Inbreeding

24.10.2005
GE02: day 1 part 3

Yurii Auchenko
Erasmus MC Rotterdam

Inbreeding

- ... is breeding between relatives

Coefficient of inbreeding, F

- A genotype is called autozygous (or homozygous by descent) if it contains two alleles, which are copies of exactly the same ancestral allele
- Coefficient of inbreeding, F, is the chance of such event

Causes of inbreeding

- Deviation from random mating
- Extreme: self-pollination
- Systematic marriage between relatives
- Finite population size (to be considered later)
(For drift populations, $F=1 / 2 n$)

Inbreeding in consanguineous marriages

- Two ancestral alleles, six meioses
- The chance of a transfer is $1 / 2$
- Chance that an offspring will receive copy of the same ancestral allele is

$$
1 / 2^{3+3-1}=1 / 2^{5}=1 / 32
$$

- More general, $\mathrm{F}=(1 / 2)^{\mathrm{N}-1}$, where N is number of
 meioses in inbred loop

Inbreeding when more then one loop present

- Sum over all independent loops:

$$
\begin{gathered}
\mathrm{F}_{3}=\sum_{\mathrm{i}=\text { loops }}(1 / 2)^{\mathrm{Ni}-1}= \\
1 / 2^{3+3-1}+21 / 2^{6+6-1}= \\
1 / 2^{5}+1 / 2^{10}= \\
1 / 2^{5}\left(1+1 / 2^{5}\right)=33 / 1024
\end{gathered}
$$

- Or apply recursive rule

$$
\begin{gathered}
\mathrm{F}_{3}=(1 / 2)^{\mathrm{Ni}-1}\left(1+\mathrm{F}_{\text {anc }}\right)= \\
1 / 2^{1+3-1}\left(1+\mathrm{F}_{2}\right)= \\
1 / 2^{5}\left(1+1 / 2^{5}\right)=33 / 1024
\end{gathered}
$$

Task

- Compute inbreeding for progeny of consanguineous marriage depicted at the figure
- What would be F if grand-grand-mother 5 was inbred with $F=1 / 32$?
- What would be F if grandfather 9 was inbred with
 $F=1 / 64$?

Answer

- Compute inbreeding for progeny of consanguineous marriage depicted at the figure

$$
=2(1 / 2)^{5}=(1 / 2)^{4}=1 / 16
$$

- What would be F if grand-grand-mother 5 was inbred with $F=1 / 32$?
$=1 / 16(1+1 / 32)=3 / 32$
- What would be F if grand-father 9 was inbred with $F=1 / 64$?

Nothing would happen as 9 cannot serve as a source of shared genetic material

Inbreeding leads to the deviation from HWE

- Inbreeding $=>$ People with genotypes identical-by-descent $=>$ excess in homozygous
- HWE

$$
p^{2} \quad: 2 p q \quad: q^{2}
$$

- HWE under inbreeding

$$
p^{2}(1-F)+p F: 2 p q(1-F): q^{2}(1-F)+q F
$$

Task

- An allele is present with frequency of 0.01
- What is expected genotypic distribution in
- Large outbred population with random mating?
- A population of progeny from cousin-marriage?
- In a finite population of size 10 ?
- In a finite population of size 100 ?

