Hypothesis testing

25.10.2005
GE02: day 4 part 1

Yurii Aulchenko
Erasmus MC Rotterdam

Statistic

- An experiment leads to data (observed)
- There is some expectation (null hypothesis) about what the data could be
- "Statistic" is a quantity which measures how (un)likely the deviation of observed from the expected is, under the null hypothesis. The more is deviation, the higher is statistics
- Examples of a statistic:

Z, Wald, Score, χ^{2}, Likelihood Ratio Test...

P-value

- P-value is probability that the (observed or even more extreme) deviation of observed from expected could have occurred purely by chance
- Given a test statistic used, it is computed as the probability that the test statistic has a value "at least as extreme" as the observed value

Example: association study

- Association study between a disease and an A T T polymorphism
- Null hypothesis is that T has equal frequency in cases and controls
- We observe that the frequency of T in cases is 0.47 and the frequency of T in controls is 0.40

Two-sided P-value

We do not know a priori, is T or A involved in the disease

- Alternative hypothesis: frequency of T is not equal in cases and controls (T may be more frequent in cases or more frequent in controls)
- Though we observe that T is 7% more frequent in cases, the P-value is the probability that frequency of T would differ by $\geq 7 \%$ between cases and controls
- That is P-value is probability under null that T would be 7% more frequent in cases OR that T is 7% less frequent in cases
- This is called 2-sided P-values

One-sided P-value

We know that T disrupts the product of the gene or have other very strong evidence that T is a "bad"variant

- Alternative hypothesis: T is more frequent in cases
- P-value is probability that T would be $\geq 7 \%$ more frequent by chance
- This is called one-sided P

Hypothesis testing

If P-value is less then or equal to some prespecified threshold, then you say that

- "At this threshold, I do not believe that this deviation from expected is purely by chance"
- "Therefore I reject the null hypothesis"
- Usually the threshold is taken to be 0.05 (5\%)

P-value: an example

- Experiment: four heads in 20 trials
- Null hypothesis is that the coin is "fair"
- $P($ head $)=P($ tail $)=0.5$
- Alternative hypothesis is that it is not fair
- A priori we do not know in what way (heads or tails) it is not fair
- We see that deviation from expected (10) is 6
- P-value is the chance that a fair coin in 20 trials would deviate from expected (10) by 6 or more

Solution: 4 out of 20, Binomial

P-value $=P(k=0)+P(k=1)+P(k=2)+P(k=3)+$

$$
\begin{gathered}
\mathrm{P}(k=4)+\mathrm{P}(k=16)+\mathrm{P}(k=17)+\mathrm{P}(k=18)+ \\
\mathrm{P}(k=19)+\mathrm{P}(k=20)=
\end{gathered}
$$

$$
\begin{gathered}
1 / 2^{20}+201 / 2^{20}+1901 / 2^{20}+11401 / 2^{20}+ \\
48451 / 2^{20}+48451 / 2^{20}+11401 / 2^{20}+1901 / 2^{20}+ \\
201 / 2^{20}+1 / 2^{20}=61961 / 2^{20}=
\end{gathered}
$$

$$
0.012
$$

..finally!..

Because it is symmetric:
P -value $=2 \times[\mathrm{P}(k=0)+\mathrm{P}(k=1)+\mathrm{P}(k=2)+\mathrm{P}(k=3)+\mathrm{P}(k=4)]$

P-value using Normal app-n (score test)

$$
P(k \leq x)=\Phi\left(\frac{(x+0.5)-\mu}{\sigma}\right)=\Phi\left(\frac{(x+0.5)-n p_{0}}{\sqrt{n p_{0}\left(1-p_{0}\right)}}\right)
$$

$$
\begin{array}{r}
2 \cdot P(k \leq 4)=2 \cdot \Phi\left(\frac{4-10+0.5}{\sqrt{20 \cdot 0.5 \cdot 0.5}}\right)= \\
2 \cdot \Phi(-2.46)=2 \cdot(1-\Phi(2.46))= \\
2 \cdot(1-0.993)=0.014
\end{array}
$$

Score (Z) test

With (Yate's) continuity correction

$$
Z= \begin{cases}\frac{|O-E-0.5|}{\sqrt{V a r_{0}}}, & \text { if } O>E \\ \frac{|O-E+0.5|}{\sqrt{V a r_{0}}}, & \text { if } O<E\end{cases}
$$

Without correction

$$
Z=\frac{|O-E|}{\sqrt{V a r_{0}}}
$$

Where Var $_{0}$ is the variance expected under Null

With 2-tailed $\mathrm{P}, \mathrm{Z}>1.96$ give $\mathrm{P}<0.05$

P-value using Normal (Wald test)

$$
P(k \leq x)=\Phi\left(\frac{(x+0.5)-\mu}{\sigma}\right)=\Phi\left(\frac{(x+0.5)-n p_{0}}{\sqrt{n \hat{p}(1-\hat{p})}}\right)
$$

$$
\begin{aligned}
2 \cdot P(k \leq 4)=2 \cdot \Phi\left(\frac{4-10+0.5}{\sqrt{20 \cdot 0.2 \cdot 0.8}}\right)= \\
2 \cdot \Phi(-3.07)=2 \cdot(1-\Phi(3.07))= \\
2 \cdot(1-0.999)=0.002
\end{aligned}
$$

Wald test

With (Yate's) continuity correction

$$
Z= \begin{cases}\frac{|O-E-0.5|}{\sqrt{\text { Var }_{1}}}, & \text { if } O>E \\ \frac{|O-E+0.5|}{\sqrt{\text { Var }_{1}}}, & \text { if } O<E\end{cases}
$$

Without correction

$$
Z=\frac{|O-E|}{\sqrt{\operatorname{Var}_{1}}}
$$

Where Var $_{0}$ is the variance expected under Null

Chi-squared distribution

- Chi-squared with m d.f. is sum of m squared standard Normal
- Consider several classes $i=1,2, \ldots m$
- in each class expected ($E_{\text {) }}$) and observed $\left(O_{i}\right)$ is known
- Chi-squared statistic (with and w/o cont-ty corr.)

Coin tossing with $n=20, k=4$

- class one: observed 4 heads, expected 10
- class two: observed 16 tails, expected 10

$$
\begin{gathered}
\sum_{i=1}^{2} \frac{\left(O_{i}-E_{i} \pm 0.5\right)^{2}}{E_{i}}=\frac{(4-10+0.5)^{2}}{10}+\frac{(16-10-0.5)^{2}}{10} \\
=3.025 \times 2=6.05(\text { P-value }=0.014)
\end{gathered}
$$

Exactly the same as Score test without correction!

Critical values of $\chi_{1}{ }^{2}$

- For 1 d.f. can be computed by squaring Normal values:
- $\mathrm{P}=0.05$: 3.84 ($=1.96^{2}$)
- $\mathrm{P}=0.01$: 6.63 (=2.57²)
- More degrees of freedom:
- Use Tables

Likelihood Ratio Test

- Two hypothesis considered
- Null, H_{0} : the parameter \mathbf{p} has some fixed value
- $p=p_{0}$
- Alternative, H_{1} : the parameter \mathbf{p} has a value which maximises the likelihood of getting the observed data
- $p=p^{\prime}$
- Let the probability of the data, computed under
- Null $L\left(K \mid p_{0}\right)$
- Alternative $L(K \mid \hat{p})$

Likelihood Ratio Test

- Then $L R T=2 \log _{e}$

$$
\left.\frac{L(K \mid \hat{p})}{L\left(K \mid p_{0}\right)}\right] \infty \chi_{1}^{2}
$$

More general:

- Hierarchical hypotheses are considered
- The number of degrees of freedom is the difference in number of parameters under estimation

Likelihood Ratio Test

- Coin tossing with $\mathrm{n}=20, \mathrm{k}=4$
- $H_{0}: p_{0}=1 / 2$

$$
-L_{0}=C(20,4)(1 / 2)^{20}
$$

- $H_{1}: p^{\prime}=4 / 20$

$$
\mathrm{L}_{1}=\mathrm{C}(20,4) \quad(4 / 20)^{4}(16 / 20)^{16}
$$

P-value $=0.005$

Many P's to choose from...

In coin tossing with $n=20, k=4$
P-value is equal to

- 0.014 ($Z=\chi^{2}$-test with continuity correction)
- 0.012 (exact binomial)
- 0.007 ($Z=\chi^{2}$-test without continuity correction)
- 0.005 (Likelihood Ratio Test)
- 0.002 (Wald test with continuity correction)
- 0.001 (Wald test without continuity correction)

Do DO continuity correction!
When numbers are small, large numbers approximation may work poor

Importance of large numbers

If $n=200, k=82$

P-value is equal to

- 0.013 (exact binomial)
- 0.013 (Z-test with continuity correction)
- 0.012 (Wald test with continuity correction)
- 0.011 (Z-test without continuity correction)
- 0.011 (LRT)
- 0.010 (Wald test without continuity correction)

