Normal approximation to Binomial

24.10.2007
 GE02: day 3 part 3

Yurii Aulchenko Erasmus MC Rotterdam

Binomial distribution at different \boldsymbol{n} and p

GE02, Oct 22 - Nov 232007
(C) 2004-2007 Yurii Aulchenko

Carl Friedrich Gauss (1777-1855)

- Developed Normal (Gaussian) distribution to describe measurement error

Normal approximation

- n must be large, say >100
- If $n p>5$, use Normal approximation
$\operatorname{Binomial}_{n, p}(x) \propto P_{\mu, 0}(X)=$
- where mean $\mu=n p$ and variance $\sigma^{2}=n p(1-p)$

Siméon D. Poisson (1781-1840)

- Book on "Research on the Probability of Judgments in Criminal and Civil Matters"
- His distribution described time till some rare event happens

Poisson approximation

- If $n p$ is about 1-4, use Poisson approximation

Binomial $_{n, p}(x) \propto P_{\lambda}(k)=$

where $\lambda=n p$

Problem

- What approximation would you use under these scenarios?

	n		
p	100	250	1000
0.5	$?$	$?$	$?$
0.01	$?$	$?$	$?$
0.001	$?$	$?$	$?$

Solution

- Table of np's:
- Approximation:

	n		
p	100	250	1000
0.5	50	125	500
0.01	1	2.5	10
0.001	0.1	0.25	1

	n		
p	10	25	100
0.5	N	N	N
0.01	P	P	N
0.001	P	P	P

Approximating Binomial at $p=0.5$

Green:
Red:

Normal approximation Poisson approximation
(C) 2004-2007 Yurii Aulchenko

Erasmus MC Rotterdam

Approximating Binomial at $p=0.1$

Green:
Red:

Normal approximation Poisson approximation

Approximating Binomial at $\mathrm{p}=0.01$

Green:
Red:

Normal approximation Poisson approximation

Approximating Binomial $(\mathrm{k} \leq \mathrm{x})$

- Binomial $_{n, p}(\mathrm{k}) \propto \mathrm{P}_{\lambda}(\mathrm{k})=\frac{e^{-\lambda} \lambda^{k}}{k!}$. where $\lambda=n p$
- Binomial $_{n, p}(k \leq x) \propto P_{\lambda}(k \leq x)=$

$P_{\lambda}(k \leq x)$

Table IV. Cumulative Poisson Distribution

Lambda

\mathbf{k}	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
$\mathbf{0}$	0.905	0.819	0.741	0.670	0.607	0.549	0.497	0.449	0.407	
$\mathbf{1}$	0.995	0.982	0.963	0.938	0.910	0.878	0.844	0.809	0.772	0.736
$\mathbf{2}$	1.000	0.999	0.996	0.992	0.986	0.977	0.966	0.953	0.93	0.920
$\mathbf{3}$	1.000	1.000	1.000	0.999	0.998	0.997	0.994	0.991	0.987	0.981
$\mathbf{4}$				1.000	1.000	1.000	0.999	0.999	0.998	0.996
$\mathbf{5}$										0.999
$\mathbf{6}$										1.000

Probability to sample 0 alleles with frequency of 0.01 among 100 chromosomes:
 $\mathrm{n}=100, \mathrm{p}=0.01, \mathrm{k}=0, \lambda=\mathrm{np}=1$

Problem

- A mutation of microsatellite marker occurs in rate of 10^{-3} per meiosis
- In a complex pedigree, including 1500 meioses, 2 Mendelian errors were observed
- P1: What is the chance to have 2 or more errors under assumption that all errors represent new mutations?
- P2: What would be the number of errors, after which you would conclude that there is genotyping error (at $\alpha=0.05$)?

Solution P1: Binomial

- $P(\mathbf{k} \geq 2)=1-P(\mathbf{k} \leq 1)=$

$$
\begin{aligned}
& 1-P(\mathbf{k}=1)-P(\mathbf{k}=0)= \\
& 1-1500 \cdot 0.001 \cdot 0.9991499-0.9991500= \\
& 0.442
\end{aligned}
$$

Solution P2: Binomial

- Idea: compute
- P(k>2)
- $P(k \geq 3)$
- $P(k>4)$
- $\mathrm{P}(\mathrm{k} \geq 5)$
- $\mathrm{P}(\mathrm{k} \geq 6)$
- And check when it becomes ≤ 0.05

Solution P1: Poisson

- $P(k \geq 2)=1-P(k \leq 1)$
- $\lambda=\mathbf{n p}=1500 \cdot 10^{-3}=1.5$
- Using the table

$$
\begin{aligned}
& P_{\lambda=1.5}(k \geq 2)=1-P_{\lambda=1.5}(\mathbf{k} \leq 1)= \\
& 1-0.558=0.442
\end{aligned}
$$

Solution P2: Poisson

- $P(k \times X)=1-P(k<[X-1]) \leq 0.05$
- $P(k \leq[X-1]) \geq 0.95$
- Idea: check the column with $\lambda=1.5$ and see at what \mathbf{k} it becomes more then 0.95 , then add 1 to this number
- Answer: 5 errors

				Lambda			
\mathbf{k}	1.1	1.2	1.3	1.4	1.5	1.6	
$\mathbf{0}$	0.333	0.301	0.273	0.247	0.223	0.202	
$\mathbf{1}$	0.699	0.663	0.627	0.592	0.558	0.525	
$\mathbf{2}$	0.900	0.879	0.857	0.833	0.809	0.783	
$\mathbf{3}$	0.974	0.966	0.957	0.946	0.934	0.921	
$\mathbf{4}$	0.995	0.992	0.989	0.986		0.976	
$\mathbf{5}$	0.999	0.998	0.998	0.997	0.996	0.994	
$\mathbf{6}$	1.000	1.000	1.000	0.999	0.999	0.999	
$\mathbf{7}$				1.000	1.000	1.000	

Standard Normal

- Normal density function with mean 0 and variance 1:

$$
P(k=x)=\phi(x)=\frac{1}{\sqrt{2 \pi}} \cdot \exp \left(-\frac{x^{2}}{2}\right)
$$

- Its integral is termed Normal distribution:

$$
P(k \leq x)=\Phi(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} \cdot \exp \left(-\frac{x^{2}}{2}\right) d x
$$

Standard Normal

- We know a lot about this function and many statistical techniques are based on that

Facts about Standard Normal

It is symmetric distribution, therefore

$$
\phi(-x)=\phi(x)
$$

It has area of 1 , therefore

$$
\Phi(\mathbf{x})=\mathbf{1}-\Phi(-\mathrm{x})
$$

Facts about Standard Normal

$$
\begin{array}{ll}
P(x \leq 1)=0.84 & P(-1 \leq x \leq 1)=2(1-0.84)=0.32 \\
P(x \leq 2)=0.977 & P(-2 \leq x \leq 2)=2(1-0.977)=0.955 \\
P(x \leq 3)=0.999 & P(-3 \leq x \leq 3)=2(1-0.999)=0.997
\end{array}
$$

$$
\begin{array}{ll}
P(x \leq 1.64)=0.95 & P(-1.64 \leq x \leq 1.64)=0.90 \\
P(x \leq 1.96)=0.975 & P(-1.96 \leq x \leq 1.96)=0.95 \\
P(x \leq 2.57)=0.995 & P(-2.32 \leq x \leq 2.57)=0.99
\end{array}
$$

$\mathrm{P}(\mathrm{x} \leq \mathrm{Z})=\Phi(\mathrm{Z})$

	0.5000									
	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	. 5636	0.5675		0.5753
0.2	0.579	5832	5	0.5910	0.5948	0.5987	26	064	3	0.6141
0.3	0.6179	. 6217	0.625	. 6293	633	6368	640	6443	880	1
	0.6	0.659	66							
	0.6915		0.6985							
	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	. 7454	0.7486	0.7517	0.7549
	0.758	0.7611	76	0.7673	0.770	0.7734	. 7764	0.7794	82	0.7852
0.8	. 788	0.791	0.793	0.79	0.7	0.8023	. 8	8078	0.8106	0.813
	0.8159	0.8186	0.821	0.8238	0.826	0.8289	,	. 8340	0.8365	
	0	0.8438	0.		0.8508			0.8577	0.8599	
	0.864	66	0.86	0.8708	0.872	0.8749	0.8770	0.8790	0.8810	0.8830
	0.884	0.8869	8		0.89		8	. 8980		
	0.903	0.9049	0.90	0.9082	0.9099	0.9115	9131	9147	0.9162	
	0.919	0.9207	0.9	0.9236	0.9251	0.9265	. 9279	92	0.9306	0.9319
1.5	0.9332	0.9345	0.93		0.9		. 9406	0.9418		
1.6	0.9452	946	0.94		0.9495		. 9515	. 9	0.9535	
	0.9554	9564	0.95	0.9	0.95	0.9599	. 9	. 9616	0.	
1.8	0.9641	649	0.9656	0.9664	0.967	9678	0.9686	0.9693	0.9699	0.9706
. 9	0.9713	0.9719	0.9726	0.9732	0.97	0.9744	97	0.9756	. 976	0.9767
2.0	0.977	0.9	0.9	0.9788	. 9	. 9	. 9	. 9	. 9	

Approximating Binomial with Normal

mean $\mu=n p$ and variance $\sigma^{2}=n p(1-p)$

$$
P(k \leq \alpha) \approx \Phi_{\mu, \sigma}(\alpha+0.5)
$$

Using Standard Normal

$$
P(k \leq \alpha)=\Phi\left(\frac{(\alpha+0.5)-\mu}{\sigma}\right)
$$

$$
P(k>\alpha)=1-\Phi\left(\frac{(\alpha+0.5)-\mu}{\sigma}\right)
$$

$$
P(k \geq \alpha)=1-\Phi\left(\frac{(\alpha-0.5)-\mu}{\sigma}\right)
$$

$$
P(\alpha \leq k \leq \beta)=\Phi\left(\frac{\beta-\mu+0.5}{\sigma}\right)-\Phi\left(\frac{\alpha-\mu-0.5}{\sigma}\right)
$$

Problem

- Coin is tossed 200 times.
- Estimate probability that the number of heads is between 95 and 105, included - that is to say that it deviates from 100 by 5 at most
- Suggestion
- $\mathrm{n}>100, \mathrm{np}=100 \Rightarrow$ use Normal approximation

Solution

The parameters of the Binomial are $\mu=n p=100$ and variance $\sigma^{2}=n p(1-p)=50$ (then σ is 7.07)

$$
P(\alpha \leq k \leq \beta)=\Phi\left(\frac{\beta-\mu+0.5}{\sigma}\right)-\Phi\left(\frac{\alpha-\mu-0.5}{\sigma}\right)
$$

$$
\begin{gathered}
P(95 \leq k \leq 105)=\Phi\left(\frac{105.5-100}{7.07}\right)-\Phi\left(\frac{94.5-100}{7.07}\right)=\Phi\left(\frac{5.5}{7.07}\right)-\Phi\left(\frac{-5.5}{7.07}\right)= \\
\Phi(0.78)-\Phi(-0.78)=\Phi(0.78)-(1-\Phi(0.78))= \\
2 \Phi(0.78)-1=? ? ?
\end{gathered}
$$

Number!

$$
\begin{aligned}
& \Phi(0.778)-\Phi(-0.778)= \\
& 1-2 \times \Phi(0.778)=
\end{aligned}
$$

We leave exact (Binomial) computations and comparison for the exercises session

Problem

- Frequency of a disease allele is 0.03
- In a sample of 100 people
- What number of carrier is expected?
- What is the chance to have 10 or more carriers?
- Assume HWE

Solution

- Carrier frequency is roughly 6\%
- The parameters of the Binomial are $\mu=n p=6$ and variance σ^{2} $=n p(1-p)=5.64$ (then σ is 2.37)
- Use Normal (np>5)

$$
=1-0.93=0.07
$$

Problem

- The frequency of a genetic variant is 0.01
- How many people you need to sample to have 95% probability that at least one is carrier?

Solution

- $\mathrm{P}($ at least one carrier $) \geq 0.95$
- P(at least one carrier) =

$$
\begin{aligned}
& \quad 1-\mathrm{P}(\text { no carriers })=1-0.98^{n} \\
& =1-0.98^{n}=0.95 \\
& =0.98^{n}=0.05 \\
& =n=\ln (0.05) / \ln (0.98)=148.28
\end{aligned}
$$

Problem

- The frequency of a genetic variant is 0.01
- How many people you need to sample to have 95\% probability to have at least THREE carriers?

Straight solution

- $P(\geq 3$ carriers $) \geq 0.95$
$1-\mathrm{P}(0$ carriers $)-\mathrm{P}(1$ carrier $)-\mathrm{P}(2$ carriers $) \geq 0.95$
$1-\left[0.98^{n}\right]-\left[n \cdot 0.02 \cdot 0.98^{n-1}\right]-\left[1 / 2 \cdot n \cdot(n-1) \cdot 0.02^{2} \cdot 0.98^{n-2}\right] \geq 0.95$
$\left[0.98^{n}\right]+\left[n \cdot 0.02 \cdot 0.98^{n-1}\right]+\left[1 / 2 \cdot n \cdot(n-1) \cdot 0.02^{2} \cdot 0.98^{n-2}\right] \leq 0.05$

- ?!!? Solution ?!!?

Using Poisson

- As p is low (0.02), Poisson approximation may work well

Idea of solution

- Event of interest is $\mathbf{k} \geq 3$
- $P(k \geq 3)=1-P(k \leq 2) \geq 0.95$
- $P(k \leq 2) \leq 0.05$
- In Poisson, $\lambda=\mathbf{n p}$
- If you find out what λ gives $P(k \geq 3)=0.95$, then n is λ / p

Solution

- At $\mathbf{k}=2$
- $\lambda=6.2$ gives $P(k \leq 2)=0.054$
- $\lambda=6.4$ gives $P(k \leq 2)=0.046$
- Therefore sample size should be between
6.2/0.02 = 310 and
- $6.4 / 0.02=320$

Solution with Normal 1

- $\mathrm{P}(\mathrm{k} \geq 3$ carriers $)=\mathrm{P}(>2$ carriers $)$
- $P(k>2$ carriers $) \geq 0.95$

- $\mu=0.02 n ; \sigma^{2}=n 0.020 .98$

Solution with Normal 2

$$
\Phi\left(\frac{2-0.02 \cdot n+\frac{1}{2}}{\sqrt{0.02 \cdot 0.98 \cdot n}}\right)<0.05
$$

- Use table:

$$
\frac{2-0.02 \cdot n+\frac{1}{2}}{\sqrt{0.02 \cdot 0.98 \cdot n}}<-1.64
$$

$$
1.64 \cdot \sqrt{0.0196} \cdot \sqrt{n}-0.02 \cdot n<-2 \frac{1}{2}
$$

Solving quadratic equation

- If there is equation of the form $\mathrm{A} \sqrt{ } n-\mathrm{B} n=-\mathrm{C}$
- Solution is

$$
\frac{A^{2}+2 \cdot B \cdot C+A \cdot \sqrt{A^{2}+4 \cdot B \cdot C}}{2 \cdot B^{2}}
$$

Answer is...

$$
A=1.64 \sqrt{0.0196} \approx 0.23 ; \quad B=0.02 ; \quad C=2 \frac{1}{2}
$$

$$
\frac{A^{2}+2 \cdot B \cdot C+A \cdot \sqrt{A^{2}+4 \cdot B \cdot C}}{2 \cdot B^{2}}
$$

$$
0.23^{2}+2 \cdot 0.02 \cdot 2.5+0.23 \cdot \sqrt{0.23^{2}+4 \cdot 0.02 \cdot 2.5}
$$

$$
2 \cdot 0.02^{2}
$$

$$
\frac{0.053+0.1+0.23 \cdot \sqrt{0.053+0.2}}{0.0008}=\frac{0.153+0.23 \cdot 0.503}{0.0008}=335
$$

Binomial computations: exercises session

Useful excel functions

- Cumulative binomial $P_{n, p}(x \leq k)$

$$
=\operatorname{binomdist(k,n,p,1)}
$$

- Cumulative standard normal $\Phi(x \leq k)$
=normdist(k,0,1,1)
- Poisson $P_{\lambda}(x \leq k)$
$=$ posisson $(k, \lambda, 1)$
- Chi-squared with m d.f., $\chi_{\mathrm{m}}{ }^{2}(\mathrm{x} \geq \mathrm{k})$
$=$ chidist(k,m)

