MENDELIAN VS. COMPLEX / LINKAGE VS. ASSOCIATION

YURII S. AULCHENKO YURII [DOT] AULCHENKO [AT] GMAIL [DOT] COM

• (1-b), where b is the type II error

- (1-b), where b is the type II error
- The probability to reject the null hypothesis when the alternative is true

- (1-b), where b is the type II error
- The probability to reject the null hypothesis when the alternative is true
- The probability to detect association

- (1-b), where b is the type II error
- The probability to reject the null hypothesis when the alternative is true
- The probability to detect association
- The chances of success!

- (1-b), where b is the type II error
- The probability to reject the null hypothesis when the alternative is true
- The probability to detect association
- The chances of success!

- (1-b), where b is the type II error
- The probability to reject the null hypothesis when the alternative is true
- The probability to detect association
- The chances of success!

• So, power is absolutely critical

MENDELIAN TRAITS

- Monogenic model of inheritance
- Mutant alleles
 - **Highly penetrant** (linkage analysis)
 - Rare in general population
- Small impact on public health but large impact on biology
- Examples
 - Cystic fibrosis, phenylketonuria, hemophilia, ...
 - Monogenic forms of common disorders -- MODY (diabetes), early-onset Alzheimer's disease...

• Effect is large

- Effect is large
- Sampling via proband

- Effect is large
- Sampling via proband
- While mutation is rare in general population, it is prevalent in your study population

- Effect is large
- Sampling via proband
- While mutation is rare in general population, it is prevalent in your study population
- Testing deviation from random co-segregation between the phenotype and markers

LINKAGE CAN EFFECTIVELY IDENTIFY THE ALLELES OF LARGE EFFECTS

COMPLEX TRAITS

- Complex model of inheritance multiple genetic and environmental factors and their interactions
- Medium and low effect alleles (linkage will not work -- sampling via proband does not guarantee presence of mutation)
- Examples: common diseases such as hypertension, breast cancer, diabetes; quantitative traits such as height, weight, blood pressure, lipid levels

Cases (patients)

Controls (healthy)

Cases (patients)

Cases (patients)

Cases (patients)

ASSOCIATION ANALYSIS (QUANTITATIVE TRAIT)

	Dat	ta		
ID	Trait	Genotype		₽.
1	8.3	AA		
2	8.5	AB	Trat	σ, .
3	9.1	AB		00 -
Ν	10.0	BB		

	Summary table		
	AA	AB	BB
Ν	222	230	48
Mean	8.01	8.96	10.01
SD	0.39	0.37	0.33

<u>Null hypothesis</u>: group means are the same ANOVA, Z-test, T-test Regression analysis

LINKAGE VS. ASSOCIATION

- Association is a method to identify an allele
- Linkage is a method to identify a region
- Many differences between methods

	Linkage	Association
Most powerful design	Families with extreme phenotype	Case/control
Variants captured	Any of strong effect	Common (chip design)
Model usually captured	Loci with (rare) variants of strong effect	A common variant (usually small to moderate effect)
5,000 markers	Great!	Useless
1,000,000 markers	Reduce to 5,000	Great!
GW sig. threshold	15.2	29.72

OUTLINE

OUTLINE

Stats: association, significance, multiple testing

OUTLINE

Wed GWAS stories

Stats: association, significance, multiple testing