Genetic risk calculations: recessive disease

26.10.2006
GE02 day 5 part 2

Yurii Aulchenko
Erasmus MC Rotterdam

Overview

- Simple testing for recessive disease
- Incorporating molecular test information
- Risk in inbred pedigrees

Problem

- Recessive model
- $\mathrm{P}(\mathrm{M})=q$
- $\mathrm{P}(\mathrm{D} \mid \mathrm{MM})=1$
- $P(D \mid M N)=P(D \mid N N)=0$
- Population prevalence $P(D)=q^{2}$
- What is the risk for "?"

Solution

- $\mathrm{P}(\mathrm{MN} \mid$ person is unaffected $)=$?

	H-MM	H-NM	H-NN	$\begin{aligned} & \text { Total, P(X) } \\ & p(2 q+p) \end{aligned}$
Prior, P(Hi)	q9	2qp	pp	
Conditional, $\mathrm{P}(\mathrm{X} \mid \mathrm{Hi})$	0,0	1,0	1,0	
Joint, P(Hi)P(X\|Hi)	0,0	2qp	pp	
Posterior, $\mathrm{P}(\mathrm{Hi} \mid \mathrm{X})$	0,0	2q/(2q+p)	$p /(2 q+p)$	

$$
=2 q /(2 q+p)=2 q /(2 q+1-q)=2 q /(1+q)
$$

- Risk for the child of unaffected parents:
$1 / 4 \mathrm{P}(\mathrm{fa}=\mathrm{MN}, \mathrm{mo}=\mathrm{MN} \mid \mathrm{fa}, \mathrm{mo}=$ Unaffected) $=$
$=1 / 4 P(M N \mid \text { person is unaffected })^{2}=q^{2} /(1+q)^{2}$
- If $\mathrm{q} \rightarrow \mathrm{0}, \mathrm{P}(\mathrm{MN} \mid$ unaffected $) \approx 2 \mathrm{q}$, risk $\approx \mathrm{q}^{2}$

Problem

- Recessive model
- $\mathrm{P}(\mathrm{M})=q$
- $P(D \mid M M)=1$
- $P(D \mid M N)=P(D \mid N N)=0$
- What is the risk for "?"

Solution

- $P(M N \mid$ person is unaffected $)=2 q /(1+q)$
- Risk for the child:
$1 / 2 \mathrm{P}(\mathrm{mo}=\mathrm{MN} \mid \mathrm{mo}=$ Unaffected $)=$
$=1 / 22 q /(1+q)=q /(1+q)$
- Relative Risk $\left.=(q /(1+q)) / q^{2}\right)=1 /(q(1+q))$
- if q $\rightarrow 0$
- Risk for child $\approx \mathrm{q}$
- Relative risk for a child of affected person = 1/q

Problem

Given the carrier frequency is 1/30 (CF case). compute

- Risk for a child of unaffected parents
- Risk for a child of affected mother and unaffected father
- Risk for a child of affected mother and affected father
- Relative risk for a child of an affected parent (other is not affected)

Solution, approximate

- Carrier frequency
- $q_{a}=$ carr.freq/2 $=>q_{a}=1 / 60=0.0167$
- risk for a child of unaffected parents
- $q_{a}^{2}=1 / 3600=0.000278$
- risk for a child of affected mother and unaffected father
- $q_{a}=1 / 60=0.0165$
- Risk for a child of affected mother and affected father
- 100\% (both parents are homozygous mutant)
- Relative risk for a child of an affected parent
- $1 / q_{a}=60$

Solution, exact

- Carrier frequency
- $q_{e}=1-\sqrt{ }\left(1-\right.$ carr.freq.) $=>q_{e}=0.0168$ (0.8% more)
- risk for a child of unaffected parents
- $q_{e}{ }^{2} /\left(1+q_{e}\right)^{2}=0.000273$ (1.7% less)
- risk for a child of affected mother and unaffected father
- $\mathrm{a}_{\mathrm{e}} /\left(1+\mathrm{a}_{\mathrm{e}}\right)=0.0165$
- Relative risk for a child of an affected parent
- $1 / q_{e}=60.5$

Solution, comparison

carrier freq	$\begin{gathered} \text { 0,03 } \\ \text { exact } \end{gathered}$	approx	Error, \%
q both parents U one parent D RR	0,01681	0,01667	0,84
	0,00027	0,00028	-1,66
	0,01653	0,01667	-0,83
	60,49576	60,00000	0,82

Problem

- Recessive model
- $P(M)=1 / 40=2.5 \%$
- $P(D \mid M M)=1$
- $P(D \mid M N)=P(D \mid N N)=0$
- What is the risk for "?"

Outline of solution

Compute

- P1 = P("e" is MN|" e " is unaffected)
- P2 = P("d" is MN|"d" is unaffected, has affected sib)

Chance for the child to be affected is (1/4 P1 P2)

Solution (a)

compute risk that " e " is a heterozygote given "e" is not affected
$\mathrm{P}(\mathrm{e}=\mathrm{MN} \mid \mathrm{e}$ is Unaffected) $=$
$=2 q /(1+q)=0.049$

Solution (b)

compute probability that "d" has certain genotype, given sib is affected

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~d}=\mathrm{MM} \mid \text { sib is } \mathrm{A})=1 / 4 \\
& \mathrm{P}(\mathrm{~d}=\mathrm{MN} \mid \text { sib is } \mathrm{A})=1 / 2 \\
& \mathrm{P}(\mathrm{~d}=\mathrm{NN} \mid \text { sib is } \mathrm{A})=1 / 4
\end{aligned}
$$

Solution (b)

compute risk that " d " is MN, given sib is affected AND "d" is

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~d}=\mathrm{MN} \mid \text { sib affected, } \mathrm{d} \text { is not })= \\
& 2 / 3
\end{aligned}
$$

Solution (c)

Risk is

$\mathrm{P}(\mathrm{e}=\mathrm{MN} \mid \mathrm{e}$ is Unaffected) x
$P(d=M N \mid$ sib affected, d is Unaffected) $\times 1 / 4=$
$=0.049 \times 2 / 3 \times 1 / 4=$
$=0.008$

$$
\begin{aligned}
& R R=0.008 /(1 / 1600)= \\
& 16000.008=12.8
\end{aligned}
$$

Generalization

- Recessive model
- $\mathrm{P}(\mathrm{M})=q$
- $P(D \mid M M)=1$
- $P(D \mid M N)=P(D \mid N N)=0$
- What is the risk for "?"

Solution for q

- $P(e$ is $M N \mid X 1, q)=2 q /(1+q)$
- $P(e$ is $M N \mid X 1, q)=2 / 3$
- Risk for "?" is

$$
\begin{aligned}
& 1 / 4 P(e \text { is } M N \mid X 1, q) P(e \text { is } M N \mid X 1, q)= \\
& =q /(3(1+q))
\end{aligned}
$$

Overview

- Simple testing for recessive disease - Incorporating molecular test information
- Risk in inbred pedigrees

Incorporating more information

- Performing a molecular test detecting known prevalent mutations in the gene
- Test has some "sensitivity": detects S\% of the mutations (miss some rare mutations) present in the population
- S of a test is population-specific
- Assume non-carriers never test positive

Problem

- Recessive model
- $\mathrm{P}(\mathrm{M})=q$
- $\mathrm{P}(\mathrm{D} \mid \mathrm{MM})=1$
- $P(D \mid M N)=P(D \mid N N)=0$
- Both parents test negative at the test with 85% sensitivity
- What is the risk for "?"

Solution

- For a parent, probability to be MN given he/she is unaffected is

$$
\begin{aligned}
& \mathrm{P}(\mathrm{MN} \mid \mathrm{U})=2 \mathrm{q} /(1+\mathrm{q}) \\
& \text { and } \mathrm{P}(\mathrm{NN} \mid \mathrm{U})=1-2 \mathrm{q} /(1+\mathrm{q})
\end{aligned}
$$

- X, information, is that it tests negatively

$$
\begin{aligned}
& P(M N \mid U, \text { test }-)=\frac{P(U, \text { test }-\mid M N) P(M N)}{\sum_{g=M M, M N, N N} P(U, \text { test }-\mid g) P(g)} \\
& =\frac{P(U, \text { test }-\mid M N) P(M N)}{P(U, \text { test }-\mid M N) P(M N)+P(U, \text { test }-\mid N N) P(N N)}= \\
& \frac{1 \cdot P(\text { test }-\mid M N) P(M N)}{1 \cdot P(\text { test }-\mid M N) P(M N)+1 \cdot P(N N)}=\frac{(1-S) \cdot 2 q(1-q)}{(1-S) \cdot 2 q(1-q)+(1-q)^{2}}
\end{aligned}
$$

Example

- Assume that mutation frequency, q is 1/60 (CF gene)
- Test sensitivity is 85%
- What is the probability for a child to be affected with CF if both parents are unaffected and test negatively for CF gene?

- How test information modifies the risk?

Solution

- $\mathrm{P}($ test $=$ negative| MN$)=0.15$
- P(test=negative| NN) $=1.0$
- $P($ MN/U,test $)=0.005$

P(both parents are MN | U,U,test,test) =
$=P($ MN/U,test $) P($ MN/U,test $)=$
$=0.000025$

Risk for child is 0.000006 (vs pop. risk of 0.00028)
is $\mathbf{4 3}$ times lower then risk before the test

Problem

- Assume CF model
- Both parents "d" and "e" test negative at the test with 85% sensitivity
- What is the risk for "?"
- What is RR for "?"

Solution

- Probability to be carrier before the test
- D: 2/3
- E: $2 q=1 / 30$
- Probability to be carrier after the test
- D: $2 / 3 \times 0.15=30 / 300=1 / 10$
- E: $1 / 30 \times 0.15=15 / 3000=5 / 1000=1 / 200$
- Risk for child
- $1 / 101 / 2001 / 4=1 / 4000$
- $R R=(1 / 4000) /(1 / 3600)=36 / 40=0.9$

Overview

- Simple testing for recessive disease
- Incorporating molecular test information
- Risk in inbred pedigrees

Consanguineous marriages

- There is possibility for autozygosity in consanguineous marriages
- For "?" expected genotypic distribution is $p^{2}+p q F$, $2 p q(1-F), q^{2}+p q F$, where F is the coefficient of inbreeding
- Recessive disease: relative risk for "?" is ($1+p F / q$)

Computing F

- For an allele from ancestor 5 or 6, the chance to become autozygous is $1 / 2^{6}$
- There are 4 such alleles, hence
- $F=41 / 2^{6}=1 / 2^{4}$

