Selection and Mutation

23.10.2005 GE02: day 2 part 3

Yurii Auchenko Erasmus MC Rotterdam

Acts trough differential reproduction

Fitness of genotype g

- probability of reproductive success of an individual having this genotype
- r(g): "Feproductive success" or "survival"
- s(g): "Selection pressure" or "mortality"

• r(g) = 1 - s(g)

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

Differential reproduction

Can occur because of different mechanisms

- Survival, e.g. a mutation may lead to death before reproductive age
- Damaged reproductive system, e.g. complete sterility or lowered fertility
- Distorted sexual behavior

...

Problem: dominant lethal allele

- Two alleles are present in population, N and D
- Initial frequency of **D** is q₀
- Survival in NN is not affected (normal fitness), while carriers of D have absolute mortality (all dead at early development):

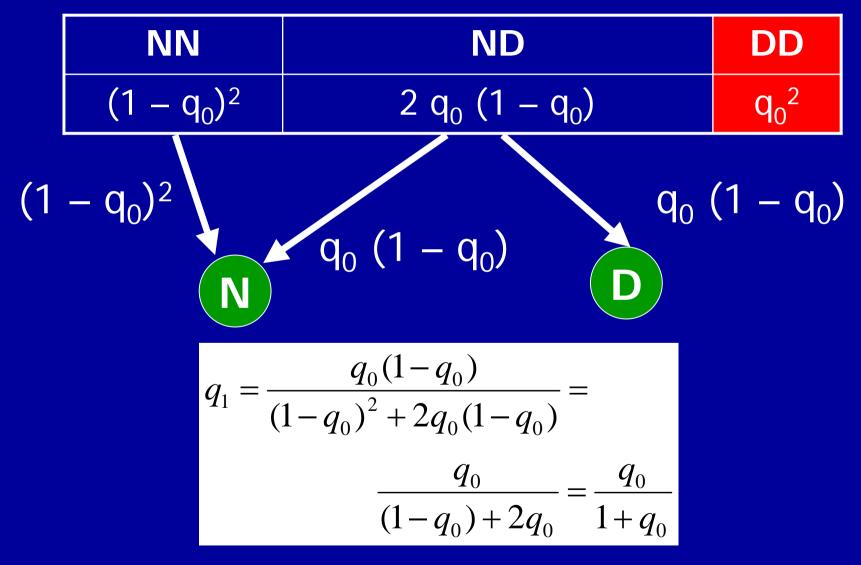
s(NN) = 0, s(ND) = s(DD) = 1

What will happen to the allele D after some time?

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

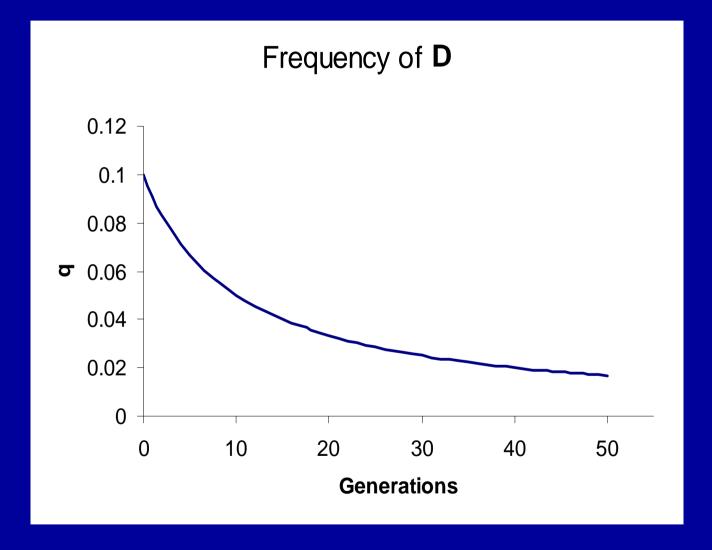
It will be immediately eliminated!


GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

Problem: recessive mutation

- Two alleles, N and D
- Initial frequency of **D** is q₀
- Population is large and mating is random
- Individuals of genotype DD are sterile, while fitness of other genotypes is not distorted: s(NN) = s(ND) = 0; s(DD)=1
- What will happen to the allele D after some time?


Solution

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

Elimination of mutant

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

Two alleles, D (deleterious) and N (normal)

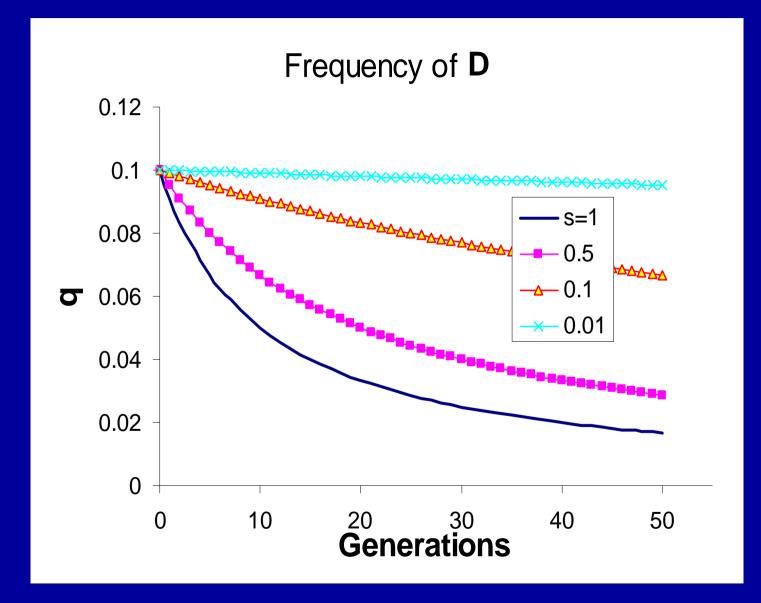
Survival in DD is decreased by some s:
 only (1 – s) survive and reproduce

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

Solution

NNNDDD
$$(1 - q_0)^2$$
 $2 q_0 (1 - q_0)$ $(1 - s) q_0^2$


It is easy to show that

$$q_{1} = \frac{q_{0}(1 - q_{0}) + q_{0}^{2}(1 - s)}{(1 - q_{0})^{2} + 2q_{0}(1 - q_{0}) + q^{2}(1 - s)} = \frac{q_{0}(1 - q_{0}s)}{1 - sq_{0}^{2}} = \frac{q_{0}}{1 + sq_{0}}$$

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

Elimination at different s

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

Mutation and selection

- Two alleles, D (deleterious) and N (normal)
- Survival in DD is decreased by some s:
 - only (1 s) survive and reproduce
- Thus selection eliminates D from population
- Opposing force: mutation changes N to D with probability µ (per gamete generated)
- There must be a mutation / selection balance (equilibrium point)

GE02, Oct 22 – Nov 23 2007

Fate of a rare recessive mutation

At the equilibrium point, the frequency of N in next generation must be the same as in previous generation

$$p = \frac{(p^2 + pq) \cdot (1 - \mu)}{1 - sq^2}$$

$$p = \frac{p \cdot (1 - \mu)}{1 - sq^2}$$

$$p \cdot (1 - sq^2) = p \cdot (1 - \mu)$$

$$sq^2 = \mu$$

$$q = \sqrt{\frac{\mu}{s}}$$

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

Problem: cystic fibrosis

- Mutation in CFTR gene
- Recessive monogenic model
- Homozygous carriers ha(ve)(d) ¼ chance to die before reproduction age
- Carrier frequency is 1/30
- Assuming mutation/selection balance model, what is mutation rate, μ?

Solution

• $P(D)^2 = \mu / S$ • $\mu = S P(D)^2$

• $S = \frac{1}{4}$ • $P(D) = \frac{1}{2*30} = \frac{1}{60}$

• $\mu = \frac{1}{4} \frac{1}{3600} = 10^{-5}$

A bit too high...

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

Genotype	AA	Aa	aa
Success	1 – s ₁	1	1 – s ₂
Sel. press.	S ₁	0	S ₂

 Idea: because of heterozygous advantage, both A and a must be present in population

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

Solution

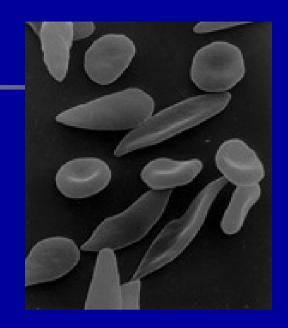
- Let us denote frequency of "A" as q
- Equation:

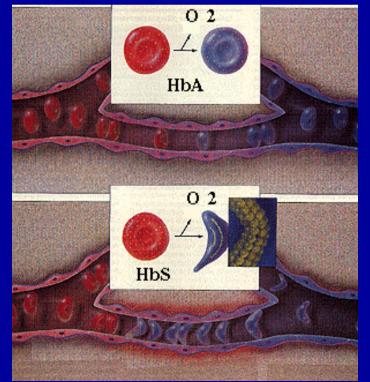
 $\mathbf{q}' = [\mathbf{q}^2 (1 - \mathbf{s}_1) + \mathbf{p}\mathbf{q}]/[1 - \mathbf{s}_1 \mathbf{p}^2 - \mathbf{s}_2 \mathbf{q}^2]$

- At equilibrium point:
 - $\mathbf{q}' = \mathbf{q}$
- Solution:

 $q = s_1 / (s_1 + s_2)$

GE02, Oct 22 – Nov 23 2007


Sickle-cell anemia (SCA)

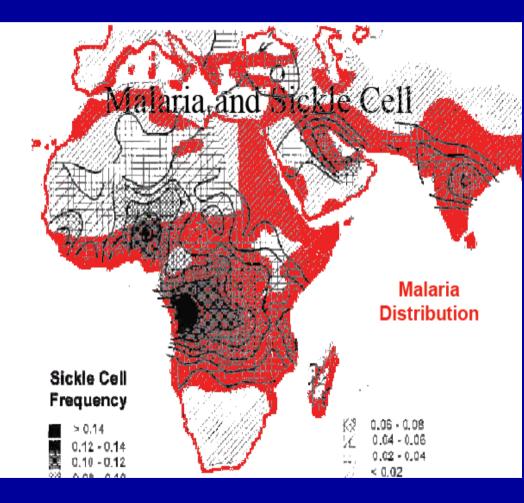

HbS allele of human beta-globin

- Hb/Hb \Rightarrow normal
- HbS/Hb \Rightarrow normal
- HbS/HbS \implies SCA

SCA

- sickle cells are "sticky" ⇒ vasooclusion and local hypoxia ⇒ vascular damage, organ infarcts, painful crises
- High risk of death before 3 y.o.
- Shorter life expectancy in adult

GE02, Oct 22 – Nov 23 2007


High HbS frequency \Leftrightarrow malaria

Hb/Hb

- malaria
- HbS/Hb
 - Malaria less frequent, lower parasite level ⇒ 30% more survive to adulthood

HbS/HbS

- SCA
- Malaria less frequent, lower parasite level

Application to SCA

Assume

Malaria is endemic

Genotype	Hb/Hb	Hb/HbS	HbS/HbS
Survival	0.77	1	0.1
Sel. press.	0.23	0	0.9

Equilibrium frequency q = 0.23/(0.23 + 0.9) = 0.20

Fitness is context-dependent

A "harmful" allele may

- have been favorable or neutral in the past
- may be harmful in homo- but favorable in heterozygous form
- may have opposite effect at different ages
- may have opposite effect on different traits
- If population is/was small, it also could attain high frequency just by chance (drift)

GE02, Oct 22 – Nov 23 2007

. . .