Conditional probability Bayes theorem

27.10.2005
GE02 day 3 part 2

Yurii Auchenko
Erasmus MC Rotterdam

Colour blindness: experiment

- Experiment: drawing a random subject from a total population of N people
- In this subject, we observe the following features
- Sex $=\{\mathrm{M}, \mathrm{F}\}$
- Colour-blindness $=\{\mathrm{D}, \mathrm{U}\}$
- We finally aim to predict the risk (the probability) that this random subject is colour-blind

Relations between events

- Note:
- M and F are mutually exclusive

$$
\mathrm{P}(\mathrm{M} \mathrm{\& F})=0
$$

- D and U are mutually exclusive

$$
P(D \& U)=0
$$

- Sex and colour blindness are not:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{M} \& \mathrm{U})>0 \\
& \mathrm{P}(\mathrm{M} \& \mathrm{D})>0 \\
& \mathrm{P}(\mathrm{~F} \& \mathrm{U})>0 \\
& \mathrm{P}(\mathrm{~F} \& \mathrm{D})>0
\end{aligned}
$$

Numbers

- Let
- number of affected is N_{D}
- number of unaffected is $\mathrm{N}_{\mathrm{U}}=\mathrm{N}-\mathrm{N}_{\mathrm{D}}$
- number of males is N_{M}
- number of females is $\mathrm{N}_{\mathrm{F}}=\mathrm{N}-\mathrm{N}_{\mathrm{M}}$
- We also know
- number of affected males, $\mathrm{N}_{\mathrm{D} \mathrm{\& M}}$
- number of affected females, $\mathrm{N}_{\mathrm{D} \mathrm{\& F}}$

Probabilities

- Then the probability that a random subject is colour-blind is
- $\mathrm{N}_{\mathrm{D}} / \mathrm{N}$
- But we know well that frequency of colourblindness in males is higher then in female!
- Or, to say it more formal, probability that a person is colour-blind, depends on sex

Using more information in risk prediction

- Our risk prediction may gain accuracy if we utilize the information on sex
- What is the probability that a random male is affected? Or, better to say, what is probability of being affected GIVEN the person is male?

$$
-\mathrm{P}(\mathrm{D} \mid \mathrm{M})=\mathrm{N}_{\mathrm{M} \mathrm{\& D}} / \mathrm{N}_{\mathrm{M}}=\mathrm{P}(\mathrm{M} \& \mathrm{D}) / \mathrm{P}(\mathrm{M})
$$

Conditional probability

- Probability of being colour-blind given sex
- $\mathrm{P}(\mathrm{D} \mid \mathrm{M})$
- is an example of conditional probability
- There are many genetic probabilities that are conditional
- transmission probabilities
- penetrances
- Generally, $\mathbf{P}(\mathbf{A} \mid \mathbf{B})=\mathbf{P}(\mathbf{A \& B}) / \mathbf{P}(\mathbf{B})$

Problem

- Compute

$$
\begin{aligned}
& -\mathrm{P}(\mathrm{D}) \\
& -\mathrm{P}(\mathrm{D} \mid \mathrm{M}) \\
& -\mathrm{P}(\mathrm{D} \mid \mathrm{F}) \quad \text { Female }
\end{aligned}
$$

- Compute probability that a colour-blind person is male,

$$
-\mathrm{P}(\mathrm{M} \mid \mathrm{D})
$$

- Compute probability that a colour-blind
 person is female,
- P(F|D)

Solution

$$
\begin{aligned}
& -N=400 \\
& -P(M)=180 / 400=9 / 20 \\
& -P(F)=220 / 400=11 / 20
\end{aligned}
$$

- $P(D)=20 / 400=1 / 20=5 \%$
- $P(D \mid M)=18 / 180=1 / 10=10 \%$
$-P(D \mid F)=2 / 220=1 / 110=0.9 \%$
- $\mathbf{P}(\mathrm{M} \mid \mathrm{D})=\mathbf{1 8 / 2 0}=\mathbf{P}(\mathrm{M} \mathrm{\& D}) / \mathbf{P}(\mathrm{D})$
$-\mathbf{P}(F \mid D)=\mathbf{2 / 2 0}=\mathbf{P}(\mathbf{F} \& \mathrm{D}) / \mathbf{P}(\mathrm{D})$

Task

- There are three bowls full of cookies. Bowl \#1 has 10 chocolate chip cookies and 30 plain cookies, while bowl \#2 has 20 of each.
- What is probability to pick up a plain cookie from bowl \#1?
- ... \#2?
- What is probability to pick up a a bowl at random and then cookie at random and then to discover that it is a plain one?
- If you pick up a bowl at random and then a cookie at random and discover that it was a plain one, what is probability that you picked it up from the bowl \#1?
- ... from bowl \#2?

Answer

- Denote bowl as B and cookie as C
$-\mathrm{P}(\mathrm{C}=$ plain $\mid \mathrm{B}=1)=\mathrm{N}_{\text {plain in \#1 }} / \mathrm{N}_{\# 1}=30 / 40=3 / 4$
$-\mathrm{P}(\mathrm{C}=$ plain $\mid \mathrm{B}=2)=\mathrm{N}_{\text {plain in } \# 2} / \mathrm{N}_{42}=20 / 40=1 / 2$
- $\mathrm{P}(\mathrm{C}=$ plain $)=\mathrm{N}_{\text {plain }} / \mathrm{N}=50 / 80=5 / 8$
- $\mathrm{P}(\mathrm{B}=1 \mid \mathrm{C}=$ plain $)=\mathrm{N}_{\text {plain in \#1 }} / \mathrm{N}_{\text {plain }}=30 / 50=3 / 5$
$-\mathrm{P}(\mathrm{B}=2 \mid \mathrm{C}=$ plain $)=\mathrm{N}_{\text {plain in } 42} / \mathrm{N}_{\text {plain }}=20 / 50=2 / 5$

Problem

- Let in population there are 2 alleles, M and N
- Frequency of M, P(M)=0.05
- Penetrances (conditional probability of having disease given genotype) are
- $\mathrm{P}(\mathrm{D} \mid \mathrm{MM})=1.0$
- $\mathrm{P}(\mathrm{D} \mid \mathrm{MN})=0.7$
- $\mathrm{P}(\mathrm{D} \mid \mathrm{NN})=0.03$
- Assuming HWE, what is the frequency of disease in the population?

Solution

- Frequency of $\mathrm{M}, \mathrm{P}(\mathrm{M})=0.05$. Thus, assuming HWE,
$-\mathrm{P}(\mathrm{MM})=0.0025, \mathrm{P}(\mathrm{MN})=0.095, \mathrm{P}(\mathrm{NN})=0.9025$
- Of MM, who make 0.0025 of the population, all are ill, thus, they contribute 0.0025 to the frequency of the diseas
- Of MN, who make 9.5% of the population, 70% are ill, thus, they contribute $0.095 * 0.7=0.0665$ to the frequency of the disease
- Of NN, 3\% are ill, they contribute $0.9025 * 0.03=$ 0.0271 to the disease

Solution

- Thus, the frequency of disease is
0.0025 (these ill among MM) +
0.0665 (among MN) +
$0.0271(\operatorname{among} \mathrm{NN})=0.0961=$
9.61% of the population are ill

Formula of total probability

- We were following schema

P(M) 0,05			
g	$\mathrm{P}(\mathrm{g})$	P (D\|g)	$\mathrm{P}(\mathrm{g})^{*} \mathrm{P}(\mathrm{Dlg})$
MM	0,0025	1,0000	0,0025
MN	0,0950	0,7000	0,0665
NN	0,9025	0,0300	0,0271
		$P(\mathrm{D})=$	0,096

And the computations were done using the formula

$$
P(D)=\sum_{g=M M, M N, N N} P(D \mid g) P(g)=
$$

$$
P(D \mid M M) P(M M)+P(D \mid D M) P(D M)+P(D \mid D D) P(D D)
$$

Task

- Use the total probability formula to find out the chance to pick up a a bowl at random and then cookie at random and then to discover that it is a CHOCOLATE one

Answer

$\mathrm{P}(\mathrm{C}=$ choc \mid bowl $=1) \mathrm{P}($ bowl $=1)+$

$$
\mathrm{P}(\mathrm{C}=\text { choc } \mid \text { bowl }=2) \mathrm{P}(\text { bowl }=2)=
$$

$$
1 / 41 / 2+1 / 21 / 2=3 / 8
$$

Problem

- For the same disease and gene:
- if we observe an ill person, what is the probability it would have genotype MM, MN or NN?
- ...to put it formally, what are the genotypic probabilities given a person is ill, $\mathrm{P}(\mathrm{MM} \mid \mathrm{D}), \mathrm{P}(\mathrm{MN} \mid \mathrm{D})$ and $\mathrm{P}(\mathrm{NN} \mid \mathrm{D})$?
- These are the probabilites of the genotypes in a "population" of ill people!

Solution

- Probability of disease, $\mathrm{P}(\mathrm{D})=0.0961$
- This probability was made of three components:
- 0.0025 (these ill from MM) +0.0665 (from MN) + $0.0271($ from NN $)=0.0961$
- Thus, the proportion of
- MM is $0.0025 / 0.0961=0.026=2.6 \%$
- MN is $0.0665 / 0.0961=0.6922=69.22 \%$
- NN is $0.0271 / 0.0961=0.2818=28.18 \%$

Bayes' formula

- We were following the schema
- And the computations were done using the formula

$$
P(g \mid D)=\frac{P(D \mid g) P(g)}{P(D)}=\frac{P(D \mid g) P(g)}{\sum_{g=M M, M D, D D} P(D \mid g) P(g)}
$$

Total probability and Bayes' formulas

- Two sets of events are considered:
- "Hypothesis" H_{i} for which a prioi probabilities, $\mathrm{P}\left(\mathrm{H}_{\mathrm{i}}\right)$ are known. E.g. genotypes were "hypotheses" in our example. These hypotheses must be mutually exclusive.
- Event(s) of interest, A, e.g. disease. For this event, conditional probabilites given hypotheses, $\mathrm{P}\left(\mathrm{A} \mid H_{i}\right)$

Total probability \& Bayes' formulae

- Total probability (of event A)

$$
P\left(H_{i} \mid A\right)=\sum_{i} P\left(A \mid H_{i}\right) P\left(H_{i}\right)
$$

- Probability of hypothesis H_{i}, given A

$$
P\left(H_{i} \mid A\right)=\frac{P\left(A \mid H_{i}\right) P\left(H_{i}\right)}{P(A)}=\frac{P\left(A \mid H_{i}\right) P\left(H_{i}\right)}{\sum_{i} P\left(A \mid H_{i}\right) P\left(H_{i}\right)}
$$

Task

- You pick up a bowl at random, and then pick up a cookie at random. The cookie turns out to be a plain one.
- Use Bayes' formula to find out what is the probability that you picked the cookie out of bowl \#1

Answer

- H_{1} - bowl number 1
- H_{2} - bowl number 1
- A - plain cookie
- $\mathrm{P}\left(\mathrm{H}_{1}\right)=\mathrm{P}\left(\mathrm{H}_{2}\right)=1 / 2$
- $\mathrm{P}\left(\mathrm{A} \mid \mathrm{H}_{1}\right)=3 / 4$
- $\mathrm{P}\left(\mathrm{A} \mid \mathrm{H}_{2}\right)=1 / 2$

$$
\begin{gathered}
P\left(H_{1} \mid A\right)=\frac{P\left(A \mid H_{1}\right) P\left(H_{1}\right)}{P(A)}=\frac{P\left(A \mid H_{1}\right) P\left(H_{1}\right)}{\sum_{i=1,2} P\left(A \mid H_{i}\right) P\left(H_{i}\right)} \\
=(3 / 41 / 2) /(3 / 41 / 2+1 / 21 / 2)=(3 / 8) /(5 / 8)=3 / 5
\end{gathered}
$$

Task

- In a population, the frequency of obese people is 25%, overweight is observed in 40% and normalweight people have frequency of 25%. The frequency of hypertension in these groups is 45,30 and 20%, respectively
- What is the total frequency of hypertension in the population?
- If a random person is hypertensive, what is the best quess about his (her) weight?
- If a random person is not hypertensive, what is the best quess about his (her) weight?

Solution

- Denote
- H1=obese, H2=overweight and H3=normal
- $\mathrm{A}=$ hypertensive, $\mathrm{B}=$ not hypertensive
- Probabilities
$-\mathrm{P}(\mathrm{H} 1)=0.25, \mathrm{P}(\mathrm{H} 2)=0.4$ and $\mathrm{P}(\mathrm{H} 3)=0.35$
- $\mathrm{P}(\mathrm{A} \mid \mathrm{H} 1)=0.45, \mathrm{P}(\mathrm{A} \mid \mathrm{H} 2)=0.3$ and $\mathrm{P}(\mathrm{A} \mid \mathrm{H} 3)=0.2$
$-\mathrm{P}(\mathrm{B} \mid \mathrm{H} 1)=1-\mathrm{P}(\mathrm{A} \mid \mathrm{H} 1)=0.55, \mathrm{P}(\mathrm{B} \mid \mathrm{H} 2)=0.7$ and $\mathrm{P}(\mathrm{B} \mid$ H3) $=0.8$

Solution: frequency of hypertension

- Probabilities
- $\mathrm{P}(\mathrm{H} 1)=0.25, \mathrm{P}(\mathrm{H} 2)=0.4$ and $\mathrm{P}(\mathrm{H} 3)=0.35$
- $\mathrm{P}(\mathrm{A} \mid \mathrm{H} 1)=0.45, \mathrm{P}(\mathrm{A} \mid \mathrm{H} 2)=0.3$ and $\mathrm{P}(\mathrm{A} \mid \mathrm{H} 3)=0.2$

$$
P(A)=\sum_{i=1,2,3} P\left(A \mid H_{i}\right) P\left(H_{i}\right)
$$

$$
P\left(A \mid H_{1}\right) P\left(H_{1}\right)+P\left(A \mid H_{2}\right) P\left(H_{2}\right)+P\left(A \mid H_{3}\right) P\left(H_{3}\right)
$$

$$
0.25 \cdot 0.45+0.4 \cdot \cdot 0.3+0.35 \cdot 0.2=0.3
$$

Solution: weight group frequencies in hypertensive subjects

- Probabilities
- $\mathrm{P}(\mathrm{H} 1)=0.25, \mathrm{P}(\mathrm{H} 2)=0.4$ and $\mathrm{P}(\mathrm{H} 3)=0.35$
- $\mathrm{P}(\mathrm{A} \mid \mathrm{H} 1)=0.45, \mathrm{P}(\mathrm{A} \mid \mathrm{H} 2)=0.3$ and $\mathrm{P}(\mathrm{A} \mid \mathrm{H} 3)=0.2$

$$
P\left(H_{i} \mid A\right)=\frac{P\left(A \mid H_{i}\right) P\left(H_{i}\right)}{P(A)}
$$

$$
\begin{aligned}
& P\left(H_{1} \mid A\right)=\frac{P\left(A \mid H_{1}\right) P\left(H_{1}\right)}{P(A)}=\frac{0.25 \cdot 0.45}{0.3}=0.37 \\
& P\left(H_{2} \mid A\right)=\frac{P\left(A \mid H_{2}\right) P\left(H_{2}\right)}{P(A)}=\frac{0.4 \cdot 0.3}{0.3}=0.4 \\
& P\left(H_{3} \mid A\right)=\frac{P\left(A \mid H_{3}\right) P\left(H_{3}\right)}{P(A)}=\frac{0.35 \cdot 0.2}{0.3}=0.23
\end{aligned}
$$

