Introduction to association analysis of quantitative traits

Yurii Aulchenko

yurii [dot] aulchenko [at] gmail [dot] com
August 26, 2013

Outline

(1) Introduction

(2) Measuring association

- Coefficient of regression
- Scale-independent measures of association
- Yet another aspect of association
- Summary
(3) Genetic data analysis
- Summary

Contents

(1) Introduction

(2) Measuring association

- Coefficient of regression
- Scale-independent measures of association
- Yet another aspect of association
- Summary

3) Genetic data analysis

- Summary

Few examples of association. Which one is stronger?

Few examples of association. Which one is stronger?

Few examples of association. Which one is stronger?

- It looks like $A>B>C$ (?)

Few examples of association. Which one is stronger?

- It looks like $A>B>C$ (?)
- To give quantitative answer we need to introduce a way to characterize association between two variables

Few examples of association. Which one is stronger?

- It looks like $A>B>C$ (?)
- To give quantitative answer we need to introduce a way to characterize association between two variables
- What about using coefficient of regression of y onto x ?

Few examples of association. Which one is stronger?

- It looks like $A>B>C$ (?)
- To give quantitative answer we need to introduce a way to characterize association between two variables
- What about using coefficient of regression of y onto x ?
- Does everybody expect that regression coefficients $A>B>C$?

Contents

(1) Introduction

(2) Measuring association

- Coefficient of regression
- Scale-independent measures of association
- Yet another aspect of association
- Summary
(3) Genetic data analysis
- Summary

Linear regression model

- Let us denote y as "outcome" and x as "predictor" variables; let y_{i} and x_{i} are outcome and predictor values for particular sample
- Assume linear model

$$
y_{i}=\mu+\beta \cdot x_{i}+\epsilon_{i}
$$

where μ is a constant (intercept), β is regression coefficient and ϵ is residual "noise"

Linear regression model

- Estimates of parameters μ and β are chosen in such a way that predicted value of outcome

$$
\hat{y_{i}}=\hat{\mu}+\hat{\beta} x_{i}
$$

are as close as possible to the observed y_{i}

- In univariate case the estimate of β can be obtained with

$$
\hat{\beta}=\frac{\operatorname{Cov}(x, y)}{\operatorname{Var}(x)}=\frac{\Sigma\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}},
$$

where is \bar{x} and \bar{y} are mean values of x and y, respectively

Coefficient of regression

Interpretation of regression coefficients

- Both intercept and regression coefficient have clear physical interpretation
- Intercept μ is expected value of y if the value of predictor x is zero
- Coefficient of regression β tells how much y change when x is changed by single unit

Coefficient of regression

Example of estimation of regression coefficients

- Regression model is $y \sim \mu+\beta \cdot x$, where outcome y is height (measured in cm) and predictor x is sex (denoted as ' 0 ' for females and ' 1 ' for males)
- In a data set of 48 males and 52 females, the following estimates are obtained: $\{\hat{\mu}=167.6, \hat{\beta}=12.6\}$ (see figure)

Coefficient of regression

Example of interpretation of regression coefficients

- $\hat{\mu}=167.6$: when x is zero,
 expected value of outcomey is 167.6. In other words, expected height of females is 167.6.
- $\hat{\beta}=12.6$: when x changes by 1 , expected value of y changes by 12.6. In other words, expected difference between male and female height is 12.6 ; or average height of males is
$\hat{\mu}+\hat{\beta}=180.2$

Coefficient of regression

Regression coefficients are scale-dependent

Coefficient of regression

Which association is stronger?

- Strength of association $A>B>C$ (?)

Coefficient of regression

Which association is stronger?

- Strength of association $A>B>C$ (?)
- Regression coefficient $A>B>C$?

Coefficient of regression

Which association is stronger?

- Strength of association $A>B>C$ (?)
- Regression coefficient $A>B>C$?
- Regression coefficient may be not the best measure to characterize the strength of association because it is scale-dependent

Coefficient of regression

Which association is stronger?

- Strength of association $A>B>C$ (?)
- Regression coefficient $A>B>C$?
- Regression coefficient may be not the best measure to characterize the strength of association because it is scale-dependent
- $\hat{\beta}_{A}=0.95, \hat{\beta}_{B}=3.32$ and $\hat{\beta}_{C}=0.28$, so $B>A>C$

Coefficient of regression

Which association is stronger?

- Strength of association $A>B>C$ (?)
- Regression coefficient $A>B>C$?
- Regression coefficient may be not the best measure to characterize the strength of association because it is scale-dependent
- $\hat{\beta}_{A}=0.95, \hat{\beta}_{B}=3.32$ and $\hat{\beta}_{C}=0.28$, so $B>A>C$

How neatly y and x go together?

- We need something scale-independent!

How neatly y and x go together?

- We need something scale-independent!
- Our observation is that the regression coefficient changes with scale: the large is the variation of the outcome, the larger is the coefficient

Scale-independent measures of association

How neatly y and x go together?

- We need something scale-independent!
- Our observation is that the regression coefficient changes with scale: the large is the variation of the outcome, the larger is the coefficient
- We can estimate how much y changes when x is changed by 1 unit with

$$
\hat{\beta}_{y \sim x}=\frac{\operatorname{Cov}(x, y)}{\operatorname{Var}(x)}
$$

How neatly y and x go together?

- We need something scale-independent!
- Our observation is that the regression coefficient changes with scale: the large is the variation of the outcome, the larger is the coefficient
- We can estimate how much y changes when x is changed by 1 unit with

$$
\hat{\beta}_{y \sim x}=\frac{\operatorname{Cov}(x, y)}{\operatorname{Var}(x)}
$$

- We can also estimate how much x (!) changes when y is changed by 1 unit with

$$
\hat{\beta}_{x \sim y}=\frac{\operatorname{Cov}(x, y)}{\operatorname{Var}(y)}
$$

Person's coefficient of correlation

- Scale independent measure of association can be obtained by "compensating" for the variance of y by use of the coefficient of correlation defined as

$$
\rho_{x y}=\frac{\operatorname{Cov}(x, y)}{\sqrt{\operatorname{Var}(x) \cdot \operatorname{Var}(y)}}=\frac{\Sigma\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\Sigma\left(x_{i}-\bar{x}\right)^{2} \cdot \Sigma\left(y_{i}-\bar{y}\right)^{2}}}
$$

Person's coefficient of correlation

- Scale independent measure of association can be obtained by "compensating" for the variance of y by use of the coefficient of correlation defined as

$$
\rho_{x y}=\frac{\operatorname{Cov}(x, y)}{\sqrt{\operatorname{Var}(x) \cdot \operatorname{Var}(y)}}=\frac{\Sigma\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\Sigma\left(x_{i}-\bar{x}\right)^{2} \cdot \Sigma\left(y_{i}-\bar{y}\right)^{2}}}
$$

- When
- $\rho_{x y}=1$, there is perfect linear dependency (as x increases, y also increases)
- $\rho_{x y}=-1$ there is perfect reciprocal al relation (as x increases, y decreases)
- $\rho_{x y}=0$, there is no (linear) relation between two variables

Person's coefficient of correlation

- Scale independent measure of association can be obtained by "compensating" for the variance of y by use of the coefficient of correlation defined as

$$
\rho_{x y}=\frac{\operatorname{Cov}(x, y)}{\sqrt{\operatorname{Var}(x) \cdot \operatorname{Var}(y)}}=\frac{\Sigma\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\Sigma\left(x_{i}-\bar{x}\right)^{2} \cdot \Sigma\left(y_{i}-\bar{y}\right)^{2}}}
$$

- When
- $\rho_{x y}=1$, there is perfect linear dependency (as x increases, y also increases)
- $\rho_{x y}=-1$ there is perfect reciprocal al relation (as x increases, y decreases)
- $\rho_{x y}=0$, there is no (linear) relation between two variables
- gives proportion of variance explained $\rho_{x y}^{2}=\beta_{y \sim x} \cdot \beta_{x \sim y}$, gives proportion of variance explained

Example correlations

Correlations

- Strength of association $A>B>C$ (?)
- Regression: $\hat{\beta}_{A}=0.95, \hat{\beta}_{B}=3.32$ and $\hat{\beta}_{C}=0.28$ $(B>A>C)$
- Correlation: $\hat{\rho}_{A}=1, \hat{\rho}_{B}=0.5$ and $\hat{\rho}_{C}=0.27(A>B>C!)$

Yet another aspect of association

Other aspect of association

- Correlation and regression coefficients are similar between A, B and C
- Does that mean the same strength of association in all three panels?

Yet another aspect of association

Other aspect of association

- Correlation and regression coefficients are similar between A, B and C
- Does that mean the same strength of association in all three panels?
- What changes between A, B, and C ?

Correlations

A) $b=1.24 ; r=0.73$

B) $b=1.01 ; r=0.67$

C) $b=1.07 ; r=0.73$

- There are 10 observations in panel $A, 30$ observations in B, and 70 observations in C. While magnitude of association is similar, amount of evidence is different
- Given the same magnitude of association, experiment with more observations provides more evidence - the observed association is less likely to appear by chance

Statistical significance

- Other way to characterize association is to ask the question 'What is the chance to observe this strong (or even stronger) association by pure chance?".

Statistical significance

- Other way to characterize association is to ask the question 'What is the chance to observe this strong (or even stronger) association by pure chance?".
- This chance is termed p-value. The lower is p-value, the less likely is association to appear by pure chance; consequently the statistical significance measuring our confidence is higher

The score test

- To obtain p-value, we can use the score test, which is defined as

$$
T^{2}=\hat{\rho}_{x y}^{2} \cdot n,
$$

where $\hat{\rho}_{x y}^{2}$ is the coefficient of determination and n is the sample size

The score test

- To obtain p-value, we can use the score test, which is defined as

$$
T^{2}=\hat{\rho}_{x y}^{2} \cdot n,
$$

where $\hat{\rho}_{x y}^{2}$ is the coefficient of determination and n is the sample size

- Under the null hypothesis of no association this test is distributed as χ_{1}^{2}, so that if $T^{2}>3.84$ we can say that $p<0.05$, etc.

Statistical significance

- There are 10 observations in panel $A, 30$ observations in B, and 70 observations in C.

Yet another aspect of association

Statistical significance

- There are 10 observations in panel $A, 30$ observations in B, and 70 observations in C.
- The coefficients of determination are approximately the same $-0.53,0.45$, and 0.53 .

Statistical significance

- The score test values for panels A is A, B, and C are $T_{A}^{2}=n \cdot \hat{\rho}_{x y}^{2}=10 \cdot 0.53=5.27 ; T_{B}^{2}=13.63$ and $T_{C}^{2}=37.14$

Statistical significance

- The score test values for panels A is A, B, and C are $T_{A}^{2}=n \cdot \hat{\rho}_{x y}^{2}=10 \cdot 0.53=5.27 ; T_{B}^{2}=13.63$ and $T_{C}^{2}=37.14$
- Resulting p-value are $0.017,4.4 e-05$, and $8.9 e-13$

Which association is stronger?

$b=0.95 ; r=1 ; p=2.6 e-06$

$b=3.3 ; r=0.5 ; p=1 e-07$

$b=0.28 ; r=0.27 ; p=1.3 e-17$

The answer depends on how we characterize the association

- If we use regression coefficient, then predictor $x 1$ (panel B) is "the champion"
- If we use correlation or coefficient of determination, then predictor $\times($ panel $A)$ is "the champion"
- If we use statistical strength (p-value), then predictor $x 2$ (from panel C) is "the champion"

Summary

Summary

There are several complementary ways to measure association

- Regression coefficient has clear physical interpretation and allows easy prediction. This coefficient is dependent on the scale of outcome and predictor.
- Coefficients of correlation and determination provide appealing measures of how "neatly"the outcome and the predictor go together; how "visible"is the relation
- p-value tells how much evidence are provided by the data to rule out the hypothesis of no association

Note

- Linear regression methods considered here do assume linear dependency between outcome and predictor
- While there may be a clear (non-linear) relation between two variables, methods considered here can not be used to study these

Contents

(1) Introduction

(2) Measuring association

- Coefficient of regression
- Scale-independent measures of association
- Yet another aspect of association
- Summary
(3) Genetic data analysis
- Summary

Genetic data

- When studying genetic data, we are interested in relation between outcome y and genetic predictor g
- Let g is a Single Nucleotide Polymorphism (SNP) with two alleles, A and B
- Three genotypes are possible: $\{A A, A B, B B\}$
- We can formalize different genetic models by coding g in different ways

Explain the models graphically

qqq

One degree of freedom models

- Estimating single regression coefficient in the model

$$
y \sim \mu+\beta \cdot g
$$

where g is coded according to different models

One degree of freedom models

- Estimating single regression coefficient in the model

$$
y \sim \mu+\beta \cdot g
$$

where g is coded according to different models

- Additive ("B allele dose"): $\{A A=0, A B=1, B B=2\}$

One degree of freedom models

- Estimating single regression coefficient in the model

$$
y \sim \mu+\beta \cdot g
$$

where g is coded according to different models

- Additive ("B allele dose"): $\{A A=0, A B=1, B B=2\}$
- "Dominant B": $\{A A=0, A B=1, B B=1\}$

One degree of freedom models

- Estimating single regression coefficient in the model

$$
y \sim \mu+\beta \cdot g
$$

where g is coded according to different models

- Additive ("B allele dose"): $\{A A=0, A B=1, B B=2\}$
- "Dominant B": $\{A A=0, A B=1, B B=1\}$
- "Recessive B": $\{A A=0, A B=0, B B=1\}$

One degree of freedom models

- Estimating single regression coefficient in the model

$$
y \sim \mu+\beta \cdot g
$$

where g is coded according to different models

- Additive ("B allele dose"): $\{A A=0, A B=1, B B=2\}$
- "Dominant B": $\{A A=0, A B=1, B B=1\}$
- "Recessive B": $\{A A=0, A B=0, B B=1\}$
- Overdominant ("Heterosys") model: $\{A A=0, A B=1, B B=0\}$

Genotypic model

- In genotypic model, we allow for differential effect between all three genotypes by use of two predictors

$$
y \sim \mu+\beta_{1} \cdot g_{1}+\beta_{2} \cdot g_{2}
$$

Genotypic model

- In genotypic model, we allow for differential effect between all three genotypes by use of two predictors

$$
y \sim \mu+\beta_{1} \cdot g_{1}+\beta_{2} \cdot g_{2}
$$

- g_{1} and g_{2} can be defined in a number of ways, for example via g_{1} coded as $\{A A=0, A B=1, B B=2\}$ and g_{2} coded as $\{A A=0, A B=1, B B=0\}$. In this case, β_{1} would give "additive effect of allele B " and β_{2} will estimate "dominance deviation"

Genotypic model

- In genotypic model, we allow for differential effect between all three genotypes by use of two predictors

$$
y \sim \mu+\beta_{1} \cdot g_{1}+\beta_{2} \cdot g_{2}
$$

- g_{1} and g_{2} can be defined in a number of ways, for example via g_{1} coded as $\{A A=0, A B=1, B B=2\}$ and g_{2} coded as $\{A A=0, A B=1, B B=0\}$. In this case, β_{1} would give "additive effect of allele B " and β_{2} will estimate "dominance deviation"
- This model is tested against the null model $y \sim \mu$, resulting in two degrees of freedom (2 d.f.) test

Summary

- In general, genetic association analysis is done using standard statistical methods
- Specifics of analysis of genetic data comes from the specifics of the independent variable of interest (the genotype), which is an real object following particular (genetic) laws

