Populational genetics
 Hardy-Weinberg equilibrium, departure from HWE

24.10.2005
GE02: day 1 part 2

Yurii Auchenko
Erasmus MC Rotterdam

What is a "population"?

- Two individuals A and B belog to the same genetic population if
- the probability that they would have an offspring in commomn is greater then zero and
- this probability is much higher than the probability of A and B having an offspring in common with some individual C, which is said to be belonging to other population

Genetic processes in populations

- Selection is a process of differential reproduction
- Mutation is the process in which one allele is changed to other
- Random processes, e.g. drift

Genetic processes in large populaions

- Assumptions:
- infinitely large population
- Generation -> Gametic pool -> Generation abstract
- Random, independent segregation and aggregation of alleles

Hardy-Weinberg equilibrium

- Consider two alleles, N and D , are segregating in a population. Frequency of $D, P(D)=0.1$
- If aggregation of alleles is independent and random, what are the expected genotypic proportions?

Solution

- Homozygotes
$-\mathrm{P}(\mathrm{N}$ and N$)=\mathrm{P}(\mathrm{N}) \times \mathrm{P}(\mathrm{N})=0.9 \times 0.9=0.81$
$-\mathrm{P}(\mathrm{D}$ and D$)=\mathrm{P}(\mathrm{D}) \times \mathrm{P}(\mathrm{D})=0.1 \times 0.1=0.01$
- Heterozygote
- $\mathrm{P}(\mathrm{N}$ and D$)=\mathrm{P}(\mathrm{N}) \times \mathrm{P}(\mathrm{D})=0.9 \times 0.1=0.09$
$-\mathrm{P}(\mathrm{D}$ and N$)=\mathrm{P}(\mathrm{D}) \times \mathrm{P}(\mathrm{N})=0.1 \times 0.9=0.09$
- Total, $\mathrm{P}(\mathrm{ND}$ or DN$)=0.18$

Hardy-Weinberg equilibrium

- If frequency of allele D is q and the frequency of N is $p=(1-q)$ then
$-\mathrm{P}(\mathrm{DD})=\mathrm{q}^{2}$
$-\mathrm{P}(\mathrm{ND})=2 \mathrm{pq}$
$-\mathrm{P}(\mathrm{DD})=\mathrm{p}^{2}$
- These proportions are known as HWE
- $\mathrm{P}(\mathrm{ND})$ is known as heterozygosity, a measure of marker polymorphism

Task

- Consider three alleles, $\mathrm{A}_{1}, \mathrm{~A}_{2}$ and A_{3}, segregating in a population
- $\mathrm{P}\left(\mathrm{A}_{1}\right)=0.1$ and $\mathrm{P}\left(\mathrm{A}_{2}\right)=0.2$
- Aggregation of alleles is independent and random
- What is
- Frequency of A_{3} ?
- How many genotypes can be observed?
- What are equilibrium proportions?

Solution

- Frequency of A_{3} ?

$$
\mathrm{P}\left(\mathrm{~A}_{3}\right)=1-\mathrm{P}\left(\mathrm{~A}_{1}\right)-\mathrm{P}\left(\mathrm{~A}_{2}\right)=0.7
$$

- How many genotypes can be observed?

Six: $\mathrm{A}_{1} \mathrm{~A}_{1}, \mathrm{~A}_{1} \mathrm{~A}_{2}, \mathrm{~A}_{1} \mathrm{~A}_{3}, \mathrm{~A}_{2} \mathrm{~A}_{2}, \mathrm{~A}_{2} \mathrm{~A}_{3}$, and $\mathrm{A}_{3} \mathrm{~A}_{3}$

- Generally: if there are n alleles, there could be
- $\mathrm{n}(\mathrm{n}+1) / 2$ genotypes

Solution

- What are equilibrium proportions?
$-\mathrm{P}\left(\mathrm{A}_{1} \mathrm{~A}_{1}\right)=\mathrm{P}\left(\mathrm{A}_{1}\right) \mathrm{P}\left(\mathrm{A}_{1}\right)=0.01$
$-\mathrm{P}\left(\mathrm{A}_{1} \mathrm{~A}_{2}\right)=2 \mathrm{P}\left(\mathrm{A}_{1}\right) \mathrm{P}\left(\mathrm{A}_{2}\right)=0.04$
$-\mathrm{P}\left(\mathrm{A}_{1} \mathrm{~A}_{3}\right)=2 \mathrm{P}\left(\mathrm{A}_{1}\right) \mathrm{P}\left(\mathrm{A}_{3}\right)=0.14$
$-\mathrm{P}\left(\mathrm{A}_{2} \mathbf{A}_{2}\right)=\mathrm{P}\left(\mathrm{A}_{2}\right) \mathrm{P}\left(\mathbf{A}_{2}\right)=0.04$
$-\mathrm{P}\left(\mathrm{A}_{2} \mathrm{~A}_{3}\right)=2 \mathrm{P}\left(\mathrm{A}_{2}\right) \mathrm{P}\left(\mathrm{A}_{3}\right)=0.28$
$-\mathrm{P}\left(\mathrm{A}_{3} \mathrm{~A}_{3}\right)=\mathrm{P}\left(\mathrm{A}_{3}\right) \mathrm{P}\left(\mathrm{A}_{3}\right)=0.49$

HWE for multiple alleles

- $\mathrm{P}\left(\mathrm{A}_{\mathrm{i}} \mathrm{A}_{\mathrm{i}}\right)=\mathrm{P}\left(\mathrm{A}_{\mathrm{i}}\right)^{2}$
- $\mathrm{P}\left(\mathrm{A}_{\mathrm{i}} \mathrm{A}_{\mathrm{j}}\right)=2 \mathrm{P}\left(\mathrm{A}_{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{A}_{\mathrm{j}}\right)$
- Heterozygosity is defined as

$$
\Sigma_{\mathrm{i}>\mathrm{j}} 2 \mathrm{P}\left(\mathrm{~A}_{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{~A}_{\mathrm{j}}\right)
$$

When HWE is reached?

- If the frequency of genotypes are
$-\mathrm{P}(\mathrm{DD})=0.1, \mathrm{P}(\mathrm{ND})=0.2$ and $\mathrm{P}(\mathrm{NN})=0.7$
- Then
- What is the frequency of $\mathrm{D}, \mathrm{P}(\mathrm{D})$?
- What genotypic frequencies are expected under HWE?
- What will be genotypic frequencies after a generation of random mating?

Follow the model...

- What is the frequency of $\mathrm{D}, \mathrm{P}(\mathrm{D})$?

$$
-\mathrm{P}(\mathrm{D})=\mathrm{P}(\mathrm{DD})+\mathrm{P}(\mathrm{ND}) / 2=0.1+0.2 / 2=0.2
$$

- Now the gametes start randomly aggregate and we get HWE in one generation:
$-\mathrm{P}(\mathrm{DD})=0.04, \mathrm{P}(\mathrm{ND})=0.32, \mathrm{P}(\mathrm{NN})=0.64$

Conclusion

- If genotypes are not in HWE, it is reached in one generation of random mating and segregation/aggregation!
- Normally these assumptions holds

Why HWE may be violated?

- Genotyping or calling error
- Sample is not from the same population
- Non-random mating
- Selection

Genotyping or calling error

- SNPs
- Heterozygotes more difficult to call than homozygotes
- Microsatellites
- Call errors
- Missed alleles

Problem

- Three alleles $\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right.$ and $\left.\mathrm{A}_{3}\right)$ are present in a population with frequencies $0.05,0.15$ and 0.8
- Allele A_{2} is not called
- What will be genotypic distribution for such locus?
- What is the one expected under HWE?

Answer

- What will be genotypic distribution for such locus?
- Genotype
$\begin{array}{lllll}11 & 12 & 13 & 22 & 23\end{array}$
- True distr. (\%) \qquad $\begin{array}{llll}8 & 2.25 & 24 & 64\end{array}$
- Calling
$\begin{array}{lllll}11 & 11 & 13 & \text { miss } & 33\end{array}$
- Obs. genot. $11 \quad 13 \quad 33$
- Observed\% $\quad 1.75 \quad 8 \quad 88 \quad /(1-0.0225)$
$\begin{array}{lll}1.8 & 8.2 & 90\end{array}$

Compare with HWE

	11	13	33
- Observed\%	1.8	8.2	90

- What is the one expected under HWE?
$-\mathrm{P}(1)=1.8+8.2 / 2=5.9 \%$
$\begin{array}{lll}11 & 13 & 33\end{array}$
- Expected\% $0.3 \quad 11 \quad 89$
- Excess of homozygotes!

Why HWE may be violated?

- Genotyping or calling error
- Sample is not from the same population
- Non-random mating
- Selection

HWE violation because of incorrect sampling

- Bad sample:
- 50% are from population where allele frequency is 0.2 (say, European) and
- other 50% are from population where frequency is 0.9 (Say, Japanese)
- Both populations are in HWE

Resulting population

	AA	Aa	aa
Pop1	0.64	0.32	0.04
Pop2	0.01	0.18	0.81
Mixture	0.325	0.25	0.425

- In mixed population, $\mathrm{P}(\mathrm{a})=0.425+0.25 / 2=0.55$
- Expected under HWE:
$\begin{array}{llll}\text { Expec } & 0.20 & 0.50 & 0.30\end{array}$
- Mixture usually leads to heterozygote deficiency!

