Genetics of populations

22.10.2006 GE02: day 1 part 3

Yurii Auchenko Erasmus MC Rotterdam

- Subject of populational genetics
- What is population
- Major forces: selection, mutation, drift
- Hardy-Weinberg equilibrium

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

Study of genetic changes which happen in populations under influence of evolutionary forces

Given a set of conditions, how frequencies of particular genetic variants will change in time (and space)

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

Two individuals A and B belong to the same genetic population if

the probability that they would have an offspring in commomn is greater then zero and

this probability is much higher than the probability of A and B having an offspring in common with some individual C, which is said to be belonging to other population

GE02, Oct 22 – Nov 23 2007

Island populations

Fig. 1.1. Island populations A, B and C. The isolation is assumed to be proportional to distance, which is relatively small between A and B and large between A, B and C.

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

Selection is a process of differential reproduction

Mutation is the process in which one allele is changed to other

Random processes, e.g. drift

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

Assumptions:

- Infinitely large population
- Generation \Rightarrow Gametic pool \Rightarrow Generation
- Random, independent segregation and aggregation of alleles (Mendel's law)

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

Consider two alleles, N and D, are segregating in a population. Frequency of D, P(D) = 0.1

If aggregation of alleles is independent and random, what are the expected genotypic proportions?

Solution

Homozygotes P(N and N) = P(N) x P(N) = 0.9 x 0.9 = 0.81 P(D and D) = P(D) x P(D) = 0.1 x 0.1 = 0.01

Heterozygote
P(N and D) = P(N) x P(D) = 0.9 x 0.1 = 0.09
P(D and N) = P(D) x P(N) = 0.1 x 0.9 = 0.09

• Total, P(ND or DN) = P(ND) + P(DN) = 0.18

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

Hardy-Weinberg equilibrium (HWE)

If frequency of allele D is q and the frequency of N is p = (1 - q) then

- $P(DD) = q^2$
- P(ND) = 2 p q
- $P(DD) = p^2$

These proportions are known as HWE

P(ND) is termed heterozygosity, a measure of marker informatively

GE02, Oct 22 – Nov 23 2007

Problem

Consider three alleles, A_1 , A_2 and A_3 , segregating in a population

•
$$P(A_1) = 0.1 \text{ and } P(A_2) = 0.2$$

Aggregation of alleles is independent and random

What is

- Frequency of A₃?
- How many unordered genotypes can be observed?
- What are equilibrium proportions?

Solution

• Frequency of A_3 ? $P(A_3) = 1 - P(A_1) - P(A_2) = 0.7$

How many genotypes can be observed?
9 ordered genotypes
Six unordered: A₁A₁, A₁A₂, A₁A₃, A₂A₂, A₂A₃, and A₃A₃
If there are *n* alleles, number of unordered

genotypes is n (n+1) / 2

GE02, Oct 22 – Nov 23 2007

What are equilibrium proportions?

 $P(A_1A_1)$ $P(A_1A_2)$ $P(A_1A_3)$ $P(A_2A_2)$ $P(A_2A_3)$ $P(A_3A_3)$

 $= P(A_1) P(A_1) = 0.01$ = 2 P(A_1) P(A_2) = 0.04 = 2 P(A_1) P(A_3) = 0.14 = P(A_2) P(A_2) = 0.04 = 2 P(A_2) P(A_3) = 0.28

 $= P(A_3) P(A_3) = 0.49$

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

$$P(A_iA_i) = P(A_i)^2$$
$$P(A_iA_i) = 2 P(A_i) P(A_i)$$

Heterozygosity is defined as Σ_{i > j} 2 P(A_i) P(A_j)

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

When HWE is reached?

If the frequency of genotypes are
P(DD) = 0.1, P(ND) = 0.2 and P(NN) = 0.7

Questions

- What is the frequency of D, P(D)?
- What will be genotypic frequencies after a generation of random mating?

GE02, Oct 22 – Nov 23 2007

Follow the model...

What is the frequency of D, P(D)?
P(D) = q = P(DD) + P(ND)/2 = 0.1 + 0.2/2 = 0.2

Now the gametes start randomly aggregate:

	Allele	Ν	D
Allele	Freq	0.8	0.2
Ν	0.8	0.64	0.16
D	0.2	0.16	0.04

P(DD) = 0.04, P(ND) = 0.32, P(NN) = 0.64
This follows HWE with q=0.2

GE02, Oct 22 – Nov 23 2007

More general

With any initial conditions, denote q = P(DD) + P(ND)/2After a round of random mating:

	Allele	Ν	D
Allele	Freq	(1-q)	q
Ν	(1-q)	(1-q) ²	(1-q)q
D	q	(1-q)q	q ²

In next generation, P(D) is $q' = q^2 + 2q(1-q)/2 = q$

Under HWE, allelic frequencies stay stable over time

HWE is reached after one generation of random mating

GE02, Oct 22 – Nov 23 2007

- Bi-allelic system: N and D, P(D) = q
- Carriers of D: ND or DD
- P(ND or DD) = $2pq + q^2$

• When $q \rightarrow 0$ [and $p = (1-q) \rightarrow 1$] P(ND + DD) ~ 2q

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

Goodness of approximation

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko