Conditional probability Bayes theorem

27.10.2005 GE02 day 3 part 2

Yurii Auchenko Erasmus MC Rotterdam

Colour blindness: experiment

- Experiment: drawing a random subject from a total population of N people
- In this subject, we observe the following features
 - Sex = {M, F}
 - Colour-blindness = $\{D, U\}$
- We finally aim to predict the risk (the probability) that this random subject is colour-blind

Relations between events

- Note:
 - M and F are mutually exclusive
 P(M&F) = 0
 - D and U are mutually exclusive
 P(D&U) = 0
 - Sex and colour blindness are not:
 - P(M&U) > 0
 - P(M&D) > 0
 - P(F&U) > 0
 - P(F&D) > 0

Numbers

- Let
 - number of affected is N_D
 - number of unaffected is $N_U = N N_D$
 - number of males is N_M
 - number of females is $N_F = N N_M$
- We also know
 - number of affected males, $N_{D\&M}$
 - number of affected females, $N_{D\&F}$

Probabilities

• Then the probability that a random subject is colour-blind is

– N_D/N

- But we know well that frequency of colourblindness in males is higher then in female!
 - Or, to say it more formal, probability that a person is colour-blind, depends on sex

Using more information in risk prediction

- Our risk prediction may gain accuracy if we utilize the information on sex
- What is the probability that a random male is affected? Or, better to say, what is probability of being affected GIVEN the person is male?

$$- P(D|M) = N_{M\&D}/N_M = P(M\&D)/P(M)$$

Conditional probability

- Probability of being colour-blind given sex
 - P(D|M)
 - is an example of **conditional probability**
- There are many genetic probabilities that are conditional
 - transmission probabilities
 - penetrances

- •••

• Generally, P(A|B) = P(A&B)/P(B)

Problem

• Compute

- P(D)
- P(D|M)
- P(D|F) Female
- Compute probability that a colour-blind person is male,
 - P(M|D)
- Compute probability that a colour-blind person is female,

- P(F|D)

- P(F|D) = 2/20 = P(F&D)/P(D)

- P(M|D) = 18/20 = P(M&D)/P(D)
- P(D|F) = 2/220 = 1/110 = 0.9%
- P(D|M) = 18/180 = 1/10 = 10%

Solution

$$- P(D) = 20/400 = 1/20 = 5\%$$

$$-P(F) = 220/400 = 11/20$$

$$- P(M) = 180/400 = 9/20$$

$$-N = 400$$

Task

- There are three bowls full of cookies. Bowl #1 has 10 chocolate chip cookies and 30 plain cookies, while bowl #2 has 20 of each.
 - What is probability to pick up a plain cookie from bowl #1?
 - ... #2?
 - What is probability to pick up a a bowl at random and then cookie at random and then to discover that it is a plain one?
 - If you pick up a bowl at random and then a cookie at random and discover that it was a plain one, what is probability that you picked it up from the bowl #1?
 - ... from bowl #2?

Answer

• Denote bowl as B and cookie as C

- P(C=plain|B=1) = $N_{\text{plain in #1}}/N_{\text{#1}} = 30/40 = \frac{3}{4}$

-
$$P(C=plain|B=2) = N_{plain in \#2}/N_{\#2} = 20/40 = \frac{1}{2}$$

-
$$P(C=plain) = N_{plain}/N = 50/80 = 5/8$$

-
$$P(B=1|C=plain) = N_{plain in \#1}/N_{plain} = 30/50 = 3/5$$

-
$$P(B=2|C=plain) = N_{plain in \#2}/N_{plain} = 20/50 = 2/5$$

Problem

- Let in population there are 2 alleles, M and N
- Frequency of M, P(M)=0.05
- Penetrances (conditional probability of having disease given genotype) are
 - P(D|MM) = 1.0
 - P(D|MN)=0.7
 - P(D|NN) = 0.03
- Assuming HWE, what is the frequency of disease in the population?

Solution

- Frequency of M, P(M)=0.05. Thus, assuming HWE,
 - P(MM) = 0.0025, P(MN) = 0.095, P(NN) = 0.9025
 - Of MM, who make 0.0025 of the population, all are ill, thus, they contribute 0.0025 to the frequency of the diseas
 - Of MN, who make 9.5% of the population, 70% are ill, thus, they contribute 0.095*0.7 = 0.0665 to the frequency of the disease
 - Of NN, 3% are ill, they contribute 0.9025*0.03 = 0.0271 to the disease

Solution

• Thus, the frequency of disease is

0.0025 (these ill among MM) + 0.0665 (among MN) + 0.0271 (among NN) = 0.0961 =

9.61% of the population are ill

Formula of total probability

• We were following schema

P(M)	0,05		
g	P(g)	P(D g)	P(g)*P(D g)
MM	0,0025	1,0000	0,0025
MN	0,0950	0,7000	0,0665
NN	0,9025	0,0300	0,0271
P(D)=			0,0961

And the computations were done using the formula

$$P(D) = \sum_{g=MM,MN,NN} P(D \mid g) P(g) =$$

P(D | MM)P(MM) + P(D | DM)P(DM) + P(D | DD)P(DD)

Task

• Use the total probability formula to find out the chance to pick up a a bowl at random and then cookie at random and then to discover that it is a CHOCOLATE one

Answer

P(C=choc|bowl=1)P(bowl=1) +

P(C=choc|bowl=2)P(bowl=2) =

$$\frac{1}{4} \frac{1}{2} + \frac{1}{2} \frac{1}{2} = \frac{3}{8}$$

Problem

- For the same disease and gene:
 - if we observe an ill person, what is the probability it would have genotype MM, MN or NN?
 - ...to put it formally, what are the genotypic probabilities given a person is ill, P(MM|D), P(MN|D) and P(NN|D)?
 - These are the probabilities of the genotypes in a "population" of ill people!

Solution

- Probability of disease, P(D) = 0.0961
- This probability was made of three components:
 - 0.0025 (these ill from MM) + 0.0665 (from MN) + 0.0271 (from NN) = 0.0961
- Thus, the proportion of
 - MM is 0.0025/0.0961 = 0.026 = 2.6%
 - MN is 0.0665/0.0961 = 0.6922 = 69.22%
 - NN is 0.0271/0.0961 = 0.2818 = 28.18%

Bayes' formula

• We were following the schema

• And the computations were done using the formula

$$P(g \mid D) = \frac{P(D \mid g)P(g)}{P(D)} = \frac{P(D \mid g)P(g)}{\sum_{g = MM, MD, DD}} = \frac{P(D \mid g)P(g)}{\sum_{g = MM, MD, DD}}$$

Total probability and Bayes' formulas

• Two sets of events are considered:

- "Hypothesis" H_i for which a prioi probabilities, P(H_i) are known. E.g. genotypes were "hypotheses" in our example. These hypotheses must be mutually exclusive.
- Event(s) of interest, A, e.g. disease. For this event, conditional probabilites given hypotheses, $P(A|H_i)$

Total probability & Bayes' formulae

• Total probability (of event A)

$$P(H_i \mid A) = \sum_i P(A \mid H_i) P(H_i)$$

• Probability of hypothesis H_i, given A

$$P(H_i \mid A) = \frac{P(A \mid H_i)P(H_i)}{P(A)} = \frac{P(A \mid H_i)P(H_i)}{\sum_i P(A \mid H_i)P(H_i)}$$

Task

- You pick up a bowl at random, and then pick up a cookie at random. The cookie turns out to be a plain one.
- Use Bayes' formula to find out what is the probability that you picked the cookie out of bowl #1

Answer

- H_1 bowl number 1
- H_2 bowl number 1
- A plain cookie
- $P(H_1) = P(H_2) = \frac{1}{2}$
- $P(A|H_1) = \frac{3}{4}$
- $P(A|H_2) = \frac{1}{2}$

$$P(H_1 | A) = \frac{P(A | H_1)P(H_1)}{P(A)} = \frac{P(A | H_1)P(H_1)}{\sum_{i=1,2} P(A | H_i)P(H_i)}$$

 $= \left(\frac{3}{4} \frac{1}{2} \right) / \left(\frac{3}{4} \frac{1}{2} + \frac{1}{2} \frac{1}{2} \right) = \left(\frac{3}{8} \right) / \left(\frac{5}{8} \right) = \frac{3}{5}$

Task

- In a population, the frequency of obese people is 25%, overweight is observed in 40% and normalweight people have frequency of 25%. The frequency of hypertension in these groups is 45, 30 and 20%, respectively
 - What is the total frequency of hypertension in the population?
 - If a random person is hypertensive, what is the best quess about his (her) weight?
 - If a random person is not hypertensive, what is the best quess about his (her) weight?

Solution

- Denote
 - H1=obese, H2=overweight and H3=normal
 - A = hypertensive, B=not hypertensive
- Probabilities
 - P(H1)=0.25, P(H2)=0.4 and P(H3)=0.35
 - P(A|H1)=0.45, P(A|H2)=0.3 and P(A|H3)=0.2
 - P(B|H1)=1 P(A|H1) = 0.55, P(B|H2)=0.7 and P(B| H3)=0.8

Solution: frequency of hypertension

• Probabilities

- P(H1)=0.25, P(H2)=0.4 and P(H3)=0.35
- P(A|H1)=0.45, P(A|H2)=0.3 and P(A|H3)=0.2

$$P(A) = \sum_{i=1,2,3} P(A/H_i) P(H_i)$$

$$P(A/H_1) P(H_1) + P(A/H_2) P(H_2) + P(A/H_3) P(H_3)$$

$$0.25 \cdot 0.45 + 0.4 \cdot 0.3 + 0.35 \cdot 0.2 = 0.3$$

Solution: weight group frequencies in hypertensive subjects $P(H_i|A) = \frac{P(A|H_i)P(H_i)}{P(A)}$

- **Probabilities** •
 - P(H1)=0.25, P(H2)=0.4 and P(H3)=0.35
 - P(A|H1)=0.45, P(A|H2)=0.3 and P(A|H3)=0.2

$$P(H_1/A) = \frac{P(A/H_1)P(H_1)}{P(A)} = \frac{0.25 \cdot 0.45}{0.3} = 0.37$$
$$P(H_2/A) = \frac{P(A/H_2)P(H_2)}{P(A)} = \frac{0.4 \cdot 0.3}{0.3} = 0.4$$
$$P(H_3/A) = \frac{P(A/H_3)P(H_3)}{P(A)} = \frac{0.35 \cdot 0.2}{0.3} = 0.23$$