Genetic risk calculations: Dominant & X-linked recessive

26.10.2007 GE02 day 5 part 1

Yurii Aulchenko Erasmus MC Rotterdam

Overview

- Reminder on Bayes
- Risk under rare X linked recessive mutation model
- Risk under dominant model

Total probability and Bayes' formulae

Two sets of events are considered:

- "Hypothesis" H_i for which *a prioi* probabilities, P(H_i) are known. These hypotheses must be mutually exclusive and cover all possible outcomes. E.g. genotypes in some person may be "hypotheses".
- Event(s) of interest, A, e.g. disease. For this event, conditional probabilities, P(A|H), are known

Total probability & Bayes' formulae

$$P(A) = \sum_{i} P(A | H_i) P(H_i)$$

Probability of hypothesis H_i, given A

$$P(H_i | A) = \frac{P(A, H_i)}{P(A)} = \frac{P(A | H_i)P(H_i)}{P(A)} = \frac{P(A | H_i)P(H_i)}{\sum_i P(A | H_i)P(H_i)}$$

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

On X and Y

Female: XX, Male: XY

- Y:
 - "small and useless"
 - "genetic wasteland"
 - "junk"
 - **—** ...
 - "Poor men! They miss a chromosome!"
- Not quite Y contains genes which make man a man!

Rare X-linked recessive

Penetrances:

P(A|DD) = P(A|DY) = 1P(DX) = P(XX) = P(XY) = 0

If frequency is q

- Disease prevalence in women P(D|w) = q²
- Disease prevalence in men P(D|m) = q
- RR for men compared to women is 1/q
- Say, rare is q=1/1000, then RR=1000 (!)

GE02, Oct 22 – Nov 23 2007

Probability to be a carrier (1)

Grandfather "a" of a girl "e" is affected
What is probability that she is a carrier (DX)?

- "d" is obligate carrier (DX)
 Chance of transmission of D, and normal X, from "d" to "e" is 1/2
- The chance for "e" to be a carrier is 1/2

Probability to be a carrier (2)

Grandfather "a" of a girl "g" is affected
What is probability that she is a carrier (DX)?

- "d" is obligate carrier (DX)
 P("e" is DX) = 1/2
- If "e" is DX, probability that D will be transmitted to "g" is ¹/₂
- The chance for "g" to be a carrier is $\frac{1}{2}$ $\frac{1}{2} = \frac{1}{4}$

© 2004-2007 Yurii Aulchenko

Risk for a (boy-)child

The chance for "g" to be a carrier is 1/4

 If "g" is carrier, she will transmit "D" with probability of 1/2

Risk that a boy would get the disease is 1/4 1/2 = 1/8

• Risk that **a** child would get the disease is $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{2}$ = 1/16

© 2004-2007 Yurii Aulchenko

Erasmus MC Rotterdam

GE02, Oct 22 – Nov 23 2007

We are applying total probability!

- Mutually exclusive hypotheses, covering all possibilities:
 H1: "g" is carrier (DX)
 - H2: "g" is not carrier (XX)

Prior probabilities of hypotheses

- $P(H1) = \frac{1}{4}$
- $P(H2) = \frac{3}{4}$

Conditional probabilities of event given hypotheses

- $P(boy=A|H1) = \frac{1}{2}$
- P(boy=A|H2) = 0

• P(boy=A) = P(boy=A|H1) P(H1) + P(boy=A|H2) P(H2) $\frac{1}{2} \times \frac{1}{4} + 0 \times \frac{3}{4} = \frac{1}{8}$

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

Probability to be a carrier (3)

$$P(g = DX \mid data = "two \ sons \ are \ OK") = \frac{P(g = DX, data)}{P(data)} = \frac{P(data \mid g = DX)P(g = DX)}{P(data)} = \frac{P(data \mid g = DX)P(g = DX)}{P(data)} = \frac{P(data \mid g = DX)P(g = DX)}{\sum_{g_g = DX, XX} P(data \mid g_g)P(g_g)} = \frac{P(data \mid g = DX)P(g = DX)}{P(data \mid g = DX)P(g = DX)} = \frac{P(data \mid g = DX)P(g = DX) + P(data \mid g = XX)P(g = XX)}{\frac{(1/2 \cdot 1/2) \cdot 1/4}{(1/2 \cdot 1/2) \cdot 1/4 + (1 \cdot 1) \cdot 3/4}} = \frac{1/16}{1/16 + 12/16} = 1/13 = 0.077$$

Information on 2 healthy sons decreases initial "carriership" risk estimate by 0.25/0.077 = 3.25 times

© 2004-2007 Yurii Aulchenko

Erasmus MC Rotterdam

GE02, Oct 22 – Nov 23 2007

Tabular way

$$P(H_i | data) = \frac{P(H_i, data)}{P(data)}$$

	Hypothesis		
Probability	H ₁ : "g" is DX	H ₂ : "g" is XX	
Prior, P(H _i)	1⁄4	3/4	
Conditional, P(data H _i)	$1/_2 1/_2 = 1/_4$	1	
Joint, P(data H _i)P(H _i)	1⁄4 1⁄4 = 1/16	1 3/4 = 3/4	
Total, P(data)	1/16 + ³ ⁄4	= 13/16	
Posterior, P(H _i data)	(1/16)/(13/16) =1/13	(3/4)/(13/16) =12/13	
Risk for the next boy	1/13 1⁄2 = 1/26		

© 2004-2007 Yurii Aulchenko

Risk for a boy-child of "j"

Hint: act in steps ("peeling")

(1) Compute posterior probability that "e" is carrier, given she has 3 healthy sons
(2) Use (1) to compute the new "prior" – that "j" is carrier

(3) Compute posterior
 probability that "j" is carrier,
 given she has 1 healthy son

Probability that "e" is carrier

	Hypothesis		
Probability	H ₁ : "e" is DX	H ₂ : "e" is XX	
P(H _i)	1/2	1⁄2	
P(data H _i)	$1/2^3 = 1/8$	1	
P(data H _i)P(H _i)	1⁄2 1/8 = 1/16	$1 \frac{1}{2} = \frac{1}{2}$	
P(data)	1/16 + 1/2 = 9/16		
P(H _i data)	(1/16)/(9/16)= 1/9	1 - 1/9 = 8/9	

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

Probability that "j" is carrier

	Hypothesis		
Probability	H ₁ : "j" is DX	H ₂ : "j" is XX	
P(H _i)	1⁄2 1/9 = 1/18	1 – 1/18 = 17/18	
P(data H _i)	1⁄2	1	
P(data H _i)P(H _i)	1⁄2 1/18 = 1/36	1 17/18 = 17/18	
P(data)	1/36 + 17/18 = 35/36		
P(H _i data)	(1/36)/(35/36)= 1/3 5	5 34/35	
Risk for boy	1⁄2 1/35 =	1/70	

P("j"=DX|data)=1/35Risk for boy-child = 1/70

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

Overview

- Reminder on Bayes
- Risk under rare X linked recessive mutation model
- Risk under dominant model

Dominant disease

Risk allele D with frequency q

- P(Affected|DD) = P(Affected|DN) = 1
- P(Affected|NN) = 0

GE02, Oct 22 – Nov 23 2007

Rare mutation (q=0.001)

What is the risk of the child to have the disease?

•Because the mutation is so rare, you can assume that any affected person has genotype DN

•Say, in 2000 affected, 1 is DD and 1999 are ND.

P(?=A|f=A) = 50%

P(?=A|data)=50%!

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

Mutation is not so rare (q=0.1)

You can not assume that "all" affected are heterozygous

Frequency of DD among affected = [Bayes] =

$$P(DD \mid aff) = \frac{P(aff, DD)}{P(D)} = \frac{P(aff \mid DD) \cdot P(DD)}{P(D)} = \frac{P(aff \mid DD) \cdot P(DD)}{P(D)} = \frac{P(aff \mid DD) \cdot P(DD)}{P(aff \mid DD) \cdot P(DD) + P(aff \mid ND) \cdot P(ND) + P(aff \mid NN) \cdot P(NN)} = \frac{1 \cdot q^2}{1 \cdot q^2 + 1 \cdot 2 \cdot (1 - q) \cdot q + 0 \cdot (1 - q)^2} = \frac{0.1^2}{0.1^2 + 2 \cdot (1 - 0.1) \cdot 0.1} = 0.053$$

Among 100 affected 5 are DD and 95 are ND

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

What is the risk for the child?

 $P(?=affected|data) = 1*0.053 + \frac{1}{2} 0.947 = 0.526$

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

Formal derivation

$$P(? = A | f = A) = P(? = ND | f = A) = \frac{P(? = ND, f = A)}{P(f = A)} = \frac{P(? = ND, f = A)}{P(f = A)} = \frac{P(? = ND, f = A | g_f)P(g_f)}{\sum_{g_f = NN, ND, DD} P(f = A | g_f)P(g_f)} = \frac{\sum_{g_f = NN, ND, DD} P(? = ND, f = A | g_f)P(g_f)}{\sum_{g_f = NN, ND, DD} P(? = ND | g_f)P(f = A | g_f)P(g_f)} = \frac{\sum_{g_f = NN, ND, DD} P(f = A | g_f)P(g_f)}{\sum_{g_f = NN, ND, DD} P(f = A | g_f)P(g_f)} = \frac{P(? = ND | f = ND)P(f = ND)P(f = A | g_f)P(g_f)}{P(f = A | f = ND)P(f = A | f = ND)P(f = A | f = DD)P(f = DD)P(f = A | f = DD)P(f =$$

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

_

Pedigree B

- Father and one child are affected
- What is the risk for the next child?
- Still 53%?

If we knew P(f=DD|data) & P(f=ND|data) then the risk for "?" is computed as

 $P(?=A|data) = \frac{1}{2} P(f=ND|data) + 1 P(f=DD|data)$

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

P(f=ND|data)

Use Bayes formula:

$$P(f = ND | data) = P(f = ND | f = A, s = A) =$$

$$\frac{P(f = ND, f = A, s = A)}{P(f = A, s = A)} = \frac{P(f = ND, s = A)}{P(f = A, s = A)} =$$

$$\frac{P(f = ND) \cdot 0.5}{P(f = A, s = A)} = \frac{0.18 \cdot 0.5}{P(f = A, s = A)} =$$

$$\frac{0.18 \cdot 0.5}{0.18 \cdot 0.5 + 0.01} = \frac{0.09}{0.1} = 0.9$$

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

P(f=DD|data)

$$P(f = ND | data) = P(f = ND | f = A, s = A) =$$

$$\frac{P(f = DD, f = A, s = A)}{P(f = A, s = A)} = \frac{P(f = DD, s = A)}{P(f = A, s = A)} =$$

$$\frac{P(f = DD)}{P(f = A, s = A)} = \frac{0.1^2}{P(f = A, s = A)} =$$

$$\frac{0.1^2}{0.18 \cdot 0.5 + 0.01} = \frac{0.01}{0.1} = 0.1$$

Shortcut: given phenotype, father can not be NN
Thus P(f=DD|data) = 1 - P(f=DD|data) = 1 - 0.9 = 0.1

GE02, Oct 22 – Nov 23 2007

© 2004-2007 Yurii Aulchenko

Pedigree B: risk for next boy

Hypothesis:	Father is DD	Father is ND
Prior, P(g)	0.053	0.947
Conditional,	1	1/2
P(X g)		
Joint, P(X g)	0.053	0.4735
P(g)		
Posterior	0.053/(0.053+0.4735)=0.1	0.9
Risk for next	$0.1 + 0.9 \frac{1}{2} = 0.55$	
boy		

GE02, Oct 22 – Nov 23 2007