rs6679 rs2401 rs6679 rs123 mitoA1 rs876
"+" "+" "+" "+" "+" "+" "+"

> as.character(df@gtdata@coding)

rs1001 rs6679 rs2401 rs6679 rs123 mitoA1 rs876
"AG" "GT" "CA" "GT" "TG" "CA" "TG"

We can see that the genotypes are identical to ones we imported previously,
as should be the case:

> g0 == g1

rs1001 rs6679 rs2401 rs6679 rs123 mitoA1 rs876
cd289982 TRUE TRUE TRUE TRUE TRUE TRUE NA
cd325285 TRUE TRUE TRUE TRUE TRUE TRUE NA
cd357273 TRUE TRUE TRUE TRUE TRUE NA TRUE
cd872422 TRUE TRUE TRUE TRUE TRUE NA TRUE
cd1005389 TRUE TRUE TRUE TRUE TRUE NA TRUE

A.2 Converting PLINK tped files

PLINK TPED (transposed-pedigree) format bears notable similarity to what
we call ”Illumina” format, with few exceptions: (1) there is no header line giving
field names (and therefore IDs are stored in a separate file) (2) the first column
gives chromosome, second – SNP name, third genetic map (usually kept as
zeroes), the fourth – physical position, and, starting with the fifth column,
genotypic data are listed, (3) finally, within a genotypes, alleles are separated
with a space. In TPED format, the data we already worked with would look
like

1 rs1001 0 1235 A A A G A G A A G G
9 rs6679 0 2344 G T G G G G T G G G
22 rs2401 0 3455 A A C C C C C C A C
X rs123 0 32535 T T G T T T T T T T
XY rs6679 0 2344 G T G G G G T G G G
Y rs876 0 23556 0 0 0 0 T T G G T T
mt mitoA1 0 24245 A A C C 0 0 0 0 0 0

Obviously, a separate file is needed to keep correspondence between geno-
types and IDs. This file emulated standard pedigree file without a header line.
The file, conventionally called a TFAM-file, should contain six columns, cor-
responding to pedigree ID, ID, father, mother, sex, and affection. Only the
second column is used by GenABEL – please make sure you use unique IDs. Con-
sequently, it does not matter what pedigree ID, father/mother, sex, or affection
status you assign in the file – the real information is coming from the phenotypic
data file. The TFAM file for our data will look like this:

1 cd289982 0 0 1 0
1 cd325285 0 0 1 0
1 cd357273 0 0 1 0
1 cd872422 0 0 1 0
1 cd1005389 0 0 1 0
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You can convert the data from PLINK TPED format to the GenABEL format
using command convert.snp.tped:

> convert.snp.tped(tped = "RData/gen0.tped", tfam = "RData/gen0.tfam",

+ out = "RData/gen0tped.raw", strand = "+")

Reading individual ids from file 'RData/gen0.tfam' ...
... done. Read 5 individual ids from file 'RData/gen0.tfam'
Reading genotypes from file 'RData/gen0.tped' ...
...done. Read 7 SNPs from file 'RData/gen0.tped'
Writing to file 'RData/gen0tped.raw' ...
... done.

and load the data with

> df <- load.gwaa.data(phe = "RData/phe0.dat", gen = "RData/gen0tped.raw",

+ force = T)

ids loaded...
marker names loaded...
chromosome data loaded...
map data loaded...
allele coding data loaded...
strand data loaded...
genotype data loaded...
snp.data object created...
assignment of gwaa.data object FORCED; X-errors were not checked!

Obviously, the ”strand” is always ”+” (meaning TOP):

> g1 <- as.character(df@gtdata)

> g1

rs1001 rs6679 rs2401 rs6679 rs123 mitoA1 rs876
cd289982 "A/A" "G/T" "A/A" "G/T" "T/T" "A/A" NA
cd325285 "A/G" "G/G" "C/C" "G/G" "T/G" "C/C" NA
cd357273 "A/G" "G/G" "C/C" "G/G" "T/T" NA "T/T"
cd872422 "A/A" "G/T" "C/C" "G/T" "T/T" NA "G/G"
cd1005389 "G/G" "G/G" "C/A" "G/G" "T/T" NA "T/T"

> as.character(df@gtdata@strand)

rs1001 rs6679 rs2401 rs6679 rs123 mitoA1 rs876
"+" "+" "+" "+" "+" "+" "+"

> as.character(df@gtdata@coding)

rs1001 rs6679 rs2401 rs6679 rs123 mitoA1 rs876
"AG" "GT" "CA" "GT" "TG" "CA" "TG"

We can see that the genotypes are identical to ones we imported previously,
as should be the case:

> g0 == g1
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rs1001 rs6679 rs2401 rs6679 rs123 mitoA1 rs876
cd289982 TRUE TRUE TRUE TRUE TRUE TRUE NA
cd325285 TRUE TRUE TRUE TRUE TRUE TRUE NA
cd357273 TRUE TRUE TRUE TRUE TRUE NA TRUE
cd872422 TRUE TRUE TRUE TRUE TRUE NA TRUE
cd1005389 TRUE TRUE TRUE TRUE TRUE NA TRUE

A.3 Converting linkage-like files

Linkage-like files, also known as pre-makeped files, or pedigree files, represent a
historic format which dates back to the time when only few markers could be
typed – thus the number of subjects was usually greater than the number of
markers. In that situation, it was natural and obvious to keep IDs in rows and
markers in columns. In the first six columns, standard linkage-like file would
contain pedigree ID, ID, father’s ID, mother’s ID, sex (coded as 1 = male and
2 = female), and affection status (0 = unknown, 1 = unaffected, 2 = affected).
In the following columns, genotypic information is provided. Alleles of the same
genotype could be separated by a space, or by a slash (”/”). Thus the data we
are working with could be presented as

1 cd289982 0 0 1 0 A A G T A A T T G T 0 0 A A
1 cd325285 0 0 1 0 A G G G C C G T G G 0 0 C C
1 cd357273 0 0 1 0 A G G G C C T T G G T T 0 0
1 cd872422 0 0 1 0 A A T G C C T T T G G G 0 0
1 cd1005389 0 0 1 0 G G G G A C T T G G T T 0 0

As you can see, this file misses header line, and information what are the
SNP names, position, etc. should be provided in a separate MAP-file. GenABEL
accepts map in Merlin format, and an extended format. A map in Merlin
format consist of header line, giving column names, and three columns with
chromosome, name and position information, for example:

chr name pos
1 rs1001 1235
9 rs6679 2344
22 rs2401 3455
X rs123 32535
XY rs6679 2344
Y rs876 23556
mt mitoA1 24245

The data can be converted to the internal GenABEL format with

> convert.snp.ped(ped = "RData/gen0.ped", map = "RData/map0.dat",

+ out = "RData/gen0pedwos.raw", strand = "+")

Reading map from file 'RData/map0.dat' ...
... done. Read positions of 7 markers from file 'RData/map0.dat'
Reading genotypes from file 'RData/gen0.ped' ...
...done. Read information for 5 people from file 'RData/gen0.ped'
Analysing marker information ...
Writing to file 'RData/gen0pedwos.raw' ...
... done.
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and loaded with

> df <- load.gwaa.data(phe = "RData/phe0.dat", gen = "RData/gen0pedwos.raw",

+ force = T)

ids loaded...
marker names loaded...
chromosome data loaded...
map data loaded...
allele coding data loaded...
strand data loaded...
genotype data loaded...
snp.data object created...
assignment of gwaa.data object FORCED; X-errors were not checked!

We can inspect the genotypic data and check that conversion results are
identical to previous runs with

> g1 <- as.character(df@gtdata)

> g1

rs1001 rs6679 rs2401 rs6679 rs123 mitoA1 rs876
cd289982 "A/A" "G/T" "A/A" "G/T" "T/T" "A/A" NA
cd325285 "A/G" "G/G" "C/C" "G/G" "T/G" "C/C" NA
cd357273 "A/G" "G/G" "C/C" "G/G" "T/T" NA "T/T"
cd872422 "A/A" "G/T" "C/C" "G/T" "T/T" NA "G/G"
cd1005389 "G/G" "G/G" "C/A" "G/G" "T/T" NA "T/T"

> as.character(df@gtdata@strand)

rs1001 rs6679 rs2401 rs6679 rs123 mitoA1 rs876
"+" "+" "+" "+" "+" "+" "+"

> as.character(df@gtdata@coding)

rs1001 rs6679 rs2401 rs6679 rs123 mitoA1 rs876
"AG" "GT" "CA" "GT" "TG" "CA" "TG"

> g0 == g1

rs1001 rs6679 rs2401 rs6679 rs123 mitoA1 rs876
cd289982 TRUE TRUE TRUE TRUE TRUE TRUE NA
cd325285 TRUE TRUE TRUE TRUE TRUE TRUE NA
cd357273 TRUE TRUE TRUE TRUE TRUE NA TRUE
cd872422 TRUE TRUE TRUE TRUE TRUE NA TRUE
cd1005389 TRUE TRUE TRUE TRUE TRUE NA TRUE

If you are willing to import strand information, you can make use of the
extended map format. In this format the strand information is added to the
map-file:

92



chr name pos strand coding
1 rs1001 1235 + AG
9 rs6679 2344 + TG
22 rs2401 3455 + AC
X rs123 32535 - GT
XY rs6679 2344 - GT
Y rs876 23556 + GT
mt mitoA1 24245 - AC

The data can be converted to the internal GenABEL format with

> convert.snp.ped(ped = "RData/gen0.ped", map = "RData/emap0.dat",

+ out = "RData/gen0ped.raw", strand = "file")

Reading map from file 'RData/emap0.dat' ...
... done. Read positions of 7 markers from file 'RData/emap0.dat'
Reading genotypes from file 'RData/gen0.ped' ...
...done. Read information for 5 people from file 'RData/gen0.ped'
Analysing marker information ...
Writing to file 'RData/gen0ped.raw' ...
... done.

Note that option strand==file was used to specify that the extended map
format should be used. The data can be loaded with

> df <- load.gwaa.data(phe = "RData/phe0.dat", gen = "RData/gen0ped.raw",

+ force = T)

ids loaded...
marker names loaded...
chromosome data loaded...
map data loaded...
allele coding data loaded...
strand data loaded...
genotype data loaded...
snp.data object created...
assignment of gwaa.data object FORCED; X-errors were not checked!

We can inspect the genotypic data and check that conversion results are
identical to previous runs with

> g1 <- as.character(df@gtdata)

> g1

rs1001 rs6679 rs2401 rs6679 rs123 mitoA1 rs876
cd289982 "A/A" "G/T" "A/A" "G/T" "T/T" "A/A" NA
cd325285 "A/G" "G/G" "C/C" "G/G" "T/G" "C/C" NA
cd357273 "A/G" "G/G" "C/C" "G/G" "T/T" NA "T/T"
cd872422 "A/A" "G/T" "C/C" "G/T" "T/T" NA "G/G"
cd1005389 "G/G" "G/G" "C/A" "G/G" "T/T" NA "T/T"

> as.character(df@gtdata@strand)
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rs1001 rs6679 rs2401 rs6679 rs123 mitoA1 rs876
"+" "+" "+" "-" "-" "-" "+"

> as.character(df@gtdata@coding)

rs1001 rs6679 rs2401 rs6679 rs123 mitoA1 rs876
"AG" "GT" "CA" "GT" "TG" "CA" "TG"

> g0 == g1

rs1001 rs6679 rs2401 rs6679 rs123 mitoA1 rs876
cd289982 TRUE TRUE TRUE TRUE TRUE TRUE NA
cd325285 TRUE TRUE TRUE TRUE TRUE TRUE NA
cd357273 TRUE TRUE TRUE TRUE TRUE NA TRUE
cd872422 TRUE TRUE TRUE TRUE TRUE NA TRUE
cd1005389 TRUE TRUE TRUE TRUE TRUE NA TRUE

A.4 Converting from MACH format

The data from MACH format can be converted by using convert.snp.mach.
This function actually calls convert.snp.ped in specific format. MACH soft-
ware is widely used for SNP imputations. For our needs we consider two files
produced by MACH: pedigree file with (the imputed) genotypic data, and info-
file, containing information about quality of imputations for particular SNP.

SEE HELP FOR convert.snp.mach for further details.

A.5 Converting from text format
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B Answers to exercises

B.1 Exercise 3:

For the first person id is ”p1” and sex code is 1 (1=male, 2=female)

> srdta@gtdata@idnames[1]

[1] "p1"

> srdta@gtdata@male[1]

p1
1

For the 22nd person id is ”p22” and sex code is 1:

> srdta@gtdata@idnames[22]

[1] "p22"

> srdta@gtdata@male[22]

p22
1

Among first 100 subjects, there are 53 males:

> sum(srdta@gtdata@male[1:100])

[1] 53

Among 4th hundred subjects there are 45 females:

> 100 - sum(srdta@gtdata@male[301:400])

[1] 45

Male proportion among first 1000 people is

> mean(srdta@gtdata@male[1:1000])

[1] 0.508

Female proportion among second 1000 people is

> 1 - mean(srdta@gtdata@male[1001:2000])

[1] 0.476

Name, chromosome and map position of the 33rd marker are:

> srdta@gtdata@snpnames[33]

[1] "rs422"

> srdta@gtdata@chromosome[33]
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rs422
1

Levels: 1

> srdta@gtdata@map[33]

rs422
105500

The map positions for and distance between markers 25 and 26 are:

> pos25 <- srdta@gtdata@map[25]

> pos25

rs365
91250

> pos26 <- srdta@gtdata@map[26]

> pos26

rs372
92750

> pos26 - pos25

rs372
1500

B.2 Exercise 6:

Value of the 4th variable of person 75:

> srdta@phdata[75, 4]

[1] -0.04

Value for the variable 1 is

> srdta@phdata[75, 1]

[1] "p75"

Also, if we check first 10 elements we see

> srdta@phdata[1:10, 1]

[1] "p1" "p2" "p3" "p4" "p5" "p6" "p7" "p8" "p9" "p10"

This is personal ID.
The sum for variable 2 is

> sum(srdta@phdata[, 2])

[1] 1275

This is sex variable.

96



B.3 Exercise 7:

To obtain the number of people with age >65 y.o., you can use any of the
following

> sum(srdta@phdata$age > 65)

[1] 48

> vec <- which(srdta@phdata$age > 65)

> length(vec)

[1] 48

To get sex of these people use any of:

> sx65 <- srdta@phdata$sex[srdta@phdata$age > 65]

> sx65

[1] 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 0
[39] 1 0 1 0 0 0 0 1 1 1

> sx65 <- srdta@phdata$sex[vec]

> sx65

[1] 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 0 0 0 0
[39] 1 0 1 0 0 0 0 1 1 1

Thus, number of males is:

> sum(sx65)

[1] 26

To conclude, the proportion of male is 0.541666666666667
Distribution of qt3 in people younger and older than 65 are:

> summary(srdta@phdata$qt3[vec])

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.730 2.690 3.480 3.499 4.265 5.840

> sd(srdta@phdata$qt3[vec], na.rm = TRUE)

[1] 1.128701

> young <- which(srdta@phdata$age < 65)

> summary(srdta@phdata$qt3[young])

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
-1.97 1.83 2.58 2.59 3.35 6.34 11.00

> sd(srdta@phdata$qt3[young], na.rm = TRUE)

[1] 1.093374
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Histogram of srdta@phdata$qt2
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Figure 17: Histogram of qt2

B.4 Exercise 9:

> summary(srdta@phdata$age)

Min. 1st Qu. Median Mean 3rd Qu. Max.
24.10 45.10 50.00 50.04 54.80 71.60

The histogram for qt2 looks strange: it seems there are few very strong
outliers (figure 17) You can also see that with summary:

> summary(srdta@phdata$qt2)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 4.220 5.045 6.122 5.910 888.000

B.5 Exercise 10:

How many SNPs are described in this data frame?

> attach(popdat)

The following object(s) are masked from data2@phdata :

sex

> names(popdat)
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[1] "subj" "sex" "aff" "qt" "snp1" "snp2" "snp3" "snp4" "snp5"
[10] "snp6" "snp7" "snp8" "snp9" "snp10"

The answer is 10 snps

B.6 Exercise 11:

What is the frequency (proportion) of snp1 allele A? What is its frequency in
these affected (aff==1)?

> summary(snp1)

Number of samples typed: 2374 (95%)

Allele Frequency: (2 alleles)
Count Proportion

A 3462 0.73
B 1286 0.27
NA 252 NA

Genotype Frequency:
Count Proportion

B/B 199 0.08
A/B 888 0.37
A/A 1287 0.54
NA 126 NA

Heterozygosity (Hu) = 0.3950646
Poly. Inf. Content = 0.3169762

The frequency of A in all subjects is 0.73.

> summary(snp1[aff == 1])

Number of samples typed: 519 (94.5%)

Allele Frequency: (2 alleles)
Count Proportion

A 729 0.7
B 309 0.3
NA 60 NA

Genotype Frequency:
Count Proportion

B/B 48 0.09
A/B 213 0.41
A/A 258 0.50
NA 30 NA

Heterozygosity (Hu) = 0.4185428
Poly. Inf. Content = 0.3307192
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The frequency of A in affected subjects is 0.7.

B.7 Exercise 12:

How many cases and controls are present?

> table(aff)

aff
0 1

1951 549

There are 549 cases and 1951 controls.

B.8 Exercise 13:

If all subjects are used to test HWE, are there any SNPs out of HWE at nominal
P ≤ 0.05? Which ones?

> HWE.exact(snp1)

Exact Test for Hardy-Weinberg Equilibrium

data: snp1
N11 = 1287, N12 = 888, N22 = 199, N1 = 3462, N2 = 1286, p-value =
0.01083

...

> HWE.exact(snp10)

Exact Test for Hardy-Weinberg Equilibrium

data: snp10
N11 = 1792, N12 = 552, N22 = 40, N1 = 4136, N2 = 632, p-value = 0.7897

Only SNP 1 is out of HWE in the total sample.

B.9 Exercise 14:

If only controls are used to test the SNPs which are out of HWE in total sample,
are these still out of HWE?

> HWE.exact(snp1[aff == 0])

Exact Test for Hardy-Weinberg Equilibrium

data: snp1[aff == 0]
N11 = 1029, N12 = 675, N22 = 151, N1 = 2733, N2 = 977, p-value =
0.008393

Yes, SNP 1 is out of HWE also in controls.
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B.10 Exercise 15:

Which SNP pairs are in strong LD (r2 ≥ 0.8)?

> LD(popdat[, 5:14])$"R^2"

snp1 snp2 snp3 snp4 snp5 snp6 snp7 snp8 snp9 snp10
snp1 NA 0.016 0.235 0.206 0.258 0.227 0.152 0.117 0.090 0.000
snp2 NA NA 0.004 0.004 0.005 0.004 0.000 0.000 0.000 0.000
snp3 NA NA NA 0.602 0.457 0.346 0.641 0.031 0.042 0.001
snp4 NA NA NA NA 0.803 0.650 0.729 0.027 0.037 0.002
snp5 NA NA NA NA NA 0.874 0.586 0.034 0.046 0.002
snp6 NA NA NA NA NA NA 0.670 0.030 0.040 0.002
snp7 NA NA NA NA NA NA NA 0.020 0.027 0.003
snp8 NA NA NA NA NA NA NA NA 0.002 0.000
snp9 NA NA NA NA NA NA NA NA NA 0.001
snp10 NA NA NA NA NA NA NA NA NA NA

SNP pairs 4-5 and 5-6 have r2 ≥ 0.8.

B.11 Exercise 16:

For SNPs in strong LD, what is r2 for separate samples of cases and controls?
For controls,

> LD(data.frame(snp4, snp5, snp6)[aff == 0, ])$"R^2"

snp4 snp5 snp6
snp4 NA 0.806591 0.6419715
snp5 NA NA 0.8661005
snp6 NA NA NA

For cases,

> LD(data.frame(snp4, snp5, snp6)[aff == 1, ])$"R^2"

snp4 snp5 snp6
snp4 NA 0.7951475 0.6773275
snp5 NA NA 0.9083237
snp6 NA NA NA

Note that the fact that LD is higher in cases may mean nothing because the
estimates of LD are biased upwards with smaller sample sizes. For example in a
small sample (5 people) of controls we expect even higher LD because of strong
upward bias:

> LD(popdat[which(aff == 0)[1:5], 8:10])$"R^2"

snp4 snp5 snp6
snp4 NA 0.9995876 0.9995876
snp5 NA NA 0.9995876
snp6 NA NA NA

More elaborate methods, such as that by Zaykin, are required to contrast LD
between sample of unequal size.
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B.12 Exercise 17:

Is there significant association between affection status and sex? What is P -
value for association?

> glm(aff ~ sex, family = binomial())

Call: glm(formula = aff ~ sex, family = binomial())

Coefficients:
(Intercept) sex

-1.3197 0.1006

Degrees of Freedom: 2499 Total (i.e. Null); 2498 Residual
Null Deviance: 2632
Residual Deviance: 2631 AIC: 2635

There is significant (P = 0.03) association.

B.13 Exercise 18:

Is association between the disease and qt significant?

> glm(aff ~ qt, family = binomial())

Call: glm(formula = aff ~ qt, family = binomial())

Coefficients:
(Intercept) qt

-1.26769 -0.02514

Degrees of Freedom: 2499 Total (i.e. Null); 2498 Residual
Null Deviance: 2632
Residual Deviance: 2632 AIC: 2636

There is no significant (P = 0.6) association.

B.14 Exercise 19:

Which SNPs are associated with the quantitative trait qt at nominal P ≤ 0.05?
Use 2 d.f. test.

> summary(lm(qt ~ snp1))

Call:
lm(formula = qt ~ snp1)

Residuals:
Min 1Q Median 3Q Max

-3.52609 -0.66427 -0.01110 0.67648 3.54622

Coefficients:
Estimate Std. Error t value Pr(>|t|)
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(Intercept) -0.02846 0.02758 -1.032 0.3022
snp1A/B 0.08200 0.04316 1.900 0.0575 .
snp1B/B 0.18644 0.07536 2.474 0.0134 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9893 on 2371 degrees of freedom
(126 observations deleted due to missingness)

Multiple R-squared: 0.00335, Adjusted R-squared: 0.002509
F-statistic: 3.985 on 2 and 2371 DF, p-value: 0.01873

...

> summary(lm(qt ~ snp10))

Call:
lm(formula = qt ~ snp10)

Residuals:
Min 1Q Median 3Q Max

-3.586464 -0.677484 0.001935 0.673270 3.412527

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.01915 0.02344 0.817 0.414
snp10A/B 0.01277 0.04829 0.264 0.792
snp10B/B 0.17178 0.15860 1.083 0.279

Residual standard error: 0.9921 on 2381 degrees of freedom
(116 observations deleted due to missingness)

Multiple R-squared: 0.0005072, Adjusted R-squared: -0.0003324
F-statistic: 0.6041 on 2 and 2381 DF, p-value: 0.5467

SNPs 1, 4, 5 an 9 are significantly associated at nominal P ≤ 0.05.

B.15 Exercise 20:

Test each SNP for association with the affection status, using 2 d.f. test. Which
SNPs are significantly associated at nominal P ≤ 0.05? How can you describe
the model of action of the significant SNPs?

> x <- glm(aff ~ snp5, family = binomial())

> x

Call: glm(formula = aff ~ snp5, family = binomial())

Coefficients:
(Intercept) snp5A/A snp5B/B

-1.4868 0.2112 0.3387

Degrees of Freedom: 2382 Total (i.e. Null); 2380 Residual
(117 observations deleted due to missingness)
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Null Deviance: 2440
Residual Deviance: 2431 AIC: 2437

> anova(x, test = "Chisq")

Analysis of Deviance Table

Model: binomial, link: logit

Response: aff

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 2382 2440.40
snp5 2 9.24 2380 2431.16 0.01

...

> x <- glm(aff ~ snp10, family = binomial())

> x

Call: glm(formula = aff ~ snp10, family = binomial())

Coefficients:
(Intercept) snp10A/B snp10B/B

-1.3703 0.2909 -0.1803

Degrees of Freedom: 2383 Total (i.e. Null); 2381 Residual
(116 observations deleted due to missingness)

Null Deviance: 2475
Residual Deviance: 2468 AIC: 2474

> anova(x, test = "Chisq")

Analysis of Deviance Table

Model: binomial, link: logit

Response: aff

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 2383 2475.13
snp10 2 6.73 2381 2468.39 0.03

The SNPs 5 an 10 are significantly associated at P ≤ 0.05. The model of action
of SNP5 can be ddescribed as recessive (while the risk for AA and AB is not
significantly different, there is 1.4 times increased risk for these homozygous for
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BB). The SNP 10 demonstrates somewhat weird action with the risk increased
in heterozygous AB individuals. However, the confidence interval for BB is large
and therefore we can not claim that BB is not increasing the risk.

B.16 Exercise 21:

For the SNPs selected in previous question, test association using additive
model. Which SNPs are still associated?

> glm(aff ~ as.numeric(snp5), family = binomial())

Call: glm(formula = aff ~ as.numeric(snp5), family = binomial())

Coefficients:
(Intercept) as.numeric(snp5)

-1.5695 0.1094

Degrees of Freedom: 2382 Total (i.e. Null); 2381 Residual
(117 observations deleted due to missingness)

Null Deviance: 2440
Residual Deviance: 2438 AIC: 2442

> glm(aff ~ as.numeric(snp10), family = binomial())

Call: glm(formula = aff ~ as.numeric(snp10), family = binomial())

Coefficients:
(Intercept) as.numeric(snp10)

-1.5539 0.1976

Degrees of Freedom: 2383 Total (i.e. Null); 2382 Residual
(116 observations deleted due to missingness)

Null Deviance: 2475
Residual Deviance: 2471 AIC: 2475

Only SNP 10 is significantly associated under the additive model.

B.17 Exercise 22:

If you adjust the analysis under additive model (question 21) for significant
covariates which you discovered in questions 17 and 18, are these findings still
significant?

> glm(aff ~ sex + snp10, family = binomial())

Call: glm(formula = aff ~ sex + snp10, family = binomial())

Coefficients:
(Intercept) sex snp10A/B snp10B/B

-1.41894 0.09513 0.29230 -0.18471

Degrees of Freedom: 2383 Total (i.e. Null); 2380 Residual
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(116 observations deleted due to missingness)
Null Deviance: 2475
Residual Deviance: 2467 AIC: 2475

Yes, SNP 10 becomes even a bit more significantly associated after adjusting for
sex.

B.18 Exercise 23:

Test association between aff and snp5 and snp10, allowing for the SNPs inter-
action effect. Use arbitrary (not an additive) model. Do you observe significant
interaction? How can you describe the model of concert action of snp5 and
snp10?

> glm(aff ~ snp5 * snp10, family = binomial())

Call: glm(formula = aff ~ snp5 * snp10, family = binomial())

Coefficients:
(Intercept) snp5A/A snp5B/B snp10A/B

-1.50840 -0.41802 0.33441 -0.01403
snp10B/B snp5A/A:snp10A/B snp5B/B:snp10A/B snp5A/A:snp10B/B
-0.14983 1.48369 0.12989 0.82348

snp5B/B:snp10B/B
-0.28562

Degrees of Freedom: 2268 Total (i.e. Null); 2260 Residual
(231 observations deleted due to missingness)

Null Deviance: 2282
Residual Deviance: 2243 AIC: 2261

It appears that SNP10 genotype is only relevant in these who are homozygous for
the low-risk A allele at the SNP5; in such cases SNP 10 allele B is risk increasing.
In these homozygous for SNP 5 A, we observe highly significant increase in risk
for heterozygotes for SNP10 and increased (though not significantly) risk for
SNP 10 BB.
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B.19 Exercise 24:

> data(srdta)

Number of people:

> srdta@gtdata@nids

[1] 2500

Number of males:

> sum(srdta@gtdata@male)

[1] 1275
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Number of females:

> srdta@gtdata@nids - sum(srdta@gtdata@male)

[1] 1225

... or you could get the same answer like this4:

> sum(srdta@gtdata@male == 0)

[1] 1225

The proportion of males can be computed using above results

> sum(srdta@gtdata@male)/srdta@gtdata@nids

[1] 0.51

or by using mean() function:

> mean(srdta@gtdata@male)

[1] 0.51

B.20 Exercise 25:

The names of markers located after 2,490,000 b.p. are

> vec <- (srdta@gtdata@map > 2490000)

> srdta@gtdata@snpnames[vec]

[1] "rs9273" "rs9277" "rs9279" "rs9283"

Between 1,100,000 and 1,105,000 b.p.:

> vec <- (srdta@gtdata@map > 1100000 & srdta@gtdata@map < 1105000)

> srdta@gtdata@snpnames[vec]

[1] "rs4180" "rs4186" "rs4187"

B.21 Exercise 26:

To learn what allele of ”rs114” is the reference you need to run

> as.character(srdta@gtdata@coding["rs114"])

<NA>
"AT"

Here, the first (”A”) allele is the reference and thus the second (”T”) is the ef-
fective one. Remember that when using as.numeric function to convert the
genotypes to human-readable and R-operatable format, the homozygotes for
reference will be coded as ”0”, heterozygotes as ”1” and the non-reference (”ef-
fective”) homozygotes will be coded as ”2”:

4This is something covered later in the section ?? (”??”)
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> table(as.character(srdta@gtdata[, "rs114"]), as.numeric(srdta@gtdata[,

+ "rs114"]))

0 1 2
A/A 1868 0 0
A/T 0 491 0
T/T 0 0 34

To compute frequency of the effective allele of SNP ”rs114” in total sample,
you can go two ways. First, we can try to take a sum of all rs114 genotypes and
divide it by twice the number of people:

> a <- as.numeric(srdta@gtdata[, "rs114"])

> sum(a)

[1] NA

This, however, returns NA, because some of the genotypes are missing. We can
deal with this problem by running sum() with the option na.rm=TRUE:

> sum(a, na.rm = T)

[1] 559

However, now we do not know what was the number of people for whom the
genotype was measured!

An easier way would be to compute mean value of rs114 with the mean( ...
,na.rm=TRUE) function and divide it by 2:

> mean(a, na.rm = T)/2

[1] 0.116799

To compute frequency of the effective allele of ”rs114” in males, you can use

> amale <- as.numeric(srdta@gtdata[srdta@phdata$sex == 1, "rs114"])

> mean(amale, na.rm = T)/2

[1] 0.1164216

To compute frequency of the effective allele in females, you can use

> afemale <- as.numeric(srdta@gtdata[srdta@phdata$sex == 0, "rs114"])

> mean(afemale, na.rm = T)/2

[1] 0.1171942

Actually, the problem that we do not know how many people are measured,
can be easily dealt with. This can be done by using is.na(A) function which
returns true when some element of A is not measured. Thus, the number of
people with measured genotype for ”rs114” is

> a <- as.numeric(srdta@gtdata[, "rs114"])

> sum(!is.na(a))
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[1] 2393

And the allele frequency estimate is

> sum(a, na.rm = T)/(2 * sum(!is.na(a)))

[1] 0.116799

exactly the same as above.
The frequencies of the reference allele are computed very simply as one minus

the frequency of the effective allele.

B.22 Exercise 27:

To test for HWE in first 10 SNPs in total sample

> summary(srdta@gtdata[, 1:10])

NoMeasured CallRate Q.2 P.11 P.12 P.22 Pexact Fmax
rs10 2384 0.9536 0.13255034 1792 552 40 7.897327e-01 -0.006880004
rs18 2385 0.9540 0.28029350 1232 969 184 7.608230e-01 -0.007017332
rs29 2374 0.9496 0.13774221 1763 568 43 7.955141e-01 -0.007241148
rs65 2378 0.9512 0.71972246 182 969 1227 6.475412e-01 -0.010016746
rs73 2385 0.9540 0.01341719 2331 44 10 1.792470e-12 0.303150234
rs114 2393 0.9572 0.11679900 1868 491 34 7.663683e-01 0.005487764
rs128 2391 0.9564 0.02488499 2281 101 9 9.408599e-06 0.129600629
rs130 2379 0.9516 0.69377890 222 1013 1144 9.615127e-01 -0.002140946
rs143 2377 0.9508 0.47728229 655 1175 547 6.512540e-01 0.009313705
rs150 2369 0.9476 0.65998312 267 1077 1025 5.518478e-01 -0.012948436

Plrt Chromosome
rs10 7.355343e-01 1
rs18 7.315304e-01 1
rs29 7.227853e-01 1
rs65 6.246577e-01 1
rs73 1.281197e-12 1
rs114 7.894076e-01 1
rs128 1.000431e-05 1
rs130 9.168114e-01 1
rs143 6.497695e-01 1
rs150 5.281254e-01 1

To test it in cases

> summary(srdta@gtdata[srdta@phdata$bt == 1, 1:10])

NoMeasured CallRate Q.2 P.11 P.12 P.22 Pexact Fmax
rs10 1197 0.9622186 0.13700919 888 290 19 4.635677e-01 -0.024514202
rs18 1189 0.9557878 0.28511354 605 490 94 7.759191e-01 -0.010949158
rs29 1176 0.9453376 0.14285714 859 298 19 2.832575e-01 -0.034722222
rs65 1185 0.9525723 0.72700422 83 481 621 4.647357e-01 -0.022595469
rs73 1187 0.9541801 0.01053075 1167 15 5 3.988770e-08 0.393614304
rs114 1190 0.9565916 0.12184874 918 254 18 8.924018e-01 0.002606831
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rs128 1183 0.9509646 0.02409129 1129 51 3 2.747904e-02 0.083175674
rs130 1188 0.9549839 0.68392256 117 517 554 8.407527e-01 -0.006569292
rs143 1192 0.9581994 0.48489933 320 588 284 6.848365e-01 0.012522119
rs150 1182 0.9501608 0.66624365 127 535 520 5.568363e-01 -0.017756050

Plrt Chromosome
rs10 3.871421e-01 1
rs18 7.052930e-01 1
rs29 2.214580e-01 1
rs65 4.348023e-01 1
rs73 2.423624e-08 1
rs114 9.285104e-01 1
rs128 3.157174e-02 1
rs130 8.207476e-01 1
rs143 6.654994e-01 1
rs150 5.409408e-01 1

in controls

> summary(srdta@gtdata[srdta@phdata$bt == 0, 1:10])

NoMeasured CallRate Q.2 P.11 P.12 P.22 Pexact Fmax
rs10 1177 0.9453815 0.12744265 897 260 20 7.933317e-01 0.006751055
rs18 1185 0.9518072 0.27426160 623 474 88 9.418133e-01 -0.004812165
rs29 1188 0.9542169 0.13215488 897 268 23 5.288436e-01 0.016525913
rs65 1183 0.9502008 0.71344041 98 482 603 8.871139e-01 0.003540522
rs73 1188 0.9542169 0.01641414 1154 29 5 6.941219e-06 0.244001185
rs114 1192 0.9574297 0.11157718 941 236 15 8.846527e-01 0.001356081
rs128 1197 0.9614458 0.02589808 1141 50 6 7.745807e-05 0.172107564
rs130 1181 0.9485944 0.70491109 104 489 588 8.887439e-01 0.004728114
rs143 1174 0.9429719 0.46805792 334 581 259 8.604122e-01 0.006165442
rs150 1176 0.9445783 0.65306122 139 538 499 7.968462e-01 -0.009574142

Plrt Chromosome
rs10 8.178295e-01 1
rs18 8.683219e-01 1
rs29 5.737373e-01 1
rs65 9.031273e-01 1
rs73 5.537568e-06 1
rs114 9.627084e-01 1
rs128 7.552399e-05 1
rs130 8.710047e-01 1
rs143 8.326938e-01 1
rs150 7.424986e-01 1
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