Genetics of populations

22.10.2006
GE02: day 1 part 3

Yurii Auchenko
Erasmus MC Rotterdam

Overview

- Subject of populational genetics
- What is population
- Major forces: selection, mutation, drift
- Hardy-Weinberg equilibrium

Subject: Microevolution

Study of genetic changes which happen in populations under influence of evolutionary forces

Given a set of conditions, how frequencies of particular genetic variants will change in time (and space)

What is a "population"?

Two individuals A and B belong to the same genetic population if

- the probability that they would have an offspring in commomn is greater then zero and
- this probability is much higher than the probability of A and B having an offspring in common with some individual C, which is said to be belonging to other population

Island populations

Fig. 1.1. Island populations A, B and C. The isolation is assumed to be proportional to distance, which is relatively small between A and B and large between A, B and C.

Evolutionary forces

Selection is a process of differential reproduction

Mutation is the process in which one allele is changed to other

Random processes, e.g. drift

Genetic processes in large populaions

Assumptions:

- Infinitely large population
- Generation \Rightarrow Gametic pool \Rightarrow Generation
- Random, independent segregation and aggregation of alleles (Mendel's law)

Hardy-Weinberg equilibrium

Consider two alleles, N and D , are segregating in a population. Frequency of $D, P(D)=0.1$

If aggregation of alleles is independent and random, what are the expected genotypic proportions?

Solution

Homozygotes

- $P(N$ and $N)=P(N) \times P(N)=0.9 \times 0.9=0.81$
- $P(D$ and $D)=P(D) \times P(D)=0.1 \times 0.1=0.01$

Heterozygote

- $P(N$ and $D)=P(N) \times P(D)=0.9 \times 0.1=0.09$
- $P(D$ and $N)=P(D) \times P(N)=0.1 \times 0.9=0.09$

Total, $\mathrm{P}(\mathrm{ND}$ or DN$)=P(\mathrm{ND})+\mathrm{P}(\mathrm{DN})=0.18$

Hardy-Weinberg equilibrium (HWE)

If frequency of allele D is q and the frequency of N is $p=(1-q)$ then

- $P(D D)=q^{2}$
- $\mathrm{P}(\mathrm{ND})=2 \mathrm{pq}$
- $P(D D)=p^{2}$

These proportions are known as HWE
$\mathrm{P}(\mathrm{ND})$ is termed heterozygosity, a measure of marker informatively

Problem

Consider three alleles, $\mathrm{A}_{1}, \mathrm{~A}_{2}$ and A_{3}, segregating in a population

- $\mathrm{P}\left(\mathrm{A}_{1}\right)=0.1$ and $\mathrm{P}\left(\mathrm{A}_{2}\right)=0.2$

Aggregation of alleles is independent and random
What is

- Frequency of A_{3} ?
- How many unordered genotypes can be observed?
- What are equilibrium proportions?

Solution

- Frequency of A_{3} ?

$$
P\left(A_{3}\right)=1-P\left(A_{1}\right)-P\left(A_{2}\right)=0.7
$$

How many genotypes can be observed?

- 9 ordered genotypes
- Six unordered: $A_{1} A_{1}, A_{1} A_{2}, A_{1} A_{3}, A_{2} A_{2}, A_{2} A_{3}$, and $A_{3} A_{3}$

If there are n alleles, number of unordered genotypes is $n(n+1) / 2$

What are equilibrium proportions?

$$
\begin{array}{ll}
P\left(A_{1} A_{1}\right) & =P\left(A_{1}\right) P\left(A_{1}\right)=0.01 \\
P\left(A_{1} A_{2}\right) & =2 P\left(A_{1}\right) P\left(A_{2}\right)=0.04 \\
P\left(A_{1} A_{3}\right)=2 P\left(A_{1}\right) P\left(A_{3}\right)=0.14 \\
P\left(A_{2} A_{2}\right)=P\left(A_{2}\right) P\left(A_{2}\right)=0.04 \\
P\left(A_{2} A_{3}\right)=2 P\left(A_{2}\right) P\left(A_{3}\right)=0.28 \\
P\left(A_{3} A_{3}\right)=P\left(A_{3}\right) P\left(A_{3}\right)=0.49
\end{array}
$$

HWE for multiple alleles

- $\mathrm{P}\left(\mathrm{A}_{\mathrm{A}} \mathrm{A}_{\mathrm{A}}\right)=\mathrm{P}\left(\mathrm{A}_{\mathrm{P}}\right)^{2}$
- $P\left(A_{i} A_{j}\right)=2 P\left(A_{j}\right) P\left(A_{j}\right)$
- Heterozygosity is defined as

$$
\Sigma_{i>j} 2 P\left(A_{i}\right) P\left(A_{j}\right)
$$

When HWE is reached?

If the frequency of genotypes are

- $P(D D)=0.1, P(N D)=0.2$ and $P(N N)=0.7$

Questions

- What is the frequency of $D, P(D)$?
- What will be genotypic frequencies after a generation of random mating?

Follow the model...

- What is the frequency of $\mathrm{D}, \mathrm{P}(\mathrm{D})$?
- $P(D)=q=P(D D)+P(N D) / 2=0.1+0.2 / 2=0.2$
- Now the gametes start randomly aggregate:

	Allele	N	D
Allele	Freq	0.8	0.2
N	0.8	0.64	0.16
D	0.2	0.16	0.04

- $P(D D)=0.04, P(N D)=0.32, P(N N)=0.64$
- This follows HWE with $\mathrm{q}=0.2$

More general

With any initial conditions, denote $\mathrm{q}=\mathrm{P}(\mathrm{DD})+\mathrm{P}(\mathrm{ND}) / 2$ After a round of random mating:

	Allele	N	D
Allele	Freq	$(1-q)$	q
N	$(1-q)$	$(1-q)^{2}$	$(1-q) q$
D	q	$(1-q) q$	q^{2}

In next generation, $P(D)$ is $q^{\prime}=q^{2}+2 q(1-q) / 2=q$

- Under HWE, allelic frequencies stay stable over time
- HWE is reached after one generation of random mating

Frequency of carriers

- Bi-allelic system: N and $\mathrm{D}, \mathrm{P}(\mathrm{D})=\mathrm{q}$
- Carriers of D: ND or DD
- $P(N D$ or $D D)=2 p q+q^{2}$
- When $\mathrm{q} \rightarrow 0$ [and $\mathrm{p}=(1-\mathrm{q}) \rightarrow 1]$

$$
P(N D+D D) \sim 2 q
$$

Goodness of approximation

