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In the first part, you will be guided step by step through simple genetic
analysis exercise using a small example data set. In the second part, you will
investigate a bigger data set as based on the knowledge obtained in the first
part, and will answer the questions.

Start R by double-click on the file ge03d1p1.RData. Load library genetics,
which we will need for testing Hardy-Weinberg equilibrium (HWE) and com-
putations of Linkage Disequilibrium (LD) and library dgc.genetics, which we
will need for association analysis by typing

> library(dgc.genetics)

1 Example session

The file you have loaded contains two data frames. A data frame is an R term
for a data table. In such tables, it is usually assumed that rows correspond to
subjects (observations) and columns correspond to variables.

You can see the names of the loaded objects by using the command ls():

> ls()

[1] "example"

You can see that there is a single object loaded, which is a data frames, as
could be seeing from

> class(example)

[1] "data.frame"

We will investigate the data presented in the example data frame. To see
what variables are measured, use command names():

> names(example)

[1] "subj" "sex" "aff" "qt" "snp4" "snp5" "snp6"

The 7 variables correspond to the personal ID, sex, affection status, quanti-
tative trait qt and several SNPs.

You can explore the raw data contained in a data frame by using fix()
command (e.g. fix(example)). However, normally this is not necessary.

First, let us check how many cases and controls are presented in the data
set. To access some variable var in a data frame frame, you can use syntax
frame$var:
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> example$aff

[1] 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 0
[38] 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0
[75] 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0
[112] 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1
[149] 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1
[186] 1 1 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0
[223] 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0

which shows the vector of values of aff.
The function table(x) produces a frequency table for the variable x. Thus,

we can use

> table(example$aff)

0 1
194 56

which tells us that there are 56 cases and 194 controls in this data set.
A more convenient way to access data presented in a data frame is through

”attaching” it to the R search path by

> attach(example)

After that, the variables can be accessed directly, e.g.

> table(aff)

aff
0 1

194 56

The summary statistics on the distribution of a variable can be obtained by
summary() function. For example, for the quantitative traits qt

> summary(qt)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.7240 -0.7503 -0.1447 -0.1192 0.4819 2.8660

Tip: summary() is quite useful function working with a range of data objects.
Try summary(example).

You can also draw a histogram of the distribution by

> hist(qt)

The resulting graph is presented in figure 1.
To see the allelic frequencies and other summary statistics for a SNP, you

can use
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Figure 1: Histogram of the variable qt

> summary(snp4)

Number of samples typed: 243 (97.2%)

Allele Frequency: (2 alleles)
Count Proportion

A 323 0.66
B 163 0.34
NA 14 NA

Genotype Frequency:
Count Proportion

A/A 109 0.45
A/B 105 0.43
B/B 29 0.12
NA 7 NA

Heterozygosity (Hu) = 0.4467269
Poly. Inf. Content = 0.3464355
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Tip: on R command line pressing the ”up-arrow” button makes the last typed
command re-appear (pressing it one more time will bring you to the one before
the last, so on). This is very handy when you have to repeat the same analysis
of different variables

To check these characteristics in controls and cases separately, you can use

> summary(snp4[aff == 0])

Number of samples typed: 190 (97.9%)

Allele Frequency: (2 alleles)
Count Proportion

A 255 0.67
B 125 0.33
NA 8 NA

Genotype Frequency:
Count Proportion

A/A 87 0.46
A/B 81 0.43
B/B 22 0.12
NA 4 NA

Heterozygosity (Hu) = 0.4426469
Poly. Inf. Content = 0.3440288

> summary(snp4[aff == 1])

Number of samples typed: 53 (94.6%)

Allele Frequency: (2 alleles)
Count Proportion

A 68 0.64
B 38 0.36
NA 6 NA

Genotype Frequency:
Count Proportion

A/A 22 0.42
A/B 24 0.45
B/B 7 0.13
NA 3 NA

Heterozygosity (Hu) = 0.4643306
Poly. Inf. Content = 0.3541731

Let us check if HWE holds for the SNPs described in this data frame. We
can do exact test for HWE by
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> HWE.exact(snp4)

Exact Test for Hardy-Weinberg Equilibrium

data: snp4
N11 = 109, N12 = 105, N22 = 29, N1 = 323, N2 = 163, p-value = 0.666

If you want to check HWE using controls only, you can do it by

> HWE.exact(snp4[aff == 0])

Exact Test for Hardy-Weinberg Equilibrium

data: snp4[aff == 0]
N11 = 87, N12 = 81, N22 = 22, N1 = 255, N2 = 125, p-value = 0.6244

Let us check if the there is LD between snp4 and snp5:

> LD(snp4, snp5)

Pairwise LD
-----------

D D' Corr
Estimates: 0.2009042 0.9997352 0.8683117

X^2 P-value N
LD Test: 354.3636 0 235

The output shows results of the test for significance of LD, and estimates of the
magnitude of LD (D′ and correlation, r). To obtain r2, you can either square
the correlation manually

> 0.8683117 * 0.8683117

[1] 0.7539652

or simply ask LD() to report it by

> LD(snp4, snp5)$"R^2"

[1] 0.7539652

Tip: the latter command is possible because the LD() function actually com-
putes more things than it reports. This is quite common for R functions. You
can apply names() function to the analysis objects to see (at least part of) what
was actually computed. Try

> ld45 <- LD(snp4, snp5)

and check what are the sub-objects contained in this analysis object

> names(ld45)
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[1] "call" "D" "D'" "r" "R^2" "n" "X^2"
[8] "P-value"

Any of these variables can be accessed through object$var syntax, e.g. to check
D′ we can use

> ld45$"D'"

[1] 0.9997352

To check LD for more that two SNPs, we can compute an LD analysis object
by

> ldall <- LD(data.frame(snp4, snp5, snp6))

and later check

> ldall$"P-value"

snp4 snp5 snp6
snp4 NA 0 0
snp5 NA NA 0
snp6 NA NA NA

to see significance,

> ldall$"D'"
snp4 snp5 snp6

snp4 NA 0.9997352 0.8039577
snp5 NA NA 0.9997231
snp6 NA NA NA

for D′ and

> ldall$"R^2"

snp4 snp5 snp6
snp4 NA 0.7539652 0.5886602
snp5 NA NA 0.8278328
snp6 NA NA NA

for r2.
You can also present e.g. r2 matrix as a plot by

> image(ldall$"R^2")

A more neat way to present it requires specification of the set of threshold
(break points) and colors to be used (you do not need to try this example if you
do not want):

> image(ldall$"R^2", breaks = c(0.5, 0.6, 0.7, 0.8, 0.9, 1), col = heat.colors(5))

Resulting plot is shown at figure 2.
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Figure 2: r2 plot for snp4, snp5 and snp6

Tip: for any R command, you can get help by typing help(command). Try
help(image) if you are interested to understand what are ”breaks” and ”col”;
or try help(heat.colors) to figure this color schema out.

Similar to our HWE checks, we may want to compute (and compare) LD in
cases and controls separately:

> ldcases <- LD(data.frame(snp4, snp5, snp6)[aff == 1, ])

> ldcases$"R^2"

snp4 snp5 snp6
snp4 NA 0.7615923 0.6891558
snp5 NA NA 0.8943495
snp6 NA NA NA

> ldcontr <- LD(data.frame(snp4, snp5, snp6)[aff == 0, ])

> ldcontr$"R^2"

snp4 snp5 snp6
snp4 NA 0.7512458 0.5616395
snp5 NA NA 0.8075894
snp6 NA NA NA
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Figure 3: r2 plot for snp4, snp5 and snp6. Above diagonal: LD in cases; below:
controls

and even present it results for cases and controls on the same graph (you do not
need to produce this graph, which is presented at the figure 3):

> image(ldcases$"R^2", breaks = c(0.5, 0.6, 0.7, 0.8, 0.9, 1),

+ col = heat.colors(5))

> image(t(ldcontr$"R^2"), breaks = c(0.5, 0.6, 0.7, 0.8, 0.9, 1),

+ col = heat.colors(5), add = T)

Now, after we have described genetic and phenotypic data separately, we are
ready to test association between these two. First, we will investigate relation
between the quantitative trait qt and the SNPs by using linear regression

> mg <- lm(qt ~ snp4)

> summary(mg)

Call:
lm(formula = qt ~ snp4)

Residuals:
Min 1Q Median 3Q Max

-2.63700 -0.62291 -0.01225 0.58922 3.05561

Coefficients:
Estimate Std. Error t value Pr(>|t|)

8



(Intercept) -0.081114 0.092517 -0.877 0.382
snp4A/B -0.108366 0.132079 -0.820 0.413
snp4B/B -0.006041 0.201820 -0.030 0.976

Residual standard error: 0.9659 on 240 degrees of freedom
(7 observations deleted due to missingness)

Multiple R-Squared: 0.003049, Adjusted R-squared: -0.005259
F-statistic: 0.367 on 2 and 240 DF, p-value: 0.6932

It is clear that the model assumes arbitrary (estimated) effects of the geno-
types AA, AB and BB. Neither effect of AB nor BB is significant in this case.
The global test on two degrees of freedom (bottom of the output) is also not
significant.

If you want to include some covariate into your model, e.g. sex, you can
easily do that by adding the term to the formula:

> summary(lm(qt ~ sex + snp4))

Call:
lm(formula = qt ~ sex + snp4)

Residuals:
Min 1Q Median 3Q Max

-2.645225 -0.618989 -0.001171 0.587321 3.076356

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.485e-01 1.427e-01 -1.040 0.299
sex 1.307e-01 2.107e-01 0.620 0.536
snp4A/B -1.042e-01 1.324e-01 -0.787 0.432
snp4B/B 6.436e-05 2.023e-01 0.000318 1.000

Residual standard error: 0.9671 on 239 degrees of freedom
(7 observations deleted due to missingness)

Multiple R-Squared: 0.004651, Adjusted R-squared: -0.007843
F-statistic: 0.3723 on 3 and 239 DF, p-value: 0.7731

You can also allow for interaction by using the ”*” operator

> summary(lm(qt ~ sex * snp4))

Call:
lm(formula = qt ~ sex * snp4)

Residuals:
Min 1Q Median 3Q Max

-2.633100 -0.628752 0.008546 0.614107 3.042126

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.2771 0.1856 -1.493 0.137
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sex 0.3803 0.3119 1.219 0.224
snp4A/B 0.1286 0.2599 0.495 0.621
snp4B/B 0.2189 0.3929 0.557 0.578
sex:snp4A/B -0.4652 0.4481 -1.038 0.300
sex:snp4B/B -0.4422 0.7043 -0.628 0.531

Residual standard error: 0.9688 on 237 degrees of freedom
(7 observations deleted due to missingness)

Multiple R-Squared: 0.009593, Adjusted R-squared: -0.0113
F-statistic: 0.4591 on 5 and 237 DF, p-value: 0.8064

Note that both main effects of sex and snp4, and also effects of interaction are
estimated in this model.

We can also test the additive model, which assumes that the deviation from
AA (reference) to BB is twice the deviation to AB. In other words, the mean
value of the trait for heterozygous genotypes is right in between the two homozy-
gotes. To test the additive model you first need to specify ”additive” contrasts
for the SNP:

> gcontrasts(snp4) <- "additive"

Now, running logit() produces a test for additive effect: ma <- lm(qt snp4)
summary(ma)

You can revert to the original contrasts model for the snp4 by

> gcontrasts(snp4) <- "genotype"

To test association with a binary outcome, we will use logit function from
dgc.genetics:

> logit(aff ~ snp4)

Logistic regression: aff ~ snp4

Odds ratios (1 unit change), lower and upper confidence limits, and tests:

OR Lower Upper z-test P-value
snp4A/B 1.171717 0.6099236 2.250972 0.4757324 0.634265
snp4B/B 1.258264 0.4766694 3.321441 0.4638853 0.642730

To make a test of global significance of the SNP effect, you can use

> anova(logit(aff ~ snp4), test = "Chisq")

Analysis of Deviance Table

Model: binomial, link: logit

Response: aff

Terms added sequentially (first to last)
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Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 242 254.908
snp4 2 0.329 240 254.579 0.848

To test the additive model, use

> gcontrasts(snp4) <- "additive"

> logit(aff ~ snp4)

Logistic regression: aff ~ snp4

Odds ratios (1 unit change), lower and upper confidence limits, and tests:

OR Lower Upper z-test P-value
snp4:a:B 1.135596 0.728091 1.771177 0.5607114 0.5749943

When using the logit() function, you can allow for additional covariates
and interactions in the same way as you did with linear regression using lm()
function.

Now you have learned all commands necessary to answer the questions of
the next section.

Exit R by typing q() command (do not save image) and and proceed to the
self exercise.
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2 Exercise

Start R by double-click over the file ge03d1p2.RData. Explore the data frame
present and answer the questions.

Question 1 How many SNPs are described in this data frame?

Question 2 What is the frequency (proportion) of snp1 allele A? What is its
frequency in these affected (aff==1)?

Question 3 How many cases and controls are present?

Question 4 If all subjects are used to test HWE, are there any SNPs out of
HWE at nominal P ≤ 0.05? Which ones?

Question 5 If only controls are used to test the SNPs which are out of HWE
in total sample, are these still out of HWE?

Question 6 Which SNP pairs are in strong LD (r2 ≥ 0.8)?

Question 7 For SNPs in strong LD, what is r2 for separate samples of cases
and controls?

Question 8 Is there significant association between affection status and sex?
What is P -value for association?

Question 9 Is association between the disease and qt significant?

Question 10 Which SNPs are associated with the quantitative trait qt at nom-
inal P ≤ 0.05? Use 2 d.f. test.

Question 11 Test each SNP for association with the affection status, using 2
d.f. test. Which SNPs are significantly associated at nominal P ≤ 0.05? How
can you describe the model of action of the significant SNPs?

Question 12 For the SNPs selected in previous question, test association using
additive model. Which SNPs are still associated?

Question 13 If you adjust the analysis under additive model (question 12) for
significant covariates which you discovered in questions 8 and 9, are these find-
ings still significant?

Question 14 Test association between aff and snp5 and snp10, allowing for
the SNPs interaction effect. Use arbitrary (not an additive) model. Do you ob-
serve significant interaction? How can you describe the model of concert action
of snp5 and snp10?
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3 Answers

Q.1 : How many SNPs are described in this data frame?

> attach(popdat)

The following object(s) are masked from example :

aff qt sex snp4 snp5 snp6 subj

> names(popdat)

[1] "subj" "sex" "aff" "qt" "snp1" "snp2" "snp3" "snp4" "snp5"
[10] "snp6" "snp7" "snp8" "snp9" "snp10"

The answer is 10 snps

Q.2 : What is the frequency (proportion) of snp1 allele A? What is its fre-
quency in these affected (aff==1)?

> summary(snp1)

Number of samples typed: 2374 (95%)

Allele Frequency: (2 alleles)
Count Proportion

A 3462 0.73
B 1286 0.27
NA 252 NA

Genotype Frequency:
Count Proportion

A/A 1287 0.54
A/B 888 0.37
B/B 199 0.08
NA 126 NA

Heterozygosity (Hu) = 0.3950646
Poly. Inf. Content = 0.3169762

The frequency of A in all subjects is 0.73.

> summary(snp1[aff == 1])

Number of samples typed: 519 (94.5%)

Allele Frequency: (2 alleles)
Count Proportion

A 729 0.7
B 309 0.3
NA 60 NA
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Genotype Frequency:
Count Proportion

A/A 258 0.50
A/B 213 0.41
B/B 48 0.09
NA 30 NA

Heterozygosity (Hu) = 0.4185428
Poly. Inf. Content = 0.3307192

The frequency of A in affected subjects is 0.7.

Q.3 : How many cases and controls are present?

> table(aff)

aff
0 1

1951 549

There are 549 cases and 1951 controls.

Q.4 : If all subjects are used to test HWE, are there any SNPs out of HWE
at nominal P ≤ 0.05? Which ones?

> HWE.exact(snp1)

Exact Test for Hardy-Weinberg Equilibrium

data: snp1
N11 = 1287, N12 = 888, N22 = 199, N1 = 3462, N2 = 1286, p-value =
0.01083

...

> HWE.exact(snp10)

Exact Test for Hardy-Weinberg Equilibrium

data: snp10
N11 = 1792, N12 = 552, N22 = 40, N1 = 4136, N2 = 632, p-value = 0.7897

Only SNP 1 is out of HWE in the total sample.

Q.5 : If only controls are used to test the SNPs which are out of HWE in
total sample, are these still out of HWE?

> HWE.exact(snp1[aff == 0])

Exact Test for Hardy-Weinberg Equilibrium

data: snp1[aff == 0]
N11 = 1029, N12 = 675, N22 = 151, N1 = 2733, N2 = 977, p-value =
0.008393
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Yes, SNP 1 is out of HWE also in controls.

Q.6 : Which SNP pairs are in strong LD (r2 ≥ 0.8)?

> LD(popdat[, 5:14])$"R^2"

snp1 snp2 snp3 snp4 snp5 snp6 snp7 snp8 snp9 snp10
snp1 NA 0.016 0.235 0.206 0.258 0.227 0.152 0.117 0.090 0.000
snp2 NA NA 0.004 0.004 0.005 0.004 0.000 0.000 0.000 0.000
snp3 NA NA NA 0.602 0.457 0.346 0.641 0.031 0.042 0.001
snp4 NA NA NA NA 0.803 0.650 0.729 0.027 0.037 0.002
snp5 NA NA NA NA NA 0.874 0.586 0.034 0.046 0.002
snp6 NA NA NA NA NA NA 0.670 0.030 0.040 0.002
snp7 NA NA NA NA NA NA NA 0.020 0.027 0.003
snp8 NA NA NA NA NA NA NA NA 0.002 0.000
snp9 NA NA NA NA NA NA NA NA NA 0.001
snp10 NA NA NA NA NA NA NA NA NA NA

SNP pairs 4-5 and 5-6 have r2 ≥ 0.8.

Q.7 : For SNPs in strong LD, what is r2 for separate samples of cases and
controls?

For controls,

> LD(data.frame(snp4, snp5, snp6)[aff == 0, ])$"R^2"

snp4 snp5 snp6
snp4 NA 0.806591 0.6419715
snp5 NA NA 0.8661005
snp6 NA NA NA

For cases,

> LD(data.frame(snp4, snp5, snp6)[aff == 1, ])$"R^2"

snp4 snp5 snp6
snp4 NA 0.7951475 0.6773275
snp5 NA NA 0.9083237
snp6 NA NA NA

Note that the fact that LD is higher in cases may mean nothing because
the estimates of LD are biased upwards with smaller sample sizes. For
example in a small sample (5 people) of controls we expect even higher
LD because of strong upward bias:

> LD(popdat[which(aff == 0)[1:5], 8:10])$"R^2"

snp4 snp5 snp6
snp4 NA 0.9995876 0.9995876
snp5 NA NA 0.9995876
snp6 NA NA NA

More elaborate methods, such as that by Zaykin, are required to contrast
LD between sample of unequal size.
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Q.8 : Is there significant association between affection status and sex? What
is P -value for association?

> logit(aff ~ sex)

Logistic regression: aff ~ sex

Odds ratios (1 unit change), lower and upper confidence limits, and tests:

OR Lower Upper z-test P-value
sex 1.444688 1.045393 1.996497 2.228963 0.02581635

There is significant (P = 0.03) association.

Q.9 : Is association between the disease and qt significant?

> logit(aff ~ qt)

Logistic regression: aff ~ qt

Odds ratios (1 unit change), lower and upper confidence limits, and tests:

OR Lower Upper z-test P-value
qt 0.9751773 0.8865446 1.072671 -0.5170283 0.6051364

There is no significant (P = 0.6) association.

Q.10 : Which SNPs are associated with the quantitative trait qt at nominal
P ≤ 0.05? Use 2 d.f. test.

> summary(lm(qt ~ snp1))

Call:
lm(formula = qt ~ snp1)

Residuals:
Min 1Q Median 3Q Max

-3.52609 -0.66427 -0.01110 0.67648 3.54622

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.02846 0.02758 -1.032 0.3022
snp1A/B 0.08200 0.04316 1.900 0.0575 .
snp1B/B 0.18644 0.07536 2.474 0.0134 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9893 on 2371 degrees of freedom
(126 observations deleted due to missingness)

Multiple R-Squared: 0.00335, Adjusted R-squared: 0.002509
F-statistic: 3.985 on 2 and 2371 DF, p-value: 0.01873

...
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> summary(lm(qt ~ snp10))

Call:
lm(formula = qt ~ snp10)

Residuals:
Min 1Q Median 3Q Max

-3.586464 -0.677484 0.001935 0.673270 3.412527

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.01915 0.02344 0.817 0.414
snp10A/B 0.01277 0.04829 0.264 0.792
snp10B/B 0.17178 0.15860 1.083 0.279

Residual standard error: 0.9921 on 2381 degrees of freedom
(116 observations deleted due to missingness)

Multiple R-Squared: 0.0005072, Adjusted R-squared: -0.0003324
F-statistic: 0.6041 on 2 and 2381 DF, p-value: 0.5467

SNPs 1, 4, 5 an 9 are significantly associated at nominal P ≤ 0.05.

Q.11 : Test each SNP for association with the affection status, using 2 d.f.
test. Which SNPs are significantly associated at nominal P ≤ 0.05? How
can you describe the model of action of the significant SNPs?

> x <- logit(aff ~ snp5)

> x

Logistic regression: aff ~ snp5

Odds ratios (1 unit change), lower and upper confidence limits, and tests:

OR Lower Upper z-test P-value
snp5A/A 1.235176 0.940558 1.622080 1.519212 0.128709107
snp5B/B 1.403072 1.124687 1.750364 3.001367 0.002687707

> anova(x, test = "Chisq")

Analysis of Deviance Table

Model: binomial, link: logit

Response: aff

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 2382 2440.40
snp5 2 9.24 2380 2431.16 0.01
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...

> x <- logit(aff ~ snp10)

> x

Logistic regression: aff ~ snp10

Odds ratios (1 unit change), lower and upper confidence limits, and tests:

OR Lower Upper z-test P-value
snp10A/B 1.3376929 1.0695740 1.673023 2.5493546 0.01079225
snp10B/B 0.8350447 0.3664215 1.902999 -0.4289534 0.66795715

> anova(x, test = "Chisq")

Analysis of Deviance Table

Model: binomial, link: logit

Response: aff

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 2383 2475.13
snp10 2 6.73 2381 2468.39 0.03

The SNPs 5 an 10 are significantly associated at P ≤ 0.05. The model
of action of SNP5 can be ddescribed as recessive (while the risk for AA
and AB is not significantly different, there is 1.4 times increased risk for
these homozygous for BB). The SNP 10 demonstrates somewhat weird
action with the risk increased in heterozygous AB individuals. However,
the confidence interval for BB is large and therefore we can not claim that
BB is not increasing the risk.

Q.12 : For the SNPs selected in previous question, test association using
additive model. Which SNPs are still associated?

> gcontrasts(snp5) <- "additive"

> logit(aff ~ snp5)

Logistic regression: aff ~ snp5

Odds ratios (1 unit change), lower and upper confidence limits, and tests:

OR Lower Upper z-test P-value
snp5:a:A 0.8964111 0.7765197 1.034813 -1.492841 0.1354787

> gcontrasts(snp10) <- "additive"

> logit(aff ~ snp10)
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Logistic regression: aff ~ snp10

Odds ratios (1 unit change), lower and upper confidence limits, and tests:

OR Lower Upper z-test P-value
snp10:a:B 1.218450 1.00014 1.484412 1.961389 0.04983367

Only SNP 10 is significantly associated under the additive model.

Q.13 : If you adjust the analysis under additive model (question 12) for sig-
nificant covariates which you discovered in questions 8 and 9, are these
findings still significant?

> logit(aff ~ sex + snp10)

Logistic regression: aff ~ sex + snp10

Odds ratios (1 unit change), lower and upper confidence limits, and tests:

OR Lower Upper z-test P-value
sex 1.453497 1.040060 2.031281 2.190016 0.02852308
snp10:a:B 1.222662 1.003450 1.489764 1.994160 0.04613457

Yes, SNP 10 becomes even a bit more significantly associated after adjust-
ing for sex.

Q.14 : Test association between aff and snp5 and snp10, allowing for the
SNPs interaction effect. Use arbitrary (not an additive) model. Do you
observe significant interaction? How can you describe the model of concert
action of snp5 and snp10?

> gcontrasts(snp5) <- "genotype"

> gcontrasts(snp10) <- "genotype"

> logit(aff ~ snp5 * snp10)

Logistic regression: aff ~ snp5 * snp10

Odds ratios (1 unit change), lower and upper confidence limits, and tests:

OR Lower Upper z-test P-value
snp5A/A 0.6583495 0.44728351 0.9690143 -2.11960143 3.403967e-02
snp5B/B 1.3971228 1.07526418 1.8153233 2.50317688 1.230840e-02
snp10A/B 0.9860685 0.68953030 1.4101353 -0.07687059 9.387265e-01
snp10B/B 0.8608534 0.29134395 2.5436212 -0.27105727 7.863470e-01
snp5A/A:snp10A/B 4.4091743 2.32051700 8.3777958 4.53036148 5.888285e-06
snp5B/B:snp10A/B 1.1387038 0.66501059 1.9498132 0.47334571 6.359666e-01
snp5A/A:snp10B/B 2.2784250 0.32752451 15.8498682 0.83211257 4.053454e-01
snp5B/B:snp10B/B 0.7515445 0.06730847 8.3915024 -0.23201853 8.165236e-01

It appears that SNP10 genotype is only relevant in these who are homozy-
gous for the low-risk A allele at the SNP5; in such cases SNP 10 allele B is
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risk increasing. In these homozygous for SNP 5 A, we observe highly sig-
nificant increase in risk for heterozygotes for SNP10 and increased (though
not significantly) risk for SNP 10 BB.
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