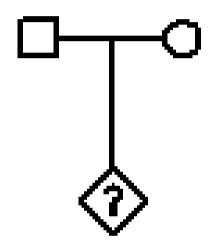
Genetic risk calculations: recessive disease

27.10.2005 GE02 day 3 part 4

Yurii Auchenko Erasmus MC Rotterdam

Problem

- Recessive model
 - P(M) = q
 - P(D|MM) = 1
 - P(D|MN)=P(D|MM)=0



• P(MN|person is unaffected) = ?

	H-MM	H-NM	H-NN	_
Prior, P(Hi)	qq	2qp	рр	
Conditional, P(X Hi)	0,0	1,0	1,0	Total, P(X)
Joint, P(Hi)P(X Hi)	0,0	2qp	рр	p(2q+p)
Posterior, P(Hi X)	0,0	2q/(2q+p)	p/(2q+p)	

$$= 2q / (2q + p) =$$

= 2q / (2q + 1 - q) = 2q / (1 + q)
- if q \rightarrow 0 P(MN|unaffected) \approx 2 q

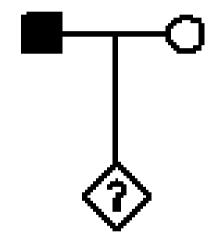
• Risk for the child of unaffected parents:

¹/₄ P(fa=MN,mo=MN|fa,mo=Unaffected) =

= $\frac{1}{4}$ P(MN|person is unaffected)² = q² / (1 + q)² - if q \rightarrow 0 risk \approx q²

Problem

- Recessive model
 - P(M) = q
 - P(D|MM) = 1
 - P(D|MN)=P(D|NN)=0



• P(MN|person is unaffected)=

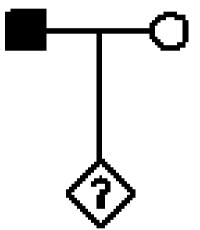
$$= 2q / (2q + p) =$$

$$= 2q / (2q + 1 - p) = 2q / (1 + q)$$

• Risk for the child:

 $\frac{1}{2} P(mo=MN|mo=Unaffected) =$

- $= \frac{1}{2} 2 q / (1 + q) = q / (1 + q)$
- if $q \rightarrow 0$ risk $\approx q$
- Relative risk for a child of affected person = 1/q



Task

- Given the carrier frequency is 1/30 (CF case). compute
 - Risk for a child of unaffected parents
 - Risk for a child of affected mother and unaffected father
 - Relative risk for a child of an affected parent

Solution, approximate

- Carrier frequency

• $q_a = carr.freq/2 \Rightarrow q_a = 1/60 = 0.0167$

- risk for a child of unaffected parents

• $q_a^2 = 1/3600 = 0.000278$

 risk for a child of affected mother and unaffected father

• $q_a = 1/60 = 0.0165$

- Relative risk for a child of an affected parent

•
$$1/q_a^2 = 60$$

Solution, exact

- Carrier frequency

- $q_e = 1 \sqrt{(1 \text{carr.freq.})} \Rightarrow q_e = 0.0168 \ (0.8\% \text{ more})$
- risk for a child of unaffected parents

• $q_e^2 / (1+q_e)^2 = 0.000273 (1.7 \% \text{ less})$

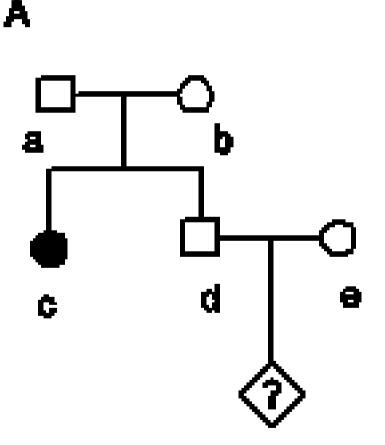
- risk for a child of affected mother and unaffected father
 - $q_e / (1+q_e) = 0.0165$
- Relative risk for a child of an affected parent
 - $1/q_e = 60.5$

Solution, comparison

carrier freq	0,03		
	exact	approx	Error, %
p	0,01681	0,01667	0,84
both parents U	0,00027	0,00028	-1,66
one parent D	0,01653	0,01667	-0,83
RR	60,49576	60,00000	0,82

Problem

- Recessive model
 - P(M) = 1/40 = 2.5%
 - P(D|MM)=1
 - P(D|MN) = P(D|NN) = 0
- What is the risk for "?"



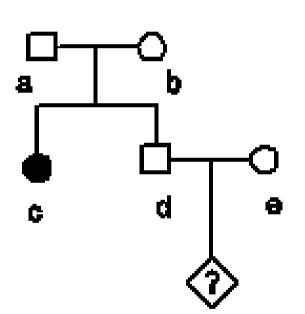
Solution (a)

$$H_{NN}$$
: "e" is NN

$$P(H_{MM}) = 1/40*1/40 = 1/1600$$

$$P(H_{MN}) = 2*1/40*39/40 = 78/1600$$

$$P(H_{NN}) = 39/40*39/40 = 1521/1600$$

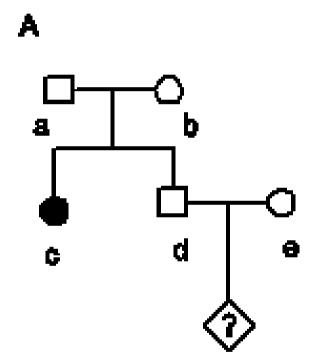


A

Solution (a)

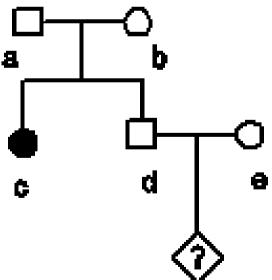
(a) compute risk that "e" is a heterozygote given "e" is not affected

$$= 2q / (1 + q) = 0.049$$



Solution (b)

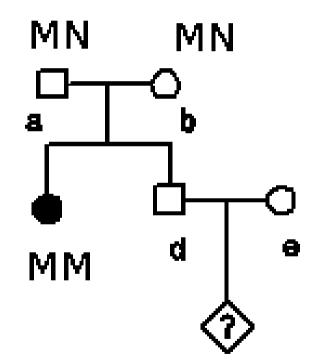
```
(b) compute risk that "d" is
  heterozygote, given pedigree data
   H_{MM}: "d" is MM
                                        A
   H_{MN}: "d" is MN
                                         8
   H_{NN}: "d" is NN
   P(H_{MM}) = 1/4
                                          Ċ
   P(H_{MN}) = 1/2
   P(H_{NN}) = 1/4
```



Solution (b)

(b) compute risk that "d" is heterozygote, given pedigree data

	H-MM	H-NM	H-NN	
Prior, P(Hi)	0,25000	0,50000	0,25000	
Conditional, P(X Hi)	0,00000	1,00000	1,00000	Total, P(X)
Joint, P(Hi)P(X Hi)	0,00000	0,50000	0,25000	0,75000
Posterior, P(Hi X)	0,00000	0,66667	0,33333	1,00000



P(d=MN|pedigree, d is Unaffected)= 2/3

Solution (c)

MN

MM

8

MN

b

d

8

(c) Risk is

P(e=MN|e is Unaffected) x P(d=MN|pedigree, d is Unaffected) x 1/4 == 0.049 x 2/3 x 1/4 =

= 0.008

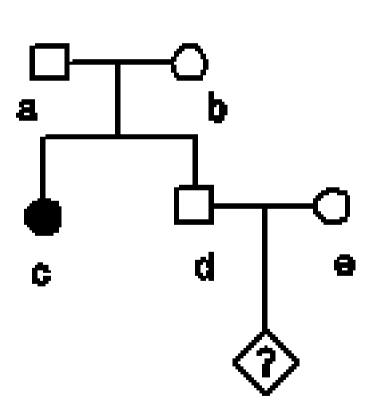
RR = 0.008/(1/1600) =

 $1600\ 0.008 = 12.8$

Generalization

A

- Recessive model
 - P(M) = q
 - P(D|MM)=1
 - P(D|MN) = P(D|NN) = 0
- What is the risk for "?"

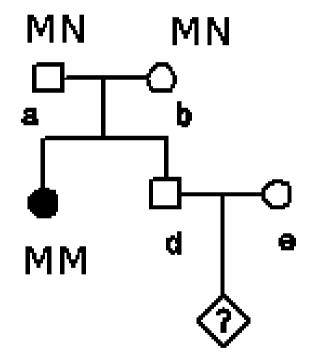


Solution for *q*

• P(e is MN|X1,q) = 2q / (1+q)

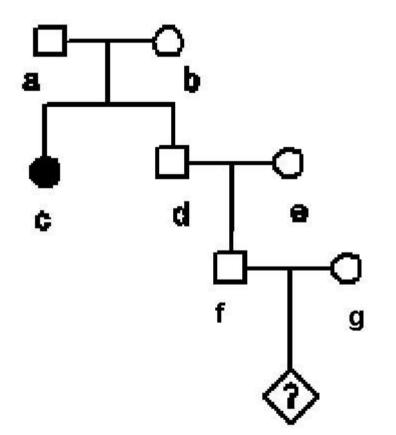
• P(e is MN|X1,q) = 2/3

Risk for "?" is
¹/₄ P(e is MN|X1,q) P(e is MN|X1,q) =
= q / (3 (1 + q))



Task

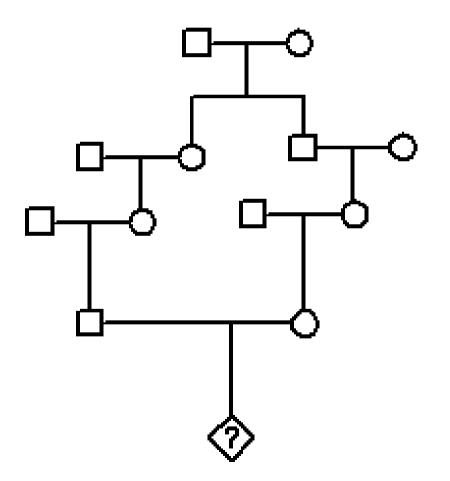
- Recessive model
 - P(M) = 1/40 = 2.5%
 - P(D|MM) = 1
 - P(D|MN) = P(D|MM) = 0
- What is the risk for "?"



Answer

Problem

- Recessive model
- Let $q \rightarrow 0$
 - then only one source of mutation must be in the pedigree
- ...What is the risk for "?"

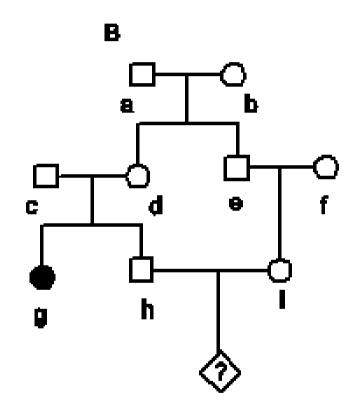


- ...What is the risk for "?"
 - Parents at first generation must be MN x NN
 - $Pr(MN \times NN) \approx 2.2 \text{ q} = 4 \text{ q}$
 - Probability that M is transmitted both parents of the child of intere \Box is $\frac{1}{2^6} = \frac{1}{64}$
 - Risk for child is
 - 4 q 1/4 1/64 = q / 64 = q F
 - Relative risk fo a child of first cousin marrige is
 - $(qF)/q^2 = F/q = 1 / (64 q)$

- if
$$q = 0.1\%$$
 then $RR = 15.6$

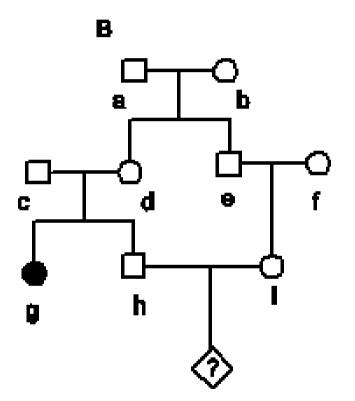
Task

- Recessive model
 - P(M) = q
 - P(D|MM)=1
 - P(D|MN) = P(D|MM) = 0
- What is the risk for "?"
 - P(h=MN|X) = 2/3
 - P(i=MN|X) = ?
 - Risk = $\frac{1}{4}$ 2/3 P(I=MN|X)

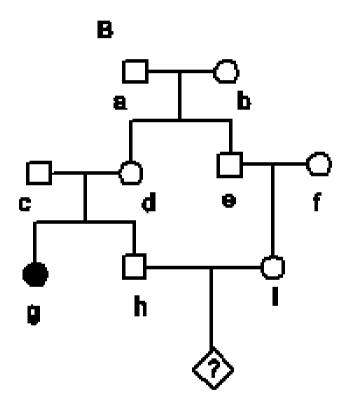


Ideas

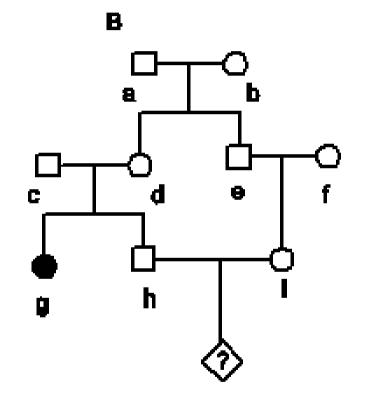
- Let $q \rightarrow 0$
 - then only one source of mutation must be in the pedigree
 - we know that "d" is a carrier



- Let $q \rightarrow 0$
 - we know that "d" is a carrier
 - thus "a" or "b" is carrier
 - the chances that the mutation segregates also to "i" is ¹/₄



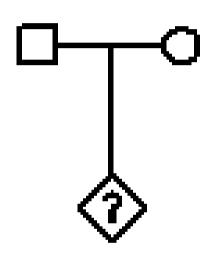
- Risk =
 - = 1/4 2/3 P(I=MN|X)
 - $= 1/4 \ 2/3 \ 1/4 = 1/24 = 0.042$
- Does not depend on q! (but we assumed it is small)



Incorporating more information

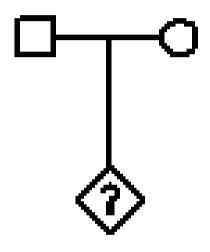
• Performing a test checking for known mutations in the gene

• Test has some "sensivity": detects X% of the mutations (miss some rare mutations)



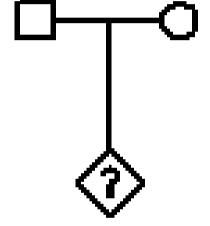
Problem

- Recessive model
 - P(M) = q
 - P(D|MM)=1
 - P(D|MN)=P(D|NN)=0
- Both parents test negative at the test with 85% sensivity



• For a parent, probability to be MN given he/she is unaffected is

P(MN|U) = 2 q / (1 + q)and P(NN|U) = 1 - 2 q / (1 + q)

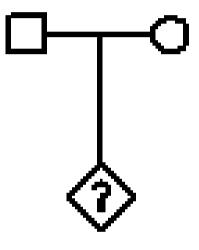


• X, information, is that it tests negatively

 $P(MN | U, test-) = \frac{P(U | MN)P(test-| MN)P(MN)}{\sum_{g=MM,MN,NN} P(U | g)P(test-| g)P(g)}$

Example

- Assume that mutation frequency, *q* is 1/60 in the CF gene
- Test sensivity is 85%
 - What is the probability for a child to be affected with CF if both parents are unaffected and test negatively for CF gene?
 - How test information modifies the risk?



- P(MN|U) = 2 q / (1 + q) = 0.033
- P(NN|U) = 0.97
- P(test=negative|MN) = 0.15
- P(test=negative|NN) = 1.0
- P(MN/U,test) = 0.005

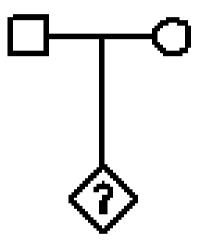
P(both parents are MN | U,U,test,test) =

=P(MN/U,test) P(MN/U,test) =

= 0.00003

Risk for child is 0.000006 (vs pop. risk of 0.00028)

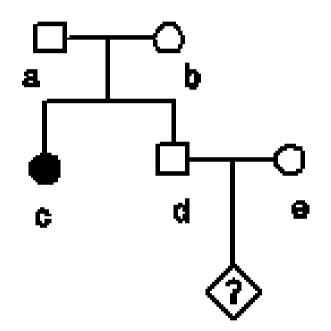
is 43 times lower then risk before the test



Task

A

- Assume CF model
- Both parents "**d**" and "**e**" test negative at the test with 85% sensivity



- What is the risk for "?"
- What is RR for "?"

Answer