Genetic risk calculations: Dominant \& X-linked recessive

26.10.2007
GE02 day 5 part 1

Yurii Aulchenko
Erasmus MC Rotterdam

Overview

- Reminder on Bayes
- Risk under rare X linked recessive mutation model
- Risk under dominant model

Total probability and Bayes' formulae

Two sets of events are considered:

- "Hypothesis" H_{i} for which a prioi probabilities, $\mathrm{P}\left(\mathrm{H}_{\mathrm{i}}\right)$ are known. These hypotheses must be mutually exclusive and cover all possible outcomes. E.g. genotypes in some person may be "hypotheses".
- Event(s) of interest, A, e.g. disease. For this event, conditional probabilities, $\mathrm{P}\left(\mathrm{A} \mid H_{i}\right)$, are known

Total probability \& Bayes' formulae

Total probability (of event A)

$$
P(A)=\sum_{i} P\left(A \mid H_{i}\right) P\left(H_{i}\right)
$$

Probability of hypothesis H_{i}, given A

$$
\begin{aligned}
& P\left(H_{i} \mid A\right)=\frac{P\left(A, H_{i}\right)}{P(A)}=\frac{P\left(A \mid H_{i}\right) P\left(H_{i}\right)}{P(A)}= \\
& \frac{P\left(A \mid H_{i}\right) P\left(H_{i}\right)}{\sum P\left(A \mid H_{i}\right) P\left(H_{i}\right)}
\end{aligned}
$$

On X and Y

- Female: XX, Male: XY
- Y:
- "small and useless"
- "genetic wasteland"
- "junk"
- "Poor men! They miss a chromosome!"
- Not quite - Y contains genes which make man a man!

Rare X-linked recessive

Penetrances:

$$
\begin{gathered}
P(A \mid D D)=P(A \mid D Y)=1 \\
P(D X)=P(X X)=P(X Y)=0
\end{gathered}
$$

If frequency is q

- Disease prevalence in women $P(D \mid w)=q^{2}$
- Disease prevalence in men $\mathrm{P}(\mathrm{D} \mid \mathrm{m})=\mathrm{q}$
- RR for men compared to women is $1 / \mathrm{q}$
- Say, rare is $\mathrm{q}=1 / 1000$, then $\mathrm{RR}=1000$ (!)

Probability to be a carrier (1)

- Grandfather "a" of a girl "e" is affected
- What is probability that she is a carrier (DX)?

- "d" is obligate carrier (DX)
- Chance of transmission of D, and normal X, from " d " to "e" is $1 / 2$
- The chance for "e" to be a carrier is $1 / 2$

Probability to be a carrier (2)

- Grandfather "a" of a girl " g " is affected
- What is probability that she is a carrier (DX)?

- "d" is obligate carrier (DX)
- $P($ "e" is $D X)=1 / 2$
- If "e" is DX, probability that D will be transmitted to " g " is $1 / 2$
- The chance for " g " to be a carrier is $1 / 21 / 2=1 / 4$

Risk for a (boy-)child

- The chance for " g " to be a carrier is $1 / 4$
- If " g " is carrier, she will transmit "D" with probability of $1 / 2$
- Risk that a boy would get the disease is $1 / 41 / 2=1 / 8$
- Risk that a child would get the disease is $1 / 41 / 21 / 2=1 / 16$

We are applying total probability!

- Mutually exclusive hypotheses, covering all possibilities:
- H1: "g" is carrier (DX)
- H2: " g " is not carrier (XX)
- Prior probabilities of hypotheses
- $P(H 1)=1 / 4$
- $\mathrm{P}(\mathrm{H} 2)=3 / 4$
- Conditional probabilities of event given hypotheses
- $P($ boy $=A \mid H 1)=1 / 2$
- $P($ boy $=A \mid H 2)=0$
- $\mathrm{P}(\mathrm{boy}=\mathrm{A})=$ $P($ boy $=A \mid H 1) P(H 1)+P($ boy $=A \mid H 2) P(H 2)$ $1 / 2 \times 1 / 4+0 \times 3 / 4=1 / 8$

Probability to be a carrier (3)

- Information on 2 healthy sons decreases initial "carriership" risk estimate by $0.25 / 0.077=3.25$ times

Tabular way

$$
P\left(H_{i} \mid \text { data }\right)=\frac{P\left(H_{i}, \text { data }\right)}{P(\text { data })}
$$

Hypothesis

Probability	$\mathrm{H}_{1}:$ " g " is DX	$\mathrm{H}_{2}:$ " g " is XX
Prior, $\mathrm{P}\left(\mathrm{H}_{\mathrm{i}}\right)$	$1 / 4$	$3 / 4$
Conditional, $\mathrm{P}\left(\right.$ data $\left.\mathrm{H}_{\mathrm{i}}\right)$	$1 / 21 / 2=1 / 4$	1
J oint, $\mathrm{P}\left(\right.$ data\| $\left.\mid \mathrm{H}_{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{H}_{\mathrm{i}}\right)$	$1 / 41 / 4=1 / 16$	$13 / 4=3 / 4$
Total, $\mathrm{P}($ data $)$	$1 / 16+3 / 4=13 / 16$	
Posterior, $\mathrm{P}\left(\mathrm{H}_{\mathrm{i}} \mid\right.$ data $)$	$(1 / 16) /(13 / 16)$ $=1 / 13$	$(3 / 4) /(13 / 16)$ Risk for the next boy

Risk for a boy-child of "j"

Hint: act in steps ("peeling")
(1) Compute posterior probability that " e " is carrier, given she has 3 healthy sons
(2) Use (1) to compute the new "prior" - that " j " is carrier
(3) Compute posterior probability that " j " is carrier, given she has 1 healthy son

Probability that "e" is carrier

Hypothesis

Probability
 H_{1} : " e " is $D X \quad H_{2}$: " e " is $X X$

$\mathrm{P}\left(\mathrm{H}_{\mathrm{i}}\right)$	$1 / 2$	$1 / 2$
$\mathrm{P}\left(\right.$ data $\left.\mid \mathrm{H}_{\mathrm{i}}\right)$	$1 / 2^{3}=1 / 8$	1
$\mathrm{P}\left(\right.$ data $\left.\mid \mathrm{H}_{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{H}_{\mathrm{i}}\right)$	$1 / 21 / 8=1 / 16$	$11 / 2=1 / 2$
$\mathrm{P}($ data $)$	$1 / 16+1 / 2=9 / 16$	
$\mathrm{P}\left(\mathrm{H}_{\mathrm{i}} \mid\right.$ data $)$	$(1 / 16) /(9 / 16)=1 / 9$	$1-1 / 9=8 / 9$

Probability that " j " is carrier

GE02, Oct 22 - Nov 232007

Hypothesis

Probability	H_{1} : " j " is DX	H_{2} : "j${ }^{\text {] }}$ is XX
$\mathrm{P}\left(\mathrm{H}_{\mathrm{i}}\right)$	$1 / 21 / 9=1 / 18$	$1-1 / 18=17 / 18$
P(data\| H_{i})	1/2	1
$\mathrm{P}\left(\right.$ data $\left.\mathrm{H}_{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{H}_{\mathrm{i}}\right)$	$1 / 21 / 18=1 / 36$	$117 / 18=17 / 18$
P(data)	$1 / 36+17 / 18=35 / 36$	
$\mathrm{P}\left(\mathrm{H}_{\mathrm{i}} \mid\right.$ data)	$(1 / 36) /(35 / 36)=1 / 35$	34/35
Risk for boy	1/2 $1 / 35=1 / 70$	

$P\left({ }^{\prime}{ }^{j}\right.$ " $=\mathrm{DX} \mid$ data $)=1 / 35$
Risk for boy-child $=1 / 70$

Overview

- Reminder on Bayes
- Risk under rare X linked recessive mutation model
- Risk under dominant model

Dominant disease

- Risk allele D with frequency q
- $P($ Affected \mid DD $)=P($ Affected $\mid D N)=1$
- $P($ Affected|NN $)=0$

Rare mutation (q=0.001)

What is the risk of the child to have the disease?
-Because the mutation is so rare, you can assume that any affected person has genotype DN
-Say, in 2000 affected, 1 is DD and 1999 are ND.

Mutation is not so rare (q=0.1)

- You can not assume that "all" affected are heterozygous
- Frequency of DD among affected = [Bayes] =

- ~ Among 100 affected 5 are DD and 95 are ND

What is the risk for the child?

Formal derivation

$$
\left.\begin{array}{l}
P(?=A \mid f=A)=P(?=N D \mid f=A)=\frac{P(?=N D, f=A)}{P(f=A)}= \\
\frac{P(?=N D, f=A)}{\sum_{g_{f}=N N, N D, D D} P\left(f=A \mid g_{f}\right) P\left(g_{f}\right)}=\frac{\sum_{g_{f}=N N, N D, D D} P\left(?=N D, f=A \mid g_{f}\right) P\left(g_{f}\right)}{\sum_{g_{f}=N N, N D, D D} P\left(f=A \mid g_{f}\right) P\left(g_{f}\right)}= \\
\left.\left.\frac{g_{f}=N N, N D, D D}{} P=N D \right\rvert\, g_{f}\right) P\left(f=A \mid g_{f}\right) P\left(g_{f}\right) \\
\sum_{g_{f}=N N, N D, D D} P\left(f=A \mid g_{f}\right) P\left(g_{f}\right)
\end{array}\right]=\begin{aligned}
& \frac{P(?=N D \mid f=N N) P(f=A \mid f=N N) P(f=N N)+P(?=N D \mid f=N D) P(f=A \mid f=N D) P(f=N D)+P(?=N D \mid f=D D) P(f=A \mid f=D D) P(f=D D)}{P(f=A \mid f=N N) P(f=N N)+P(f=A \mid f=N D) P(f=N D)+P(f=A \mid f=D D) P(f=D D)}= \\
& \frac{0 \cdot 0 \cdot 0.9^{2}+0.5 \cdot 1 \cdot(2 \cdot 0.1 \cdot(1-0.1))+1 \cdot 1 \cdot 0.1^{2}}{0 \cdot 0.9^{2}+1 \cdot(2 \cdot 0.1 \cdot(1-0.1))+1 \cdot 0.1^{2}}=\frac{0.09+0.01}{0.18+0.01}=\frac{0.1}{0.19}=0.526
\end{aligned}
$$

Pedigree B

- Father and one child are affected
- What is the risk for the next child?
- Still 53% ?

alf we knew P(f=DD|data) \& P(f=ND|data) then the risk for "?" is computed as
$P(?=A \mid$ data $)=1 / 2 P(f=N D \mid d a t a)+1 P(f=D D \mid d a t a)$

$\mathrm{P}(\mathrm{f}=\mathrm{ND} \mid$ data $)$

- Use Bayes formula:

$$
\begin{gathered}
P(f=N D \mid \text { data })=P(f=N D \mid f=A, s=A)= \\
\frac{P(f=N D, f=A, s=A)}{P(f=A, s=A)}=\frac{P(f=N D, s=A)}{P(f=A, s=A)}= \\
\frac{P(f=N D) \cdot 0.5}{P(f=A, s=A)}=\frac{0.18 \cdot 0.5}{P(f=A, s=A)}= \\
\frac{0.18 \cdot 0.5}{0.18 \cdot 0.5+0.01}=\frac{0.09}{0.1}=0.9
\end{gathered}
$$

$\mathrm{P}(\mathrm{f}=\mathrm{DD} \mid \mathrm{data})$

$$
\begin{gathered}
P(f=N D \mid \text { data })=P(f=N D \mid f=A, s=A)= \\
\frac{P(f=D D, f=A, s=A)}{P(f=A, s=A)}=\frac{P(f=D D, s=A)}{P(f=A, s=A)}= \\
\frac{P(f=D D)}{P(f=A, s=A)}=\frac{0.1^{2}}{P(f=A, s=A)}= \\
\frac{0.1^{2}}{0.18 \cdot 0.5+0.01}=\frac{0.01}{0.1}=0.1
\end{gathered}
$$

- Shortcut: given phenotype, father can not be NN
- Thus $\mathrm{P}(\mathrm{f}=\mathrm{DD} \mid$ data $)=1-\mathrm{P}(\mathrm{f}=\mathrm{DD} \mid$ data $)=1-0.9=0.1$

Pedigree B: risk for next boy

- Risk for the next child is
$\mathrm{P}(?=\mathrm{A} \mid$ data $)=$
$1 / 2 \mathrm{P}(\mathrm{f}=\mathrm{ND} \mid$ data $)+\mathrm{P}(\mathrm{f}=\mathrm{DD} \mid$ data $)=$

$$
1 / 20.9+0.1=0.55
$$

Hypothesis:	Father is DD	Father is ND
Prior, P(g)	0.053	0.947
Conditional, $\mathrm{P}(\mathrm{X} \mid \mathrm{g})$	1	$1 / 2$
Joint, $\mathrm{P}(\mathrm{X} \mid \mathrm{g})$ $\mathrm{P}(\mathrm{g})$	0.053	0.4735
Posterior	$0.053 /(0.053+0.4735)=0.1$	0.9
Risk for next boy	$0.1+0.91 / 2=0.55$	

