Bayes theorem

23.10.2005
GE02 day 2 part 2

Yurii Auchenko

Erasmus MC Rotterdam

Problem

$P(M)=0.05, P(D \mid M M)=1.0, P(D \mid M N)=0.7 P(D \mid N N)=0.03$
(same as problem before)

- if we observe an ill person, what is the probability it would have genotype MM, MN or NN?
...to put it formally, what are the genotypic probabilities given a person is ill, $\mathrm{P}(\mathrm{MM\mid D}), \mathrm{P}(\mathrm{MN\mid D})$ and $\mathrm{P}(\mathrm{NN} \mid \mathrm{D})$?
- These are the probabilites of the genotypes in a "population" of ill people!

Solution

Probability of disease, $\mathrm{P}(\mathrm{D})=0.0961$
This probability was made of three components:

- 0.0025 (these ill from MM) + 0.0665 (from MN) + 0.0271 (from NN) $=0.0961$

Thus, the proportion of

- MM is $0.0025 / 0.0961=0.026=2.6 \%$
- MN is $0.0665 / 0.0961=0.6922=69.22 \%$
- $N N$ is $0.0271 / 0.0961=0.2818=28.18 \%$

Bayes' formula

We were following the schema

P (M)	0,05		$P(\text { \& })^{\prime}=$	$\begin{aligned} & \mathrm{P}(\mathrm{~g} \mid \mathrm{D})= \\ & \mathrm{P}(\mathrm{~g})^{*} \mathrm{P}(\mathrm{D} \mid \mathrm{g}) / \mathrm{P}(\mathrm{D}) \end{aligned}$
g	P(g)	P(Dlg)	$\mathrm{P}(\mathrm{g}) * \mathrm{P}(\mathrm{Dlg})$	
MM	0,0025	1,0000	0,0025	0,0260
MN	0,0950	0,7000	0,0665	0,6922
NN	0,9025	0,0300	0,0271	0,2818
$P(\mathrm{D})=$			0,0961	

And the computations were done using the formula

$$
P(g \mid D)=\frac{P(D \mid g) P(g)}{P(D)}=\frac{P(D \mid g) P(g)}{\sum_{g=M M, M D, D D} P(D \mid g) P(g)}
$$

Total probability and Bayes' formulas

Two sets of events are considered:

- "Hypothesis" H_{i} for which a prioi probabilities, $\mathrm{P}\left(\mathrm{H}_{\mathrm{i}}\right)$ are known. E.g. genotypes were "hypotheses" in our example. These hypotheses must be mutually exclusive.
- Event(s) of interest, A, e.g. disease. For this event, conditional probabilites given hypotheses, $\mathrm{P}\left(\mathrm{A} \mid H_{f}\right)$

Total probability \& Bayes formulae

Total probability (of event A)

$$
P(A)=\sum_{i} P\left(A \mid H_{i}\right) P\left(H_{i}\right)
$$

Probability of hypothesis H_{i}, given A

$$
P\left(H_{i} \mid A\right)=\frac{P\left(A \mid H_{i}\right) P\left(H_{i}\right)}{P(A)}=\frac{P\left(A \mid H_{i}\right) P\left(H_{i}\right)}{\sum_{i} P\left(A \mid H_{i}\right) P\left(H_{i}\right)}
$$

Problem

- You pick up a bowl at random, and then pick up a cookie at random. The cookie turns out to be a plain one.
- Use Bayes's formula to find out what is the probability that you picked the cookie out of bowl \#1

Solution

- H_{1} - bowl number 1
- H_{2} - bowl number 2
- A - plain cookie
- $\mathrm{P}\left(\mathrm{H}_{1}\right)=\mathrm{P}\left(\mathrm{H}_{2}\right)=1 / 2$
- $\mathrm{P}\left(\mathrm{A} \mid \mathrm{H}_{1}\right)=3 / 4$
- $P\left(A \mid H_{2}\right)=1 / 2$

$$
P\left(H_{1} \mid A\right)=\frac{P\left(A \mid H_{1}\right) P\left(H_{1}\right)}{P(A)}=\frac{P\left(A \mid H_{1}\right) P\left(H_{1}\right)}{\sum_{i=1,2} P\left(A \mid H_{i}\right) P\left(H_{i}\right)}
$$

$=(3 / 41 / 2) /(3 / 41 / 2+1 / 21 / 2)=(3 / 8) /(5 / 8)=3 / 5$

Problem

- In a population, the frequency of obese people is 25%, overweight is observed in 40% and normalweight people have frequency of 35%. The frequency of hypertension in these groups is 45, 30 and 20%, respectively
- What is the total frequency of hypertension in the population?
- If a random person is hypertensive, what is the best guess about his (her) weight?
- If a random person is not hypertensive, what is the best guess about his (her) weight?

Solution

- Denote

- H1=obese, H2=overweight and H3=normal
- $\mathrm{A}=$ hypertensive, $\mathrm{B}=$ not hypertensive
- Probabilities
- $P(H 1)=0.25, P(H 2)=0.4$ and $P(H 3)=0.35$
- $P(A \mid H 1)=0.45, P(A \mid H 2)=0.3$ and $P(A \mid H 3)=0.2$
- $P(B \mid H 1)=1-P(A \mid H 1)=0.55, P(B \mid H 2)=0.7$ and $P(B \mid H 3)=0.8$

Solution: frequency of hypertension

- Probabilities
- $P(H 1)=0.25, P(H 2)=0.4$ and $P(H 3)=0.35$
- $P(A \mid H 1)=0.45, P(A \mid H 2)=0.3$ and $P(A \mid H 3)=0.2$

$$
\begin{aligned}
& P(A)=\sum_{i 123} P\left(A H_{i}^{i} P H_{i}^{i}\right. \\
& P\left(A H_{1}^{i} P H_{1}^{i}+P\left(A H _ { 2 } ^ { i } P \left(H_{2}^{i}+P A H_{3}^{i} P H_{3}^{i}\right.\right.\right.
\end{aligned}
$$

$0250.5+0.403+0.3502=03$

Solution: weight groups frequencies

- Probabilities
- $P(H 1)=0.25, P(H 2)=0.4$ and $P(H 3)=0.35$
- $P(A \mid H 1)=0.45, P(A \mid H 2)=0.3$ and $P(A \mid H 3)=0.2$

$$
P H_{i} A=\frac{P A H_{i}^{i} P H_{i}^{i}}{P(A)} \quad P H_{1} \left\lvert\, A=\frac{P A H_{i} P H_{i}^{i}}{P(A}=\frac{020.45}{0.3}=0.3\right.
$$

$$
P_{1}^{\prime} H_{2} A A_{1}=\frac{P A H_{2} P\left(H_{2}\right)}{P(A)}=\frac{0403}{03}=04
$$

$$
P\left(H_{3} A=\frac{P A H_{3} \mid P\left(H_{3}\right)}{P(A}=\frac{0302}{03}=023\right.
$$

