Basic probability theory

22.10.2006
GE02: day 1 part 1

Yurii Aulchenko
Erasmus MC Rotterdam

Overview: probability theory definitions

- Experiment and experimental outcomes
- Events and Probability
- Mutually exclusive events \& the rule of summation of probabilities
- Complementary events
- Independent events \& the rule of multiplication of probabilities

Experiment

Any planned process of data collection

- Tossing a coin
- Measuring height is people
- Genotyping people
- Sampling pedigrees via proband

Composition of an experiment

Consists of a number of independent trials

- Tossing a coin 3 times
- Experiment with 3 trials

Each trial can result in some outcome

- Head or tail
- Trial with 2 outcomes

Many trials - many possible outcomes

- \{TT, TTH, THT, HTT, THH, HTH, HHT, HHH\}
- Experiment with 8 outcomes

Importance of tossing coins

- Abstracts an experiment with binary outcome
- Probability theory
- Binomial, Poisson \& Normal distributions
- Hypothesis testing
- Genetic epidemiology
- Mendel's lows
- Hardy-Weinberg equilibrium
- Genetic drift

Problem

- How many outcomes exist for experiment in which n coin tosses is made?

Number of experimental outcomes

After 1 trial

2 outcomes

After 2 trials

$$
2 \times 2=4 \text { outcomes }
$$

After 3 trials

$$
4 \times 2=8 \text { outcomes }
$$

After n trials: 2^{n} outcomes

Event

Is defined as a single experimental outcome

- All three heads \{HHH\}
- Two heads and then 1 tail \{HHT\}
... or a set of outcomes
- A head in $2^{\text {nd }}$ trial \{THT, HHT, THH, HHH\}
- Exactly 1 head \{HTT, THT, TTH\}
- More then 1 head \{HHH, HHT, HTH, THH\}

Probability

A function of event taking values between 0 and 1

- Frequently denoted as P(event)

Measures how likely is event

- if $P(A)$ is close to 0 then A is unlikely
- if $P(A)$ is close to 1 then A is very likely

Probabilities of all possible experimental outcomes sum to one

Probability of heads or tails

Tossing a coin once

- Outcome: either head (H) or tail (T), mutually exclusive
- If coin is fair, both are equally likely
- Therefore $P(H)=P(T)=0.5$ (or 50%)

More formal

- Because of symmetry $P(H)=P(T)$
- H or T are all possible outcomes $=>P(H)+P(T)=1$
- Thus $P(H)=P(T)=0.5$

Probability in n trials

- 2^{n} outcomes are possible, all are equivalent
- Then probability of a particular outcome is $1 / 2^{n}$
- For example, for 2 trials:
- $\mathrm{P}(\mathrm{HH})=1 / 4$
- $P(H T)=1 / 4$
- $P(T H)=1 / 4$
- $P(T T)=1 / 4$

Mutually exclusive events

If the occurrence of one event precludes the occurrence of the other. In three trials

- Events HHT and HTH are mutually exclusive
- Events "more then 1 head" and "two heads" are not

If events A and B are mutually exclusive, then

- $\operatorname{Pr}(A$ or $B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)$

Example

What is probability to have event $\mathrm{A}=$ ("one or more heads" in two trials)?

$$
\begin{aligned}
= & P(H H)=1 / 4 \\
= & P(H T)=1 / 4 \\
= & P(T H)=1 / 4 \\
= & P(T)=1 / 4
\end{aligned}
$$

P("one or more heads") =
P(HH or HT or TH) =

$$
\begin{gathered}
P(H H)+P(H T)+P(T H)= \\
1 / 4+1 / 4+1 / 4=3 / 4
\end{gathered}
$$

Genetic example

Consider a gene with two alleles

- N (Normal) and
- D (Disease)

Probability of observing a person with genotypes NN, DN and DD in a population are

- P(NN)=0.81,
- $P(N D)=0.18$ and
- $P(D D)=0.01$

Problem

- What is probability that a random person is a carrier of the D allele?
- A carrier of an allele is a person having at least one copy of this allele in the genotype

Solution

$$
\begin{aligned}
& =P(\text { carrier })= \\
& =P(\text { ND or DD })= \\
& {[\text { mutually exclusive =>] }} \\
& =P(\text { ND })+P(D D)= \\
& =0.18+0.01= \\
& =0.19
\end{aligned}
$$

Complementary event

Define $\mathrm{B}=$ "not A "
B is called an "event, complementary to A "
"A or $\mathrm{B}^{\prime \prime}$ covers all possible outcomes

- $P(A$ or $B)=P\left(A\right.$ or "NOT $\left.A^{\prime \prime}\right)=1$
B and A are mutually exclusive
- $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})=1$

Therefore $P(B)=1-P(A)$

Examples

What is probability to have "one or more heads" in two trials?
P("more than 1 head") =
[complementary event = "no heads"]

$$
1-P(\text { "no heads") }=1-P(T T)=1-1 / 4=3 / 4
$$

What is probability that a person is carrier? $[P(N N)=0.81, P(N D)=0.18, P(D D)=0.01]$
P("carrier") =
[complementary event = "not carrier"] $1-\mathrm{P}($ "not carrier") $=1-\mathrm{P}(\mathrm{NN})=1-0.81=0.19$

Independent events

Two events are independent if the outcome of one has no effect on the outcome of the second event

- Event "having head in first toss" and "having head in second toss" are independent

Genotypes of two random people from a population are independent

Probability: independent events

- Two events A and B are independent when
- $\operatorname{Pr}(A$ and $B)=\operatorname{Pr}(A) \operatorname{Pr}(B)$
- Sex of next offspring does not depend on the sex of the previous

$$
P(\text { boy })=P(\text { girl })=1 / 2
$$

What is probability of three girls born?

- P("girl" and "girl" and "girl") = $1 / 2{ }^{1 / 2} \operatorname{L}^{1 / 2}=1 / 8$
- The same applies to having Heads three times

Problem

- In some elderly population, prevalence of hypertension (HT) is 42\% in female and 57% in male. What is the probability that
- Both spouses are HT?
- Both spouses are NOT HT?
- Assume independence

Solution

- Both spouses are HT P(husband=HT \& wife=HT) =

$$
P(\text { male }=H T) P(\text { female }=H T)=0.570 .42=0.24
$$

- Both spouses are NOT HT $P(h u s b a n d \neq H T$ \& wife $=\mathrm{HT}$) $=$ $P($ husband $\neq \mathrm{HT}) \mathrm{P}($ wife $\neq \mathrm{HT})=$
[1-P(male=HT)][1-P(female=HT)] =
$0.430 .58=0.25$

Non-independent events

Risk of disease in women whose partner had a disease compared to those whose partner did not

Disease	Odds Ratio (95\% CI)
Hypertension	$1.39(1.14$ to 1.70$)$
Depression	$2.18(1.78$ to 2.67$)$
Asthma	$1.68(1.45$ to 1.94$)$

Shared lifestyle risk factors?
Hippisley-Cox et al., BMJ 2002;325:636

