GE02 Exercises day 1

Hilde Peeters
Fleur Velders

Lintje Ho

- Consider a biallelic SNP with alleles T and G. The SNP is located at X-chromosome. Males have only 1 X-chromosome and thus could have genotype T (which cannot be distinguished from TT) or G (which cannot be distinguished from GG). Assuming that population consist of 50% men and 50% women, what genotypic proportions are expected?
- $\mathrm{P}(\mathrm{T})=0.20$

	Female			Male	
True	TT $=0.04$	GT $=0.32$	GG $=0.64$	TY $=0.20$	$\mathrm{GY}=0.80$
Observed	TT	GT	GG	TT	GG

- 1:1 mixture
- In mixed population: $\mathrm{TT}=0.12 \quad \mathrm{GT}=0.16 \quad \mathrm{GG}=0.72$
- A study population is a $3: 1$ mixture of population A and population B. Frequency of the allele of interest is 0.1 in pop A and 0.2 in pop B. Both populations are under HWE.
- 1.What is allelic frequency in the mixed population?
- $\operatorname{Pa}(\mathrm{A}) * 3 / 4+\mathrm{Pb}(\mathrm{A}) * 1 / 4$
- $=0.1 * 3 / 4+0.2 * 1 / 4$
- $=0.125$
- 2.What is genotypic distribution in the mixed population?

	AA	Aa	aa
Pop A	0.01	0.18	0.81
Pop B	0.04	0.32	0.64
$3: 1$ mixture	0.017	0.215	0.767

- What genotypic frequencies would be expected under HWE? Is it likely that the deviation from HWE due to Wahlund's effect will be detected?
- $P(A)=0.125$
- Expected AA $=0.015 \mathrm{Aa}=0.218 \mathrm{aa}=0.765$
- In a large population, average inbreeding is 0.03 . For a variant with frequency of 0.01 , compute HWE frequencies with and without assumption of inbreeding. Is it likely that the deviations from HWE due to inbreeding can be detected?
- $\mathrm{F}=0.03$
- $\mathrm{P}(\mathrm{a})=0.01$

Without	$\mathrm{AA}=0.9801$	$\mathrm{Aa}=0.0198$	$\mathrm{aa}=0.0001$
With	$\mathrm{Q}^{2}+\mathrm{pqF}$	$2 \mathrm{pq}(1-\mathrm{F})$	$\mathrm{P}^{2}+\mathrm{pqF}$
	$\mathrm{AA}=$	$\mathrm{Aa}=$	$\mathrm{aa}=$
	0.980397	0.019206	0.000397

