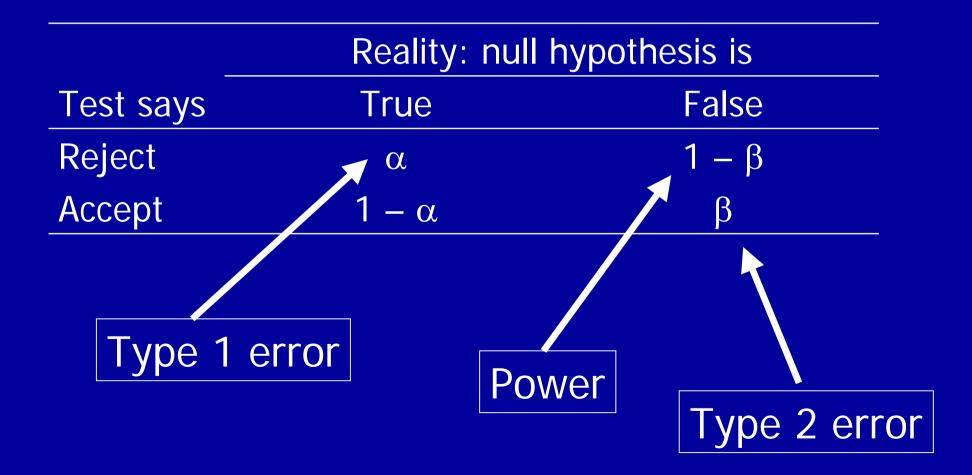
Power of genetic epidemiology (association) study

25.10.2007 GE02 day 4 part 3

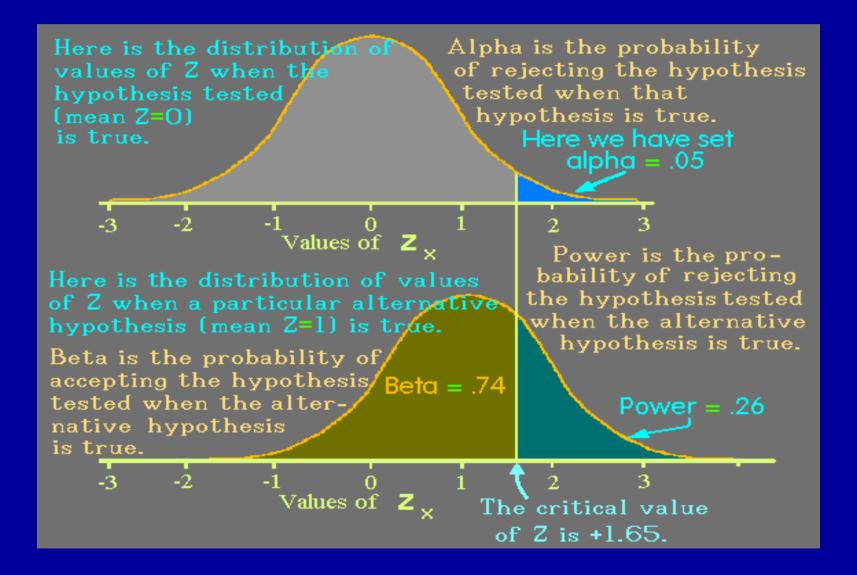
Yurii Aulchenko Erasmus MC Rotterdam

Hypothesis testing


If P-value is less then or equal to some prespecified threshold (α), then you say that you reject the null hypothesis

• Usually (for single test) α is taken to be 0.05

This means that if you do many tests and null is true, you are going to reject the true hypothesis in 5% of tests!


GE02, Oct 22 – Nov 23 2007

Type 1 (α) and 2 (β) errors

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

Computing β and power

If expectation of the test statistics under alternative is X than

Type 2 error is

 $\beta = \Phi(\mathsf{T}-\mathsf{X})$

• Power = $(1 - \beta)$ is $1-\beta = 1 - \Phi(T-X) = \Phi(X-T)$

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

Test statistics expected under alternative

Binomial experiment with n and p

- If under null p₀=0.5 and under alternative p₁=0.6 then expected Z test statistics is
 - n=10 : $E[Z]=(6-5)/\sqrt{(10 \frac{1}{2} \frac{1}{2})} = 0.63$
 - n=40 :
 - n=160 :
 - n=640 :
- $E[Z] = (24-20)/(\frac{1}{2}\sqrt{40}) = 1.26$
- $E[Z] = (96-80)/(\frac{1}{2}\sqrt{160}) = 2.53$
- $E[Z] = (384 320) / (\frac{1}{2}\sqrt{640}) = 5.06$

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

Logic of power computations

- You wish to achieve significance of α and power of (1β) [and hence $\beta = (1 power)$]
- Under null, the statistics is described by Standard Normal
- The cut-off statistics value is determined by $\boldsymbol{\alpha}$
- Given sample size, you can compute the expected test statistics under alternative
- What is the sample size which gives you right β?

GE02, Oct 22 – Nov 23 2007

Example

- If under null p₀=0.5 and under alternative p₁=0.6 then expected test statistics is
- α=0.05 (threshold T=1.96) and power desired is 80% (thus β<0.2)
 - n=10 : E[Z]=0.63 : $1-\beta = \Phi(0.63-1.96) = \Phi(-1.33) = 0.09$
 - n=40 : E[Z]=1.26 : $1-\beta = \Phi(1.26-1.96) = \Phi(-0.7) = 0.24$
 - **n**=160 : E[Z]=2.53 : $1-\beta = \Phi(2.53-1.96) = \Phi(0.57) = 0.72$
 - n=640 : E[Z]=5.06 : $1-\beta = \Phi(5.06-1.96) = \Phi(3.1) = 0.999$

GE02, Oct 22 – Nov 23 2007

Genetic power calculator

http://pngu.mgh.harvard.edu/~purcell/gpc/

Genetic Power Calculator

S. Purcell & P. Sham, 2001-2005

This site provides automated power analysis for variance components (VC) quantitative trait locis (QTL) linkage and association tests in sibships, and other common tests. It is currently under construction - suggestions, comments to <u>Shaun Purcell</u>. If you use this site, please reference the following <u>Bioinformatics</u>

Purcell S, Cherny SS, Sham PC. (2003) Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics, 19(1):149-150.

Modules

VC QTL linkage for sibships	Notes
VC QTL association for sibships	Notes
VC QTL linkage for sibships conditional on trait	Notes
MPIC: Multipoint Polymorphism Information Content	Notes
TDT for discrete traits	Notes
Case-control for discrete traits	Notes
TDT for threshold-selected quantitative traits	Notes
Case-control for threshold-selected quantitative traits	Notes
Probability Function Calculator	Notes

GRR(Aa) = P(disease|Aa)/P(disease|aa)GRR(AA) = P(disease|AA)/P(disease|aa)

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

Power of the test that $p \neq \frac{1}{2}$

Some anticipated p

$$\frac{|np - \frac{n}{2}|}{\sqrt{n \cdot 0.5 \cdot 0.5}} \ge Z_{\alpha} + Z_{\beta}$$

$$n = \frac{\left(Z_{\alpha} + Z_{\beta}\right)^2}{\left(2p - 1\right)^2}$$

• For $\alpha = 0.05$ and power = $1 - \beta = 80\%$ • $Z_{\alpha} = 1.96$, $Z_{\beta} = 0.84$

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

Example

- A TDT test is performed
- Expected ratio of segregation of the susceptibility allele is 0.57
- How many informative meioses we need?

$$n = \frac{\left(Z_{\alpha} + Z_{\beta}\right)^{2}}{\left(2p - 1\right)^{2}} = \frac{\left(1.96 + 0.84\right)^{2}}{\left(2 \cdot 0.57 - 1\right)^{2}} = \frac{7.84}{0.0196} = 400$$

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

Test for association

- Assume that number of cases = number of controls = n
- Frequency in controls is p
- Expected frequency in cases is p₁

Power of the test that $p_1 \neq p$

Expected Z is

$$\frac{2np_1 - 2np}{\sqrt{4n\frac{p+p_1}{2}\left(1 - \frac{p+p_1}{2}\right)}} \ge Z_{\alpha} + Z_{\beta}$$

$$n = \frac{\left(2p(1-p_1) + p_1(2-p_1) - p^2\right)\left(Z_{\alpha} + Z_{\beta}\right)^2}{4(p_1 - p)^2}$$

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

Example

- Frequency in controls is 0.2
- Anticipated frequency in cases is 0.25
- What sample # of cases is needed at alpha of 0.05 and power of 0.8?

$$n = \frac{\left(2p(1-p_1) + p_1(2-p_1) - p^2\right)\left(Z_{\alpha} + Z_{\beta}\right)^2}{4(p_1 - p)^2}$$

$$n = \frac{\left(2 \cdot 0.2 \cdot 0.75 + 0.25 \cdot (2 - 0.25) - 0.2^2\right) \cdot \left(1.96 + 0.84\right)^2}{4 \cdot \left(0.25 - 0.2\right)^2} = 547$$

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

Putting it all together...

- Study of Sladek (Nature 2007) reports novel locus for T2D, HHEX
- At SNP rs7923837, frequency of the susceptibility allele
 (G) was 0.67 in cases and 0.62 in controls
- What sample size is needed for a confirmation study for this SNP? (power = 90%, nominal P=0.05)
- What was the power to detect this locus in the study of Sladek? (Assuming 400K SNPs, 600 cases and 600 controls)
- What sample size needed to discover this gene in a GWA with 400K SNPs with 90% power?

GE02, Oct 22 – Nov 23 2007

Sample size for conformation

Power of allelic test:

$$n = \frac{\left(2p(1-p_1) + p_1(2-p_1) - p^2\right)\left(Z_{\alpha} + Z_{\beta}\right)^2}{4(p_1 - p)^2}$$

■ Za = 1.96, Zb = 1.28

$$n = \frac{\left(2 \cdot 0.62 \cdot 0.33 + 0.67 \cdot (2 - 0.67) - 0.62^2\right) \cdot \left(1.96 + 1.28\right)^2}{4 \cdot \left(0.67 - 0.62\right)^2} = 961$$

Thus: 1000 cases, 1000 controls!

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

Power to discover with 600:600

Required numbers

- Desired nominal $P = 0.05/400,000 = 1.25 \times 10^{-7}$
- Corresponding Za = 5.29
- E[Z] =

 $(0.67*1200-0.62*1200) / \sqrt{[2400 0.645 (1-0.645)]} = 2.56$

Genome-wide power?

• $P(Z>5.29) = \Phi(2.56 - 5.29) = \Phi(-2.73) = 0.003$ (!)

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

Sample size to have 90% GWA power

Power of allelic test:

$$n = \frac{\left(2p(1-p_1) + p_1(2-p_1) - p^2\right)\left(Z_{\alpha} + Z_{\beta}\right)^2}{4(p_1 - p)^2}$$

■ Za = 5.29, Zb = 1.28

$$n = \frac{\left(2 \cdot 0.62 \cdot 0.33 + 0.67 \cdot (2 - 0.67) - 0.62^2\right) \cdot \left(5.29 + 1.28\right)^2}{4 \cdot \left(0.67 - 0.62\right)^2} = 3,953$$

Thus: 4000 cases, 4000 controls!

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

Power of QTL study here???

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko