Basic probability Mendel's lows

24.10.2005
GE02: day 1 part 1

Yurii Aulchenko
Erasmus MC Rotterdam

Experiment

- Any planned process of data collection
- Tossing a coin
- Measuring height is people
- Genotyping people
- Sampling pedigrees via proband
- ...

Composition of an experiment

- It consists of a number of independent trials (or replications)
- Tossing a coin 3 times
- Each trial can result in some outcome
- Head or tail
- Many trials - many possible outcomes
- \{TTT, TTH, THT, HTT, THH, HTH, HHT, HHH\}

Event

- A single experimental outcomes or as a set of outcomes, e.g.
- All three heads (HHH)
- Two heads and then 1 tail (HHT)
- Exactly 1 head (HTT, HTH, HHT)
- More then 1 head (HHH, HHT, HTH, THH)

Importance of tossing coins

- Abstracts an experiment with binary outcome
- Probability theory
- Binomial, Poisson \& Normal distributions
- Hypothesis testing
- Genetic epidemiology
- Mendel's lows
- Hardy-Weinberg equilibrium
- Genetic drift

Task

- How many outcomes exist for experiment in which n coin tosses is made?

Number of experimental outcomes

- 1 toss : 2 outcomes
- $\{\mathbf{H}, \mathrm{T}\}$
- 2 tosses : 4 outcomes
- \{HH, HT, TH, TT\}
- 3 tosses : 8 outcomes
- \{HHH, ННТ, НTH, НTT, THH, THT, TTH, TTT\}
- n tosses : 2^{n} outcomes

Probability

- A function of event which takes values between 0 and 1
- Frequently denoted as P(event)
- Measures how likely is event
- if $\mathrm{P}(\mathrm{A})$ is close to 0 then A is unlikely
- if $\mathrm{P}(\mathrm{A})$ is close to 1 then A is very likely
- Probabilities of all possible experimental outcomes sum to one

Probability of heads or tails

- Tossing a coin once

Outcome: either head (H) or tail (T), mutually exclusive If coin is fair, both are equally likely
Therefore $\mathrm{P}(\mathrm{H})=\mathrm{P}(\mathrm{T})=0.5$ (or 50%)

- More formal

Because of symmetry $\mathrm{P}(\mathrm{H})=\mathrm{P}(\mathrm{T})$
H or T are all possible outcomes $=\mathrm{P}(\mathrm{H})+\mathrm{P}(\mathrm{T})=1$
Thus $\mathrm{P}(\mathrm{H})=\mathrm{P}(\mathrm{T})=0.5$

Probability in n trials

- 2^{n} outcomes are possible, all are equivalent
- Then probability of a particular outcome is $1 / 2^{n}$
- For example, for 2 trials:
$-\mathrm{P}(\mathbf{H H})=1 / 4$
$-\mathrm{P}(\mathbf{H T})=1 / 4$
$-\mathrm{P}(\mathrm{TH})=1 / 4$
$-\mathrm{P}(\mathrm{TT})=1 / 4$

Mutually exclusive events

- If the occurrence of one event precludes the occurrence of the other
- Events HHT and HTH are mutually exclusive
- Events "more then 1 head" and "two heads" are not
- If events A and B are mutually exclusive, then
$-\operatorname{Pr}(\mathrm{A}$ or B$)=\operatorname{Pr}(\mathrm{A})+\operatorname{Pr}(\mathrm{B})$

Task

- Experiment consist of tossing a coin three times
- What is the probability to have "exactly one head" or "exactly one tail"?

Solution

$=\operatorname{Pr}($ exactly one head OR exactly one tail) [are mutually exclusive $=>$]
$=\operatorname{Pr}($ exactly one head $)+\operatorname{Pr}($ exactly one tail $)=$
$=\operatorname{Pr}($ HTT or THT or TTH $)+\operatorname{Pr}($ THH or HTH or HHT $)$
[are mutually exclusive $=>$]
$=\operatorname{Pr}(\mathrm{HTT})+\operatorname{Pr}(\mathrm{THT})+\ldots+\operatorname{Pr}(\mathrm{HHT})=$
[each of 8 possible outcomes is equally likely $=>$]
$=6 / 8$

More genetic example

- Consider a gene with two alleles
- N (Normal) and
- D (Disease)
- The probability of observing a person with genotypes NN, DN and DD in a population are
- $\mathrm{P}(\mathrm{NN})=0.81$,
- $\mathrm{P}(\mathrm{ND})=0.18$ and
- $\mathrm{P}(\mathrm{DD})=0.01$

Task

- What is probability that a random person is a carrier of the disease allele?
- P.S. A carrier of an allele is a person having at least one copy of this allele in the genotype

Solution

$$
\begin{aligned}
& =\mathrm{P}(\text { carrier })= \\
& =\mathrm{P}(\mathrm{ND} \text { or } \mathrm{DD})= \\
& {[\text { mutually exclusive }=>]} \\
& =\mathrm{P}(\mathrm{ND})+\mathrm{P}(\mathrm{DD})= \\
& =0.18+0.01= \\
& =0.19
\end{aligned}
$$

Independent events

- Two events are independent if the outcome of one has no effect on the outcome of the second event
- Tossing coins two times
- event "having head in first toss" and
- "having head in second toss"
- are independent!
- Genotypes of two random people from a population are independent

Probability: independent events

- Two events A and B are independent when
$-\operatorname{Pr}(\mathrm{A}$ and B$)=\operatorname{Pr}(\mathrm{A}) \operatorname{Pr}(\mathrm{B})$
- For example, the sex of next offspring does not depend on the sex of the previous
$-\mathrm{P}($ boy $)=\mathrm{P}($ girl $)=1 / 2$
- What is chance that all three children are girls?
- $\mathrm{P}($ all 3 girls $)=1 / 21 / 21 / 2=1 / 8$
- The same applies to having Heads three times

Task

- In some population, prevalence of hypertension (HT) is 42% in female and 57% in male. What is the probability that
- Both spouses are HT?
- Both spouses are NOT HT?
- Assume independence

Solution

- Both spouses are HT
$\mathrm{P}($ husband $=\mathrm{HT} \&$ wife $=\mathrm{HT})=$

$$
\mathrm{P}(\text { male }=\mathrm{HT}) \mathrm{P}(\text { female }=\mathrm{HT})=0.570 .42=0.24
$$

- Both spouses are NOT HT
$\mathrm{P}($ husband $\neq \mathrm{HT} \&$ wife $\neq \mathrm{HT})=$

$$
\begin{aligned}
& \mathrm{P}(\text { husband } \neq \mathrm{HT}) \mathrm{P}(\text { wife } \neq \mathrm{HT})= \\
& {[1-\mathrm{P}(\text { male }=\mathrm{HT})][1-\mathrm{P}(\text { female }=\mathrm{HT})]=} \\
& \quad 0.430 .58=0.25
\end{aligned}
$$

Mendel's lows

- Pre-requisite: two parental forms, qualitatively different for a trait for a number of generations
=> parental forms are homozygous for different variants of the gene

Uniformity of F_{1} and segregation of F_{2}

Mendel's low may be reduced to one assumption

- Three of concepts

Alleles: Y, G
Genotype Phenotype
YY Yellow
YGor GY Yellow
GG Green

- One assumption
- The alleles are transmitted to the next generation in random manner

Uniformity of F_{1}

- Yellow parental form has genotype \mathbb{Y}
- Green parental form has genotype GG
- Then, in F_{1} all plants have genotype \mathbb{Y} (\mathbb{Y} from Yellow parent and G from Green parent)
- All F_{1} will be Yellow.

Segregation of F_{2}

- According to random transmission assumption YG plants will produce $50 \% \mathrm{Y}$ and $50 \% \mathrm{G}$ gametes. These will randomly aggregate to give F_{2} :
- $\mathrm{P}(\mathbb{Y} \& \mathbb{Y})=P(\mathbb{Y}) P(\mathbb{Y})=1 / 21 / 2=1 / 4$ (Yellow)
- $P(\mathbb{Y} \& G)=P(\mathbb{Y}) P(G)=1 / 21 / 2=1 / 4$ (Yellow)
- $P(G \& \mathbb{Y})=P(G) P(\mathbb{Y})=1 / 21 / 2=1 / 4$ (Yellow)
- $\mathrm{P}(\mathrm{G} \& \mathrm{G})=\mathrm{P}(\mathrm{G}) \mathrm{P}(\mathrm{G})=1 / 21 / 2=1 / 4$ (Green)
- Thus $3 / 4$ will be Yellow and $1 / 4$ will be Green
- The famous $3: 1$ is established!

Task

- Consider two independent traits
- Color, as in previous example and
- Seed's shape (wrinkled or smooth), which is controlled by alleles W and S , with S being dominant
- What is expected trait distribution in F_{1} and F_{2} ?

Free combination low: 9:3:3:1

