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Quantitative vs. Binary
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Logistic regression

With quantitative traits, we assume linear model

yi = µ+ βxi + ε

If outcome is binary (that is yi can be either 0 or 1) we can
model expected probability that yi = 1 using logistic function:

P̂(yi = 1) =
1

1 + exp{−(µ̂+ β̂xi )}

The same model can be expressed as

logit(P̂(yi = 1)) = loge

(
P̂(yi = 1)

1− P̂(yi = 1)

)
= µ̂+ β̂xi

As is the case with quantitative outcomes, the estimates of
parameters µ and β are chosen in such a way as to provide
maximal fit of the predicted to the observed data
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Interpretation of logistic regression coeffcients

The estimate of β are provided on logistic scale, and their
physical interpretations may be difficult

In case when the predictor is binary, Odds Ratio (OR) can be
obtained from β by taking its exponent, exp(β)

Depending on design, OR may approximate (well or less well)
the Relative Risk – how much the risk of outcome is increased
when the predictor x changes by 1

For example in population-based cohort design relating some
disease to the sex (0=female, 1=male), if estimate β̂ = 0.45,
was obtained, it can be translated to ÔR = exp(0.45) = 1.49
meaning that the risk of the disease is increased by 1.49 times
in males compared to females
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Example of logistic regression
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Logistic regression model is
logit(y) ∼ µ+ β · x , where
outcome y is sex (denoted
as ’0’ for females and ’1’ for
males) and predictor x is
height (measured in cm)

The following estimates are
obtained:
{µ̂ = −83.7, β̂ = 4.8}
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From these estimates, it is
possible to predict the sex
for each individual based on
the height P(i is male) =

1
1+exp(−(−83.7+4.8·heighti ))
(red dots in the figure)
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Genetic data

When studying genetic data, we are interested in relation
between outcome y and genetic predictor g

Let g is a Single Nucleotide Polymorphism (SNP) with two
alleles, A and B

Three genotypes are possible: {AA,AB,BB}
We can formalize different genetic models by coding g in
different ways
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One degree of freedom models

Estimating single regression coefficient in the model

logit(y) ∼ µ+ β · g ,

where g is coded according to different models

Additive (”B allele dose”): {AA = 0,AB = 1,BB = 2}
”Dominant B”: {AA = 0,AB = 1,BB = 1}
”Recessive B”: {AA = 0,AB = 0,BB = 1}
Overdominant (”Heterosys”) model:
{AA = 0,AB = 1,BB = 0}
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Genotypic model

In genotypic model, we allow for differential effect between all
three genotypes by use of two predictors

logit(y) ∼ µ+ β1 · g1 + β2 · g2,

g1 and g2 can be defined in a number of ways, for example via
g1 coded as {AA = 0,AB = 1,BB = 2} and g2 coded as
{AA = 0,AB = 1,BB = 0}
In this case, β1 would give ”additive effect of allele B” and β2
will estimate ”dominance deviation”

This model is tested against the null model y ∼ µ, resulting in
two degrees of freedom (2 d.f.) test
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Armitage trend test

When analyzing binary outcomes, Armitage trend test is
frequently used

This is easily performed: code g using allele dose model, and
outcome as ’1’ for cases and ’0’ for controls

Compute the coefficient of determination ρ2 and the score
test T 2 = ρ2 · n. This is the Armitage trend test
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Summary

Strength of association can be characterized in a number of
ways

For quantitative outcomes

Coefficient of regression has clear physical interpretation and
allows easy prediction. This coefficient is dependent on the
scale of outcome and predictor.
Coefficients of correlation and determination provide
measure of how ”neatly” the outcome and the predictor go
together; how ”visible” is the relation

For binary outcomes the coefficient of regression allows
easy prediction and some times can be easily interpreted

p-value tells how much evidence are provided by the data to
rule out the hypothesis of no association
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