Genetic drift

24.10.2007
 GE02: day 3 part 2

Yurii Aulchenko

Erasmus MC Rotterdam

Model of a genetic population

- There is a population of n individuals ($2 n$ chromosomes)
- A very large number of copies is generated form each chromosomes (gametic pool)
- Next generation is obtained by random sampling of $2 n$ chromosomes from this pool

Problem

- Consider a population of 50 people
- One of chromosomes is mutant
- What is the chance that in the next generation the mutation will
- Disappear?
- Be still present as single copy?
- Increase its' frequency?

Solution

- Disappear?
- $\mathrm{P}(\mathrm{k}=0)=0.99100=0.366$
- Be still present as single copy?

$$
P(k=1)=1000.010 .9999=0.37
$$

- Increase its' frequency?
- $P(k \geq 2)=1-P(0)-P(1$ copy $)=$

$$
1-0.366-0.37=0.264
$$

Drift

In a finite genetic populations allelic frequencies are subject to drift (random changes) because of random sampling. The drift is more pronounced with

- Small population size
- Bottleneck effect
- A large population is reduced very much in size at certain stage
- Founder effects
- A small group of founders is sampled from large population to start new one

Problem: bottleneck / founder effect

- In a population, mutations of some gene are present with frequencies 0.001 (M1), 0.003 (M2) and 0.005 (M3)
- Due to bottleneck or founder effect, the population is reduced to 50 people (100 chromosomes)
- What is the chance that none of these mutations will be present in founders of the new population?
- What is the chance that all 3 mutations will be presents?

Solution part 1

What is the chance that none of these mutations will be present in founders of the new population?

$$
(1-0.001-0.003-0.005)^{100}=0.405
$$

Solution part 2

What is the chance that all 3 mutations will be presents?

Approximate $P\left(M_{1} \geq 1 \& M_{2} \geq 1 \& M_{3} \geq 1\right)$ by

$$
P\left(M_{1} \geq 1\right) P\left(M_{2} \geq 1\right) P\left(M_{3} \geq 1\right)
$$

$$
\begin{aligned}
& P\left(M_{1} \geq 1\right) P\left(M_{2} \geq 1\right) P\left(M_{3} \geq 1\right)= \\
& \quad=\left[1-(1-0.001)^{100}\right]\left[1-(1-0.003)^{100}\right]\left[1-(1-0.005)^{100}\right]= \\
& 0.0950 .260 .394=0.01
\end{aligned}
$$

Drift: very small population

- Consider a "population" made of a single selfpollinating plant
- Initially, the plant is heterozygous (genotype AB)

Problem

What is chance that it will be heterozygous in

- First generation
- $10^{\text {th }}$ generation
- nth generation

After infinite number of generations, what genotypes will be present in the population?

Solution

- What is chance that it will be heterozygous in
- First generation : (1/2)
- $10^{\text {th }}$ generation : $(1 / 2)^{10}=1 / 1024$
- n-th generation : $(1 / 2)^{n}$
- After infinite number of generations, what genotypes will be present in the population?
- When $n \rightarrow \infty$ then $(1 / 2)^{n} \rightarrow 0$ therefore only AA or BB may be present, with equal chance of $1 / 2$

Drift

- A population made of $2 n$ chromosomes
- k of these are "mutant" (M) and $2 n-k$ are "normal" (N). Thus the initial frequency of mutant allele is $p=k / 2 n$

Drift for 18 chrom. over 19 generations

FIGURE 1. Change of allele frequency by random genetic drift over 19 generations in 24 hypothetical populations of size $N=9$.

Effects of drift

After infinite number of generations, probability that

- Both types are present is 0
- Only M are present is $k / 2 n=p$
- Only N are present is $(2 n-k) / 2 n=1-p$

Time till mutation is lost (fixed)

Expected number of generations before allele is lost is

$$
E\left[t_{\text {lost }}\right]=-\frac{4 \cdot n \cdot p}{(1-p)} \cdot \log _{e} p \text {; if } p \rightarrow 0 \text { then } E\left[t_{\text {lost }}\right]=-2 \cdot \log _{e} p
$$

Expected number of generations before allele is fixed is

$$
E\left[t_{f i x e d}\right]=-\frac{4 \cdot n \cdot(1-p)}{p} \cdot \log _{e}(1-p) ; \quad \text { if } p \rightarrow 0 \text { then } E\left[t_{\text {fixed }}\right] \sim 4 \cdot n
$$

After t generations

For an allele with low initial frequency p_{0} the loss probability is given by

$$
\mathrm{Pr}_{t, p_{0}}(\text { lost })=\exp \left\{-\frac{4 \cdot n \cdot p_{0}}{t}\right\}
$$

and the variance of frequency is

$$
\operatorname{Var}_{t, p_{0}}[p]=p_{0} \cdot\left(1-p_{0}\right) \cdot\left(1-\left[1-\frac{1}{2 \cdot n}\right]^{t}\right)
$$

Effective number

- The number discussed is the number of "effective people" describing the population within Generation \Rightarrow Pool \Rightarrow Generation model
- It does not directly relate to the number of real people in a population
- n is always smaller than the real population size

Estimating effective number

For expanding populations harmonic mean gives a good proxy to effective number

where $\mathrm{N}_{\text {gen }}$ is total number of generations and n_{i} is number of people in $i^{\text {th }}$ generation

