Binomial distribution

24.10.2005
GE02: day 1 part 2

Yurii Aulchenko
Erasmus MC Rotterdam

Problem

- Consider an experiment in which a coin is tossed 2 times. What is probability to have
- No heads
- 1 head
- 2 heads

Solution

- Probability of any configuration is
$-2^{-\mathrm{n}}=1 / 21 / 2 \ldots 1 / 2$ (n times)
- Four configurations possible - HH, HT, TH and TT, each having probability $1 / 4$
- No heads

$$
1 / 4
$$

- 1 head

$$
1 / 4+1 / 4=21 / 4=1 / 2
$$

- 2 heads
$1 / 4$
- Total

$$
41 / 4=1.0
$$

Probability distribution

Task

- Consider an experiment in which a coin is tossed 4 times. What is probability to have
- No heads
- 1 head
- 2 heads
- 3 heads
- 4 heads

Idea of solution

- Every configuration has probability $(1 / 2)^{4}=1 / 16$
- The probability to have k "heads" is
- $(1 / 2)^{4} \mathrm{x}$ [\# of configurations leading to k "heads"]
- Need to write down all 16 configurations

16 configurations

Config	\#Heads	Config	\#Heads
TTTT	0	HHHH	4
TTTH	1	HHHT	3
TTHT	1	HHTH	3
THTT	1	HTHH	3
HTTT	1	THHH	3
TTHH	2	HTHT	2
THHT	2	THTH	2
HHTT	2	HTTH	2

Probabilities

- No heads : $1 \times\left(1 / 2^{5}\right)=1 / 16$
- 1 head : $5 \times\left(1 / 2^{5}\right)=4 / 16=1 / 4$
- 2 heads : $10 \times\left(1 / 2^{5}\right)=6 / 16=3 / 8$
- 3 heads : $10 \times\left(1 / 2^{5}\right)=4 / 16=1 / 4$
- 4 heads $: 5 \times\left(1 / 2^{5}\right)=1 / 16$
- Total : $16 / 16=1.0$

Probability distribution

Probability of $0,1,2,3$ or 4 heads

Coin tossed n times

- What is probability to have
- No heads
- 1 head
- 2 heads
- 3 heads
- ...
- $(n-1)$ heads
- n heads

Solution: binomial coefficients

- Every configuration has probability $1 / 2^{n}$
- The probability to have k "heads" is
- $\left(1 / 2^{\mathrm{n}}\right) \mathrm{x}$ [\# of configurations leading to k "heads"]
- Number of configurations leading to k "heads" out of n trials is given by binomial coefficients

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Binomial distribution at different n

Task

- Compute binomial coefficient for $n=12$ and
$-k=5$
$-k=9$
$-k=10$

Answer

$$
\begin{array}{ll}
-k=5 & : 12!/(5!7!)=89101112 / 2345=792 \\
-k=9 & : 12!/(9!3!)=101112 / 23=220 \\
-k=10 & : 12!/(10!2!)=1112 / 2=66
\end{array}
$$

Task - Fair game?

- We toss coins 12 time. If there are 10 or more coins, you pay me $€ 1$, otherwise I pay you 1 cent.
- Question - is that a fair game?

Answer

- What is probability to have 10 or more heads in 12 coin-tosses?
$-\mathrm{P}(k>9)=\mathrm{P}(k=10)+\mathrm{P}(k=11)+\mathrm{P}(k=12)=66 / 4096+$ $12 / 4096+1 / 4096=79 / 4096 \approx 1.9 \%$
- Bet of $100: 1$ does not look fair as chances are 50:1!

Problem

- Probabilities of observing a person with genotypes NN, DN and DD in a population are
$-\mathrm{P}(\mathrm{NN})=0.81, \mathrm{P}(\mathrm{ND})=0.18$ and $\mathrm{P}(\mathrm{DD})=0.01$
- What is the probability that in a sample of 10 random people there will be
- Exactly one carrier
- One or more carrier
- What number of carriers are expected in this sample?

Probability to have exactly one carrier

- $\mathrm{P}($ carrier $)=\mathrm{P}(\mathrm{ND})+\mathrm{P}(\mathrm{DD})=p=0.19$
- It can be that we sample a carrier first and then sample 9 non-carriers. As the events are independent, probbaility to have such a sample is 0.19×0.81^{9}
- There are 10 configurations leading to 1 carrier
- Therefore probability to have exactly one carrier is
$0.19 \times 0.81^{9} \times 10=0.29$

Probability to have at least one carrier

$$
\mathrm{P}(\geq 1 \text { carrier })=\operatorname{Pr}(1 \text { or } 2 \text { or } 3 \text { or } \ldots 10)=
$$

$$
1-\operatorname{Pr}(0 \text { carriers })=
$$

$$
1-0.81^{10}=0.88
$$

Binomial distribution

- Heads and tails:
- $\mathrm{P}($ success $)=p$
$-\operatorname{Pr}($ failure $)=1-p$
- Probability of a configuration with K successes out of N trials
- k successes $=>(n-k)$ failures
- Events are independent, thus probability of a configuration with k successes is $\mathrm{p}^{\mathrm{k}}(1-\mathrm{p})^{(\mathrm{n}-\mathrm{k})}$
- The number of configurations with k successes are given by binomial coefficients

Binomial distribution

- The probability to have k successes if probability of a success is p and number of trials is n is given by

$$
\mathrm{P}_{n, p}(k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

- with mean equal to $n p$
- and variance $=n p(1-p)$

Formal answers

- Parameters: $p=0.19, n=10$
- Exactly one carrier

$$
-10!/(9!1!) 0.190 .81^{9}=0.29
$$

- At least one carrier
- $1-\mathrm{P}(0$ carriers $)=1-10!/(10!0!) 0.81^{10}=0.88$
- Expected number of carriers is
$-n p=0.19 \times 10=1.9$

Task

- You cannot see 1.9 carriers
- What is more frequent, 2 or 1 ?

Two carriers appear more frequent

Probability to sample K carriers

