Populational genetics Hardy-Weinberg equilibrium, departure from HWE

24.10.2005 GE02: day 1 part 2

Yurii Auchenko Erasmus MC Rotterdam

What is a "population"?

- Two individuals A and B belog to the same genetic population if
 - the probability that they would have an offspring in common is greater then zero and
 - this probability is much higher than the probability of A and B having an offspring in common with some individual C, which is said to be belonging to other population

Genetic processes in populations

• Selection is a process of differential reproduction

• Mutation is the process in which one allele is changed to other

• Random processes, e.g. drift

Genetic processes in large populaions

- Assumptions:
 - infinitely large population
 - Generation -> Gametic pool -> Generation abstract
 - Random, independent segregation and aggregation of alleles

Hardy-Weinberg equilibrium

• Consider two alleles, N and D, are segregating in a population. Frequency of D, P(D) = 0.1

• If aggregation of alleles is independent and random, what are the expected genotypic proportions?

Solution

- Homozygotes
 - $P(N \text{ and } N) = P(N) \times P(N) = 0.9 \times 0.9 = 0.81$
 - $P(D \text{ and } D) = P(D) \times P(D) = 0.1 \times 0.1 = 0.01$
- Heterozygote
 - $P(N \text{ and } D) = P(N) \times P(D) = 0.9 \times 0.1 = 0.09$
 - $P(D \text{ and } N) = P(D) \times P(N) = 0.1 \times 0.9 = 0.09$
 - Total, P(ND or DN) = 0.18

Hardy-Weinberg equilibrium

- If frequency of allele D is q and the frequency of N is p = (1 − q) then
 - $P(DD) = q^2$
 - P(ND) = 2 p q
 - $P(DD) = p^2$
- These proportions are known as HWE
- P(ND) is known as heterozygosity, a measure of marker polymorphism

Task

• Consider three alleles, A₁, A₂ and A₃, segregating in a population

 $- P(A_1) = 0.1 \text{ and } P(A_2) = 0.2$

- Aggregation of alleles is independent and random
- What is
 - Frequency of A_3 ?
 - How many genotypes can be observed?
 - What are equilibrium proportions?

Solution

• Frequency of A₃?

$$P(A_3) = 1 - P(A_1) - P(A_2) = 0.7$$

How many genotypes can be observed?
 Six: A₁A₁, A₁A₂, A₁A₃, A₂A₂, A₂A₃, and A₃A₃

Generally: if there are *n* alleles, there could be

n (n+1) / 2 genotypes

Solution

• What are equilibrium proportions?

$$- P(A_1A_1) = P(A_1) P(A_1) = 0.01$$

$$- P(A_1A_2) = 2 P(A_1) P(A_2) = 0.04$$

$$- P(A_1A_3) = 2 P(A_1) P(A_3) = 0.14$$

$$- P(A_2A_2) = P(A_2) P(A_2) = 0.04$$

$$- P(A_2A_3) = 2 P(A_2) P(A_3) = 0.28$$

$$- P(A_3A_3) = P(A_3) P(A_3) = 0.49$$

HWE for multiple alleles

- $P(A_iA_i) = P(A_i)^2$
- $P(A_iA_j) = 2 P(A_i) P(A_j)$

• Heterozygosity is defined as

 $\Sigma_{i>j} 2 P(A_i) P(A_j)$

When HWE is reached?

• If the frequency of genotypes are

-P(DD) = 0.1, P(ND) = 0.2 and P(NN) = 0.7

- Then
 - What is the frequency of D, P(D)?
 - What genotypic frequencies are expected under HWE?
 - What will be genotypic frequencies after a generation of random mating?

Follow the model...

- What is the frequency of D, P(D)?
 P(D) = P(DD) + P(ND)/2 = 0.1 + 0.2/2 = 0.2
- Now the gametes start randomly aggregate and we get HWE in one generation:

- P(DD) = 0.04, P(ND) = 0.32, P(NN) = 0.64

Conclusion

• If genotypes are not in HWE, it is reached in one generation of random mating and segregation/aggregation!

• Normally these assumptions holds

Why HWE may be violated?

• Genotyping or calling error

- Sample is not from the same population
- Non-random mating
- Selection

Genotyping or calling error

- SNPs
 - Heterozygotes more difficult to call than homozygotes
- Microsatellites
 - Call errors
 - Missed alleles

Problem

- Three alleles (A₁, A₂ and A₃) are present in a population with frequencies 0.05, 0.15 and 0.8
- Allele A₂ is not called
- What will be genotypic distribution for such locus?
- What is the one expected under HWE?

Answer

- What will be genotypic distribution for such locus?
 - Genotype 11 12 13 22 23 33
 - True distr. (%) 0.25 1.5 8 2.25 24 64
 - Calling 11 11 13 miss 33 33
 - Obs. genot. 11 13 33
 - Observed% 1.75 8 88 / (1 0.0225) 1.8 8.2 90

Compare with HWE

111333- Observed%1.88.290

• What is the one expected under HWE?

$$-P(1) = 1.8 + 8.2/2 = 5.9\%$$

$$11 \quad 13 \quad 33$$

$$-Expected\% \quad 0.3 \quad 11 \quad 89$$

• Excess of homozygotes!

Why HWE may be violated?

• Genotyping or calling error

- Sample is not from the same population
- Non-random mating
- Selection

HWE violation because of incorrect sampling

- Bad sample:
 - 50% are from population where allele frequency is
 0.2 (say, European) and
 - other 50% are from population where frequency is 0.9 (Say, Japanese)
- Both populations are in HWE

Resulting population

	AA	Aa	aa
Pop1	0.64	0.32	0.04
Pop2	0.01	0.18	0.81
Mixture	0.325	0.25	0.425

- In mixed population, P(a) = 0.425 + 0.25/2 = 0.55
- Expected under HWE:
 - Expec 0.20 0.50 0.30
- Mixture usually leads to heterozygote deficiency!