Hypothesis testing

27.10.2005
GE02: day 3 part 1

Yurii Aulchenko
Erasmus MC Rotterdam

Statistic

- ... generally, is a quantity which measures deviation of observed from expected
- In a series 100 coin tosses 59 tails are obtained. Possible statistics are
- Absolute deviation from expected number of tails:
- $\mid \#$ observed $-\#$ expected $|=|59-50|=9$
- Absolute deviation from expected on standard normal scale:
- |observed - expected $/$ std.dev. $=$

$$
|59-50| / \sqrt{ }\left(100^{1 ⁄ 2} 1 / 2 / 2\right)=9 / 5=1.8
$$

- ... etc.

P -value

- ... is probability that test statistics has a value "at least as extreme" as the observed value

P-value: example

- For previous experiment, (59 tails in 100 tosses) this probability is
- Statistics: abs. deviation from expected number of tails:
- $\mid \#$ observed $-\#$ expected $|=|59-50|=9$
- P-value
- $\mathrm{P}(\mid \#$ observed $-\#$ expected $\mid \geq 9)=$ [binomial distribution]

$$
\mathrm{P}(\# \text { tails } \geq 59 \text { or } \# \text { tails } \leq 41)=\mathbf{0 . 0 8 9}
$$

- Statistics: abs. deviation from expected on standard normal scale:
- |observed - expected| / std.dev. $=1.8$
- $\mathrm{P}(x \leq-1.8$ or $x \geq 1.8)=$ [normal distribution]

$$
\Phi(x \leq-1.8 \text { or } x \geq 1.8)=2(1-\mathrm{P}(x \geq 1.8))=20.9641-1=\mathbf{0 . 0 7 1 8}
$$

Hypothesis testing

- If P-value is less then or equal to some prespecified threshold (α), then the null hypothesis (e.g. fair coin) is rejected
- Usual α is taken to be 0.05

Why absolute deviation?

- Experiment: 100 coin tosses
- Outcome: 59 tails
- Statistic: absolute deviation from expected number of tails
$\mid \#$ observed $-\#$ expected $|=|59-50|=9$
- P-value:

$$
\mathrm{P}(\mid \# \text { observed }-\# \text { expected } \mid \geq 9)=\mathrm{P}(\# \text { tails } \geq 59 \text { or } \# \text { tails } \leq 41)
$$

- Why not just $\mathrm{P}(\#$ tails $\geq 59)$?
- Not guilty until proven!
- The reason is that under null we assume that the coin is fair, and in this case, it can deviate to any side from the expected

Not always absolute deviation

- Polymorphism: A \rightarrow T
- Testing involvement of the polymorphism into disease

Test: T is more OR less frequent in cases

- If we know that T disrupts the product of the gene or have some other evidence that T is a "bad"variant

Test: T is more frequent in cases

Task

- Test if coin is fair given
- One tail out of ten
- Two tails out of ten
- Use both Normal and Binomial for the test

Answer: 1 out of 10

- Binomial
$\mathrm{P}($ deviation $\geq 4)=$

$$
\begin{aligned}
& \mathrm{P}(k=9)+\mathrm{P}(k=10)+\mathrm{P}(k=1)+\mathrm{P}(k=0)= \\
& \quad 10 \frac{1 / 2^{10}}{}+1 / 2^{10}+10^{1 / 2^{10}}+1 / 2^{10}=22^{1 / 21} 2^{10}=0.021
\end{aligned}
$$

- Normal
$\Phi\left(\right.$ deviation $\left.\geq 4 / \sqrt{ }\left(1^{1 / 2} 21 / 2\right)\right)=$

$$
\begin{aligned}
& \Phi(x \geq 2.53 \text { OR } x \leq-2.53)= \\
& 2(1-0.9943)=0.011
\end{aligned}
$$

Answer: 2 out of 10

- Binomial
$\mathrm{P}($ deviation $\geq 3)=$

$$
\begin{gathered}
=\mathrm{P}(k=8)+\mathrm{P}(k=9)+\mathrm{P}(k=10)+\mathrm{P}(k=2)+\mathrm{P}(k=1)+\mathrm{P}(k=0) \\
45^{1 / 2^{10}}+10^{1 / 22^{10}}+1 / 2^{10}+45^{1 / 210}+10^{1 / 120}+1 / 2^{10}= \\
112^{1 / 22^{10}}=0.109
\end{gathered}
$$

- Normal
$\Phi($ deviation $\geq 3 / \sqrt{ }(101 / 21 / 2))=$

$$
\begin{aligned}
& \Phi(x \geq 1.9 \text { OR } x \leq-1.9)= \\
& 2(1-0.9713)=0.0574
\end{aligned}
$$

Chi-squared distribution

- Chi-squared with m d.f. is sum of m squared standard Normal
- Consider several classes $i=1,2, \ldots m$
- in each class expected $\left(E_{i}\right)$ and observed $\left(O_{i}\right)$ is known
- Chi-squared statistics

$$
\chi_{m-1}^{2}=\sum_{i=1}^{m} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}
$$

- is distributed as chi-squared test with the number of degrees of freedom ($m-1$)

Chi-squared distribution

- Coin tossing with $n=20$, with $k=4$
- class one: observed 4 heads, expected 10
- class two: observed 16 tails, expected 10

$$
\begin{aligned}
\chi_{1}^{2}=\sum_{i=1}^{2} & \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}=\frac{(4-10)^{2}}{10}+\frac{(16-10)^{2}}{10} \\
& =3.6 \times 2=7.2(P \text {-value }=0.0073)
\end{aligned}
$$

Critical values of $\chi_{1}{ }^{2}$

- If chi-squared at 1 d.f. $\geq 3.84=>\mathrm{P} \leq 0.05$
- If chi-squared at 1 d.f. $\geq 6.63=>\mathrm{P} \leq 0.01$
- If chi-squared at 1 d.f. $\geq 7.88 \Rightarrow>\mathrm{P} \leq 0.005$

Likelihood Ratio Test

- Two hypothesis considered
- Null, $H_{0}: p=0.5$
- Alternative, H_{1} : p has a value maximizing the observed data
- Let $\mathrm{P}_{0}(\mathrm{~K})$ and $\mathrm{P}_{1}(\mathrm{~K})$ are the probabilities of the data under null and alternative

Likelihood Ratio Test

- Then

$$
L R T=2 \log _{e}\left[\frac{P_{1}(K)}{P_{0}(K)}\right] \infty \chi_{1}^{2}
$$

More general:

- Hierarchical hypotheses are considered
- The number of degrees of freedom is the difference in number of parameters under estimation

Likelihood Ratio Test

- Coin tossing with $n=20, k=4$
- $H_{0}: p=1 / 2$
- $P_{o}(K)=C(20,4)(1 / 2)^{20}$
- $H_{0}: p=4 / 20$
- $P_{I}(K)=C(20,4)(4 / 20)^{4}(16 / 20)^{16}$
$L R T=2 \log _{e}\left[\frac{P_{1}(K)}{P_{0}(K)}\right]=2 \log _{e}\left[\frac{0.2^{4} \cdot 0.8^{16}}{(1 / 2)^{10}}\right]=2 \log _{e}[47.22]=2 \cdot 3.85=7.7$
P-value $=0.0055$

Importance of large numbers

- In coin tossing with $n=20$, with $k=4$
- P -value is equal to
- 0.018 (exact binomial)
- 0.007 (chi-squared approximation)
- 0.006 (LRT)
- When numbers are small, Normal approximation may work poor, hence Z-, χ^{2} - and LRT-test are not behaving very good

Testing HWE, using chi2

$$
X^{2}=\sum_{i=1, m} \frac{\left(E_{i}-O_{i}\right)^{2}}{E_{i}}
$$

- number of degrees of freedom is
(number of genotypes - number of alleles)

genotype No.	Expected			
DD	2	0,01	1,1	0,73
ND	17	0,19	18,8	0,17
NN	81	0,8	80,1	0,01 P-value

Excel functions

- Cumulative binomial $\mathrm{P}(x \leq k)$

$$
=\operatorname{binomdist}(k, n, p, 1)
$$

- Cumulative standard normal $\Phi(x \leq k)$

$$
=\operatorname{normdist}(k, 0,1,1)
$$

- Chi-squared with m d.f., $\chi_{m}{ }^{2}(k)$

$$
=\operatorname{chidist}(k, m)
$$

