Conditional probability Formula of total probability

23.10.2005
GE02 day 2 part 1

Yurii Auchenko
Erasmus MC Rotterdam

Colour blindness: experiment

- Experiment: drawing a random subject from a total population of N people
- In a subject, we can observe the following features
- Sex = \{M, F $\}$
- Colour-blindness = \{D, U\}
- ...We aim to predict the risk (the probability) that this random subject is colour-blind

Relations between events

M and F are mutually exclusive

$$
P(M \& F)=0
$$

D and U are mutually exclusive

$$
P(D \& U)=0
$$

Sex and colour blindness are not:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{M} \& U)>0 \\
& \mathrm{P}(\mathrm{M} \& \mathrm{D})>0 \\
& \mathrm{P}(\mathrm{~F} \mathrm{C})>0 \\
& \mathrm{P}(\mathrm{~F} \& \mathrm{D})>0
\end{aligned}
$$

Numbers

Let

- number of affected is N_{D}
- number of unaffected is $N_{U}=N-N_{D}$
- number of males is N_{M}
- number of females is $N_{F}=N-N_{M}$

We also know

- number of affected males, $\mathrm{N}_{\mathrm{D} \& \mathrm{M}}$
- number of affected females, $\mathrm{N}_{\mathrm{D} \& F}$

Probabilities

Then the probability that a random subject is colour-blind is

- $\mathrm{N}_{\mathrm{D}} / \mathrm{N}$

But we know that frequency of colour-blindness in males is higher then in female!

- Or, to say it more formal, probability that a person is colour-blind, depends on sex

Using more information in risk prediction

- Our risk prediction may gain accuracy if we utilize the information on sex
- What is the probability that a random male is affected? Or, better to say, what is probability of being affected GIVEN the person is male?

$$
\mathrm{P}(\mathrm{D} \mid \mathrm{M})=\mathrm{N}_{\mathrm{M} \& \mathrm{D}} / \mathrm{N}_{\mathrm{M}}=\mathrm{P}(\mathrm{M} \& \mathrm{D}) / \mathrm{P}(\mathrm{M})
$$

Conditional probability

Probability of being colour-blind given sex

- $\mathrm{P}(\mathrm{D} \mid \mathrm{M})$
- is an example of conditional probability

There are many genetic probabilities that are conditional

- transmission probabilities
- penetrances

Generally, $P(A \mid B)=P(A \& B) / P(B)$

Problem

- Compute

$$
\begin{aligned}
& P(D) \\
& =P(M) \\
& =P(D \mid M) \\
& =P(D \mid F)
\end{aligned}
$$

- Compute probability that a colour-blind person is male,
- P(M|D)
- Compute probability that
 a colour-blind person is female,
- P(F|D)

Solution

- $N=400$
- $P(D)=20 / 400=1 / 20=5 \%$
- $P(M)=180 / 400=9 / 20$
- $P(F)=220 / 400=11 / 20$
- $P(D \mid M)=18 / 180=1 / 10=10 \%$
- $P(D \mid F)=2 / 220=1 / 110=0.9 \%$
- $P(M \mid D)=18 / 20=P(M \& D) / P(D)$
- $P(F \mid D)=2 / 20=P(F \& D) / P(D)$

Problem

There are two bowls full of cookies. Bowl \#1 has 10 chocolate chip cookies and 30 plain cookies, while bowl \#2 has 20 of each

- What is probability to pick up a plain cookie from bowl \#1?
... \#2?
- What is probability to pick up a a bowl at random and then cookie at random and then to discover that it is a plain one?
- If you pick up a bowl at random and then a cookie at random and discover that it was a plain one, what is probability that you picked it up from the bowl \#1?
... from bowl \#2?

Solution

- Denote bowl as B and cookie as C
- $P(C=$ plain $\mid B=1)=N_{\text {plain in \#1 }} / N_{\# 1}=30 / 40=3 / 4$
- $P(C=$ plain $\mid B=2)=N_{\text {plain in \#2 }} / N_{\# 2}=20 / 40=1 / 2$
- $P(C=$ plain $)=N_{\text {plain }} / N=50 / 80=5 / 8$
- $P(B=\# 1 \mid C=$ plain $)=N_{\text {plain in \#1 }} / N_{\text {plain }}=30 / 50=3 / 5$
- $P(B=\# 2 \mid C=$ plain $)=N_{\text {plain in } \# 2} / N_{\text {plain }}=20 / 50=2 / 5$

Problem

- Let in population there are 2 alleles, M and N
- Frequency of $\mathrm{M}, \mathrm{P}(\mathrm{M})=0.05$
- Penetrances (conditional probability of having disease given genotype) are
- $P(D \mid M M)=1.0$
- $P(D \mid M N)=0.7$
- $\mathrm{P}(\mathrm{D} \mid \mathrm{NN})=0.03$
- Assuming HWE, what is the frequency of disease in the population?

Solution

- Frequency of $M, P(M)=0.05$. Thus, assuming HWE,
- $P(M M)=0.0025, P(M N)=0.095, P(N N)=0.9025$
- Of MM, who make 0.0025 of the population, all are ill, thus, they contribute 0.0025 to the frequency of the diseas
- Of MN, who make 9.5\% of the population, 70\% are ill, thus, they contribute $0.095 * 0.7=0.0665$ to the frequency of the disease
- Of NN, 3\% are ill, they contribute $0.9025^{*} 0.03=0.0271$ to the disease

Solution

- Thus, the frequency of disease is
0.0025 (these ill among MM) + 0.0665 (among MN) +
$0.0271($ among $N N)=0.0961=$
9.61\% of the population are ill

Formula of total probability

- We were following schema

$P(M)$	0,05		
g	$P(g)$	$P(D \mid g)$	$P(g){ }^{\star} P(D \mid g)$
$M M$	0,0025	1,0000	0,0025
$M N$	0,0950	0,7000	0,0665
NN	0,9025	0,0300	0,0271
$\mathrm{P}(\mathrm{D})=$			

And the computations were done using the formula

$$
P(D)=\sum_{g=M M, M N, N N} P(D \mid g) P(g)=
$$

$$
P(D \mid M M) P(M M)+P(D \mid D M) P(D M)+P(D \mid D D) P(D D)
$$

Problem

- Use the total probability formula to find out the chance to pick up a a bowl at random and then cookie at random and then to discover that it is a CHOCOLATE one

Solution

$P(C=$ chocolate $)=\sum P(C=$ choc $\mid B=$ bow $) P(B=$ bow $)=$ bowl=1,2

$\mathrm{P}(\mathrm{C}=$ choc \mid bowl $=1) \mathrm{P}($ bowl $=1)+$
$\mathrm{P}(\mathrm{C}=$ choc| bowl $=2) \mathrm{P}($ bowl $=2)=$

$$
1 / 41 / 2+1 / 21 / 2=3 / 8
$$

