Binomial distribution

24.10.2005 GE02: day 1 part 2

Yurii Aulchenko Erasmus MC Rotterdam

Problem

- Consider an experiment in which a coin is tossed 2 times. What is probability to have
 - No heads
 - 1 head
 - 2 heads

Solution

• Probability of any configuration is

 $-2^{-n} = \frac{1}{2} \frac{1}{2} \dots \frac{1}{2} (n \text{ times})$

- Four configurations possible HH, HT, TH and TT, each having probability ¹/₄
- No heads $\frac{1}{4}$
- 1 head $\frac{1}{4} + \frac{1}{4} = 2 \frac{1}{4} = \frac{1}{2}$
- 2 heads $\frac{1}{4}$
- Total $4\frac{1}{4} = 1.0$

Probability distribution

Task

- Consider an experiment in which a coin is tossed 4 times. What is probability to have
 - No heads
 - 1 head
 - 2 heads
 - 3 heads
 - 4 heads

Idea of solution

• Every configuration has probability $(\frac{1}{2})^4 = 1/16$

- The probability to have k "heads" is
 (1/2)⁴ x [# of configurations leading to k "heads"]
- Need to write down all 16 configurations

16 configurations

Config	#Heads	Config	#Heads
TTTT	0	НННН	4
TTTH	1	HHHT	3
TTHT	1	HHTH	3
THTT	1	HTHH	3
HTTT	1	THHH	3
TTHH	2	HTHT	2
THHT	2	THTH	2
HHTT	2	HTTH	2

Probabilities

- No heads : $1 \ge 1/16$
- 1 head : $5 \ge (1/2^5) = 4/16 = \frac{1}{4}$

- 2 heads : $10 \ge (1/2^5) = 6/16 = 3/8$
- 3 heads : $10 \ge (1/2^5) = 4/16 = \frac{1}{4}$
- 4 heads : $5 \ge (1/2^5) = 1/16$

• Total : 16/16 = 1.0

Probability distribution

Probability of 0, 1, 2, 3 or 4 heads

Coin tossed *n* times

- What is probability to have
 - No heads
 - 1 head
 - 2 heads
 - 3 heads
 - ...
 - -(n-1) heads
 - *n* heads

Solution: binomial coefficients

- Every configuration has probability 1/2ⁿ
- The probability to have k "heads" is

- $(1/2^n)$ x [# of configurations leading to k "heads"]

• Number of configurations leading to *k* "heads" out of *n* trials is given by binomial coefficients

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Binomial distribution at different *n*

Task

• Compute binomial coefficient for n = 12 and

$$-k=5$$

$$-k=9$$

$$-k = 10$$

Answer

 $-k = 5 \qquad : 12! / (5! 7!) = 8 9 10 11 12 / 2 3 4 5 = 792$ $-k = 9 \qquad : 12! / (9! 3!) = 10 11 12 / 2 3 = 220$ $-k = 10 \qquad : 12! / (10! 2!) = 11 12 / 2 = 66$

Task – Fair game?

- We toss coins 12 time. If there are 10 or more coins, you pay me €1, otherwise I pay you 1 cent.
- Question is that a fair game?

Answer

- What is probability to have 10 or more heads in 12 coin-tosses?
- P(k>9) = P(k=10) + P(k=11) + P(k=12) = 66 / 4096 + 12 / 4096 + 1 / 4096 = 79 / 4096 ≈ 1.9%
- Bet of 100 : 1 does not look fair as chances are 50:1!

Problem

• Probabilities of observing a person with genotypes NN, DN and DD in a population are

- P(NN)=0.81, P(ND)=0.18 and P(DD)=0.01

- What is the probability that in a sample of 10 random people there will be
 - Exactly one carrier
 - One or more carrier
 - What number of carriers are expected in this sample?

Probability to have exactly one carrier

- P(carrier) = P(ND) + P(DD) = p = 0.19
- It can be that we sample a carrier first and then sample 9 non-carriers. As the events are independent, probbaility to have such a sample is $0.19 \ge 0.81^9$
- There are 10 configurations leading to 1 carrier
- Therefore probability to have exactly one carrier is

 $0.19 \ge 0.81^9 \ge 10 = 0.29$

Probability to have at least one carrier

$$P(\ge 1 \text{ carrier}) = Pr(1 \text{ or } 2 \text{ or } 3 \text{ or } \dots 10) =$$

1 - Pr(0 carriers) =
1 - 0.81¹⁰ = 0.88

Binomial distribution

- Heads and tails:
 - P(success) = p
 - Pr(failure) = 1 p
- Probability of a configuration with K successes out of N trials
 - k successes => (n k) failures
 - Events are independent, thus probability of a configuration with k successes is $p^k (1-p)^{(n-k)}$
 - The number of configurations with *k* successes are given by binomial coefficients

Binomial distribution

• The probability to have *k* successes if probability of a success is *p* and number of trials is *n* is given by

$$\mathbf{P}_{n,p}(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

- with mean equal to *n p*
- and variance = n p (1-p)

Formal answers

- Parameters: p = 0.19, n = 10
- Exactly one carrier
 - $-10!/(9!1!) 0.19 0.81^9 = 0.29$
- At least one carrier
 - $-1 P(0 \text{ carriers}) = 1 \frac{10!}{(10!0!)} 0.81^{10} = 0.88$
- Expected number of carriers is

 $-np = 0.19 \ge 10 = 1.9$

Task

- You cannot see 1.9 carriers
- What is more frequent, 2 or 1?

Two carriers appear more frequent

Probability to sample K carriers

