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Overview

• Missing heritability
• Expected composition of heritability
• Mapping rare variation
• Conclusions
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Total
h2=0.9

Total
h2=0.3
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Something is missing...

• Out tools: What we can find (and 
what we can not)?

• Our knowledge: What we expect to 
find?

• Our intentions: Do we need/want to 
find it :)
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What can we find? - 
statistically
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Why effect and 
frequency?
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Enrichment design

• Effect is large

• Sampling via 
proband

• While mutation is 
rare in general 
population, it is 
prevalent in your 
study population
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Summary for our tools

• Statistically, no way to solve variants 
from lower-left area

• Straightforward solutions are
• Brute force: increase sample size and 

increase reachable area 
• Tricks to shift the problem to the right 

and/or up (by e.g. statistical or design 
means)
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Overview

• Missing heritability
• Expected composition of heritability

• Mapping rare variation
• Conclusions
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Composition of 
heritability

• Which alleles can reach high frequency?
• What proportion of heritability is 

explained by common/rare variation?
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Genetic variant

Selection Fitness

Phenotype
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Genetic variant

Selection Fitness

Phenotype

Neutral variation
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Distribution of neutral 
allele frequency

128 Am. J. Hum. Genet. 69:124–137, 2001

Figure 1 Examples of the probability distribution of the overall frequency of susceptibility alleles at a locus (from Wright’s formula). In
the upper plot, ; in the lower plot, . Parameter values: (solid lines); (dotted lines); (dashed lines);j p 0 j p 12.0 b p 3.0 b p 1.0 b p 0.1S S S

throughout. Notice that the vertical scale differs by a factor of five between the plots. In the upper plot, virtually all of the probabilityb p 0.01N

mass is on values near 0 or 1 (see table 1).

ample, at the hemophilia B locus, it has been estimated
that the target region for detrimental mutations is 275
nucleotides, out of a total length of 1,362 (Giannelli et
al. 1999). A similar result is suggested indirectly by Eyre-
Walker and Keightley (1999), who, using divergence
data from a number of genes, estimated that, on average,
38% of nonsynonymous mutations in humans are elim-
inated by natural selection. On the basis of these ar-
guments, a plausible estimate for typical values of bS

might be in the range 0.1–1.0.
Direct estimates of the mutation rate for a number

of Mendelian disorders are generally consistent with
this, or slightly higher. For instance, mutation rates per
generation have been estimated for neurofibromatosis
( to , Friedman 1999), spinal!4 !5m̂ p 1.3 # 10 4.3 # 10

muscular atrophy ( , Wirth et al. 1997),!4m̂ p 1.1 # 10
hemophilia B ( , Green et al. 1999), and!6m̂ p 7.7 # 10
Apert syndrome ( , Tolarova et al.!6m̂ p 6.2 # 10
1997). Taking , these correspond to scaledN p 10,000e

mutation rates of to 5.1, 4.4, 0.3, and 0.2,4N m p 1.7e

respectively. However, it is not clear that mutation rates
for Mendelian disorders will necessarily be represen-
tative of complex-disease loci. There may also be a pub-
lication bias toward loci with high mutation rates, since
the corresponding diseases will be more common at mu-
tation-selection balance. Nonetheless, in this article, I
present results for in the range 0.1–5.0.bS

A standard argument holds that the repair rate bN

will typically be much smaller than , because therebS

may be many ways to impair the function of a gene,

Neutral alleles could have any
frequency, but tend to be 

very rare/common
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Selectively neutral 
alleles
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Selectively neutral 
alleles

Most of the (common and rare) variation 
we observe 
• Is selectively neutral
• Is not related to any phenotype
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“Selectively 
neutral” (?) traits

• Eye color
• Late-onset diseases

• Age-related macular degeneration 
(AMD)

• e4 allele of APOE 
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Context-dependent
selection
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Heterozygote advantage

• Sickle Cell Anemia

• When homozygous, 
leads to stiff and sticky 
cells

• Blocked blood flow
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Antagonistic pleiotropy

• Positive effect early in life, negative 
later in life

• APOE e4 (?)
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Context-dependently 
selected alleles
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Selection of dominant 
allele

Source: http://www.apsnet.org/edcenter/advanced/topics/PopGenetics/Pages/NaturalSelection.aspx
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Dominant/additive 
alleles of small effects
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Selection of recessive 
allele

Source: http://www.apsnet.org/edcenter/advanced/topics/PopGenetics/Pages/NaturalSelection.aspx
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Selected recessive 
alleles
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Selected recessive 
alleles
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Expectation

• For “neutral” traits, or traits with 
context-dependent selection, alleles of 
large effect could reach high frequencies 

• As soon as alleles are selected, they are 
expected to be rare. For traits directly 
related to fitness, you expect that 

• Alleles with large effect are rare

• Common alleles have small effects
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Composition of complex 
traits: common vs rare

that are at a frequency of less than 0.001 (Fig. 2). This pattern
depends little on the shape of the distribution (Fig. S1), although
more of the variance tends to be contributed by mutations at high
frequencies when the distribution is less leptokurtic (i.e., higher
values of β). However, the relationship between the variance and
allele frequency does depend strongly upon the mean strength of
selection; the lower the mean fitness, the more of the variance is
contributed by mutations at relatively high frequencies in the
population (Fig. 2). Nevertheless, even if the mean Nes is just 10,
we expect 95% of the additive variance to be contributed by
mutations at less than 5% in the population and 73% to be con-
tributed by mutations at less than 1%.
It is therefore apparent that the majority of the variance in

fitness tends to be contributed by mutations that are rare in the
population unless the mean strength of selection is small. This is
a simple consequence of two facts: mutations with large effect
tend to contribute disproportionately to the variance, and
mutations that have large effect are rare because natural selec-
tion is effective at minimizing their frequency in the population.
Some insight into this can be gained from simple population
genetics. The variance contributed by a mutation of selective
strength s at a frequency x in the population is 2x(1 − x)s2. If the
mutation is deleterious, it will be rare, so the variance is
approximately 2xs2. At equilibrium, the mean frequency of such a
mutation in the population is approximately u/s, so the variance
contributed by such mutations is 2us. The variance therefore
depends upon the mutation rate and the strength of selection;
hence categories of mutations that are numerous or are strongly
selected tend to contribute most to the variance in fitness.
It is also of interest to determine the variance in fitness con-

tributed by a single mutation at a particular frequency. This can be
calculated by dividing the variance contributed by mutations at a
frequency by the density of mutations at that frequency. As expec-
ted, there are more mutations at lower frequencies, but on a log
scale this difference in density is relatively small over a broad range
of parameters (Fig. S2); hence the variance contributed by single
mutations at a particular frequency is very similar to the proportion
of variance contributed by all mutations at that frequency, with
common mutations contributing slightly more variance on a
mutation-by-mutation basis than they do as a category (Fig. S3).
Let us now consider the case in which trait and fitness are not

perfectly correlated, and let us first consider the case in which the
mean absolute effect of a mutation on the trait is linearly related
to the strength selection on the mutation (τ= 1, σ > 0). So if two
mutations differ by twofold in fitness, they will, on average, differ
twofold in their average absolute effects on the trait, although
mutations can have very large or small effects on the trait

depending on the magnitude of σ. Surprisingly, the relationship
between the variance in the trait and allele frequency under this
model is identical to the case when the trait is fitness itself (Fig. 3);
so even if σ is very large and the effects on trait and fitness are very
poorly correlated, most of the variance is contributed by rare
mutations unless themean strength of selection is low. This can be
seen be by considering V(x) / VT; this expression is independent of
σ (as described earlier).
In contrast, if the effects of the mutation on fitness and trait are

independent (τ = 0, σ > 0), all of the variance in the trait is
contributed by common mutations (Fig. 3 and Fig. S4); these are
neutral mutations segregating at relatively high frequency. In
between these extremes we see a shift from one pattern to the
other. For example, if τ is 1/2, such that the mean absolute trait
value increases as the square root of the mean strength of selec-
tion, then more variance is contributed by high-frequency muta-
tions, than when the trait is fitness or when the SD increases
linearly with selection (Fig. 3 and Fig. S4). As the strength of
selection increases, the proportion of variance explained by high
allele frequency decreases; the proportion is also dependent upon
the shape parameter of the DFE, but here we see a different
pattern to that observed when the trait is fitness. When τ<< 1, the
relationship between variance and allele frequency becomes more
dependent upon the shape parameter, and as the DFE becomes
less leptokurtic (i.e., increasing shape parameter), less of the
variance in the trait is contributed by high-frequency mutations.
However, when τ is relatively large we see the opposite pattern,
and less leptokurtic distributions have slightly more variance
being contributed by relatively common mutations.
We have so far considered the proportion of the variance in the

trait being contributed by mutations at different allele frequencies
under a single unimodal DFE. However, in reality, both fitness
and trait are likely to be governed by complex multimodal dis-
tributions, composed of several different distributions; indeed
there is some evidence of this (21). It seems likely that the overall
distribution will, at minimum, be a combination of the distribution
of nonsynonymous point and small indel mutations, point and
small indel mutations in regulatory sequences, and copy number
variant mutations. It is thus of interest to investigate the absolute
level of variance contributed by a certain distribution and how this
depends upon the shape and mean of the distribution and the

Fig. 2. The density of variance, V(x) / VT, in the trait as a function of allele
frequency when the trait is fitness for different mean strengths of selection
when β is 0.20.

Fig. 3. The density of variance, V(x) / VT, in the trait as a function of allele
frequency, for different values of τ and different mean strengths of selection
(β = 0.20): (A) !S of 3,000, (B) !S of 30.

1754 | www.pnas.org/cgi/doi/10.1073/pnas.0906182107 Eyre-Walker

Eyre-Walker, PNAS, 2010
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Contribution of rare vs. 
common: estimates

520 VOLUME 43 | NUMBER 6 | JUNE 2011 NATURE GENETICS

A N A LY S I S

individuals. The reason for excluding related pairs is to avoid the possi-
bility that the phenotypic resemblance between close relatives could 
be because of non-genetic effects (for example, shared environment) 
and causal variants not tagged by SNPs but captured by pedigree9,10. 
We then fitted the GRM in a mixed linear model (MLM) to estimate 
the proportion of variance explained by all the autosomal SNPs (hG2 )  
for height, BMI, vWF and QTi in each cohort and the combined data 
where applicable (Online Methods, Table 1 and Supplementary 
Table 1). Data on vWF and QTi were available from the ARIC sample 
only. We show that 44.8% (s.e. 2.9%) of the phenotypic variance for 
height can be explained by all the autosomal SNPs, which is in line 
with an estimate of 44.5% (s.e. 8.3%) from a similar analysis of an 
Australian cohort (3,925 unrelated individuals genotyped by 294,831 
SNPs on Illumina arrays, in contrast to the Affymetrix arrays used in 
the present study)4. We show for the first time that 16.5% (s.e. 2.9%), 
25.2% (s.e. 5.1%) and 20.9% (s.e. 5.0%) of variances for BMI, vWF and 
QTi, respectively, can be explained by all the autosomal SNPs, which is 
approximately tenfold, twofold and threefold larger than the variance 
explained by all known validated loci found by GWAS for BMI11–14, 
vWF15 and QTi16, respectively. We note that the ABO blood group 
locus on chromosome 9 is known to explain approximately 10% of 
phenotypic variation for vWF15 through modification of the amount 
of H antigen expression on the circulating vWF glycoprotein17,18. 
The estimate of hG2  for weight is 18.6% (s.e. 2.8%). Because of the high 
phenotypic correlation between BMI and weight (r = 0.92), results for 
these two traits are very similar. We therefore report results for BMI 
in the following sections and for completion give all results for weight 
in the supplementary online material (Supplementary Figs. 1–7 and 
Supplementary Tables 1–13).

Genome partitioning of genetic variation
Next, we estimated the GRM from the SNPs on each autosome and 
partitioned the total genetic variance onto individual chromosomes 
by fitting the GRMs of all the chromosomes simultaneously in a joint 
analysis (Online Methods). We observed a strong linear relationship 
between the estimate of variance explained by each chromosome  
(hC2) and chromosome length (LC, in Mb units) for height (P = 1.4 × 
10−6 and R2 = 0.695) and QTi (P = 1.1 × 10−3 and R2 = 0.422) (Fig. 1  
and Supplementary Tables 2 and 3). We mapped SNPs to 17,787 

genes according to positions on the UCSC 
Genome Browser hg18 assembly19, 17,652 
of which had at least one SNP within 50 kb 
of the 5 and 3 untranslated regions (UTRs). 
There was also a significant correlation 
between the estimate of hC2  and the number of 
genes on each chromosome (Ng(C)) for height 
(P = 7.9 × 10−3) and QTi (P = 8.1 × 10−4) 
(Supplementary Table 3). Because LC and 
Ng(C) are correlated (r = 0.628), we performed 
a multiple regression analysis of the estimate 
of hC2  on LC and Ng(C) and fitted models  

in which chromosome length was fitted after the number of genes 
and vice versa. When including both LC and Ng(C) in the regression 
model, Ng(C) was not significant and LC was still significant for height 
(P = 8.8 × 10−5) and QTi (P = 2.8 × 10−4) (Supplementary Table 3). 
The regression of the estimate of hC2  on either LC or Ng(C) was not signi-
ficant for BMI and vWF. These results are consistent with the variance 
explained by each chromosome for height and QTi (but less so for BMI 
and vWF) being proportional to the proportion of the genome being 
considered. Although longer chromosomes harbor more genes that are 
implicated in abnormal growth or skeletal development, the relation-
ship between variance explained for height and chromosome length 
remained significant (P = 0.016) after fitting the number of such genes 
(Supplementary Fig. 1). We provide evidence that the linear relation-
ship between the estimate of hC2  and LC cannot be attributed to the fact 
that longer chromosomes have more SNPs and thereby smaller sam-
pling errors when estimating genetic relationships between individuals 
(Supplementary Note and Supplementary Figs. 2 and 3).

However, genes vary greatly in size, and when we considered the 
length of the genes, we observed that the estimate of hC2  for height and 
QTi was also proportional to the total length of genes on each chromo-
some (Lg(C)), where gene length is defined as the physical distance 
between the beginning and end of the UTRs (Supplementary Fig. 4). 
Because the correlation between LC and Lg(C) is extremely high (r = 
0.97), we were unable to discriminate whether LC or Lg(C) is causative 
by multiple regression: the regression of hC2  on LC was not significant 
after being fitted for Lg(C) and vice versa (Supplementary Table 3). 
Therefore, a different analysis was required. We asked whether we 
could still observe a significant regression of hC2  on Lg(C) when chro-
mosome length was held constant. We investigated this by dividing 
the genome into segments with the same length of either 50 or 30 Mb 

Table 1 Estimates of the variance explained by all autosomal SNPs for height, BMI, vWF 
and QTi

Trait n

No PCa 10 PCsb

Heritabilityd GWASehG
2 (s.e.)c P hG

2 (s.e.) P

Height 11,576 0.448 (0.029) 4.5 × 10–69 0.419 (0.030) 7.9 × 10–48 80–90%32 ~10%23

BMI 11,558 0.165 (0.029) 3.0 × 10–10 0.159 (0.029) 5.3 × 10–9 42–80%25,26 ~1.5%14

vWF 6,641 0.252 (0.051) 1.6 × 10–7 0.254 (0.051) 2.0 × 10–7 66–75%33,34 ~13%15

QTi 6,567 0.209 (0.050) 3.1 × 10–6 0.168 (0.052) 5.0 × 10–4 37–60%35,36 ~7%16

The traits vWF and QTi were available in the ARIC cohort only.
aWithout principal component adjustment. bAdjustment with the first 10 principal components from principal component analysis.  
cEstimate of variance explained by all autosomal SNPs. dNarrow sense heritability estimate from family or twin studies from the 
literature. eVariance explained by GWAS associated loci from the literature. PC, principal component; s.e., standard error.
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Figure 1 Variance explained by chromosomes. Shown are the estimate of 
the variance explained by each chromosome for (a) height (combined),  
(b) BMI (combined), (c) vWF (ARIC) and (d) QTi (ARIC) by joint analysis 
using 11,586 unrelated individuals against chromosome length.  
The numbers in the circles and squares are the chromosome numbers. 
The regression slopes and R2 were 1.6 × 10−4 (P = 1.4 × 10−6) and 
0.695 for height, 2.3 × 10−5 (P = 0.214) and 0.076 for BMI, 6.9 × 10−5 
(P = 0.524) and 0.021 for vWF, and 1.2 × 10−4 (P = 1.1 × 10−3) and 
0.422 for QTi, respectively.

Yang et al., Nat Genet, 2011
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Conclusions

• Some (essential) part of genetic variance 
is explained by common variants acting 
in additive manner

• How big is this part, depends on 
evolutionary history of the trait

• Residual heritability may be explained 
by different mechanisms, most likely 
rare variation
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Overview

• Missing heritability
• Expected composition of heritability
• Mapping rare variation

• Conclusions
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Pushing the 
frequency up
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Summary for our tools

• Statistically, no way to solve variants 
from lower-left area

• Straightforward solutions are
• Brute force: increase sample size and 

increase reachable area 
• Tricks to shift the problem to the 

right and/or up (by e.g. statistical or 
design means)
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Rare variation tests

• Are ‘global’ tests of association between 
variation in a genomic region and a 
trait

• Why? In a way, they try to bundle 
different variants together in a single 
compound “alleles” with higher 
frequency
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Pushing the 
frequency up
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In order to combine 
effects  

Rare variation tests make assumptions 
about
• Distribution (possibly conditional) of 

the effect  
• Location of causative variants (region)
• Model of interaction between alleles 

of the same locus
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A simple 
collapsing method

• Distribution of the effect: Rare means 
deleterious

• Location of causative variants (region): 
All exomes of a gene: looking for strong 
effects

• Model of interaction between alleles of 
the same locus: Presence of one or more 
rare variant(s) leads to change of phenotype
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Questioning 
assumptions

• Distribution of the effect: Rare means 
deleterious? More rare means bigger deleterious effect? What 
is the exact relation? What about quantitative traits? Can 
we include functional information?

• Location of causative variants (region): 
Why not intrones and regulatory regions? What about 
enhancers? Expected effect different for different regions? 

• Model of interaction between alleles of 
the same locus: One rare is enough? May be effects 
add up? Recessive / compound heterozygosity model? 
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What is the best method 
to detect rare variants?

The Empirical Power of Rare Variant Association
Methods: Results from Sanger Sequencing in 1,998
Individuals
Martin Ladouceur1,2, Zari Dastani2,3, Yurii S. Aulchenko4,5, Celia M. T. Greenwood2,3,6, J. Brent

Richards1,2,7,8*

1 Department of Human Genetics, McGill University, Montreal, Canada, 2 Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada,

3 Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada, 4 Department of Epidemiology, Erasmus MC, Rotterdam, The

Netherlands, 5 Institute of Cytology and Genetics SD RAS, Novosibirsk, Russia, 6 Department of Oncology, McGill University, Montreal, Canada, 7 Department of Medicine,
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Abstract

The role of rare genetic variation in the etiology of complex disease remains unclear. However, the development of next-
generation sequencing technologies offers the experimental opportunity to address this question. Several novel statistical
methodologies have been recently proposed to assess the contribution of rare variation to complex disease etiology.
Nevertheless, no empirical estimates comparing their relative power are available. We therefore assessed the parameters
that influence their statistical power in 1,998 individuals Sanger-sequenced at seven genes by modeling different
distributions of effect, proportions of causal variants, and direction of the associations (deleterious, protective, or both) in
simulated continuous trait and case/control phenotypes. Our results demonstrate that the power of recently proposed
statistical methods depend strongly on the underlying hypotheses concerning the relationship of phenotypes with each of
these three factors. No method demonstrates consistently acceptable power despite this large sample size, and the
performance of each method depends upon the underlying assumption of the relationship between rare variants and
complex traits. Sensitivity analyses are therefore recommended to compare the stability of the results arising from different
methods, and promising results should be replicated using the same method in an independent sample. These findings
provide guidance in the analysis and interpretation of the role of rare base-pair variation in the etiology of complex traits
and diseases.
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Hospital. ML, JBR, and ZD are supported by the CIHR. Data were provided by GSK. The funders had no role in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: brent.richards@mcgill.ca

Introduction

There is growing evidence that rare variants contribute to the
etiology of complex diseases [1,2,3,4]. A striking difference in the
distributions of the odds ratios (ORs) for common and rare
variants has been illustrated in a wide range of recent publications,
favoring higher ORs for some rare variants (reviewed elsewhere
[5,6,7]). As well, it has been demonstrated that rare coding
variants associated with complex traits are sometimes causal
through amino acid substitution [3,8,9]. For these reasons, rare
variants hold promise as a source of heritability which is not
explained by common base-pair variants.

Identifying rare variants associated with disease requires large
sample sizes since few individuals harbor such polymorphisms. In
addition, for rare variants, the power of single-marker tests, such as
those performed by genome-wide association studies (GWAS), is
poor. Development of alternative methods is thus essential. Over the
past two years, a growing body of methods [2,10,11,12,13,14,15,16,
17,18,19,20] seeking to overcome this limitation has emerged. These

methods generally employ three main strategies: collapsing markers
across a region, weighting and/or prioritizing markers, and
distribution-based approaches.

Li and Leal [20], for example, proposed a method to collapse
rare variants across a region. This and other collapsing methods
are based upon the hypothesis that low-frequency variants are
rare, but in aggregate, they may be common enough to account
for variation in common traits. Under such models, it is assumed
that the probability of being diseased increases with the number of
rare minor alleles. However, this might not always be the case
[21]. Weighting methods assign more importance to alleles based
on many possible criteria, such as minor allele frequency (MAF) in
the control population [17], or possible alterations in protein
function, including measures produced by SIFT and Polyphen2
[11,22]. More recently, methods examining changes in distribu-
tions associated with rare variants [2,23] have been proposed. Liu
and Leal [2] based their novel method on multi-locus genotypic
configurations, where each unique pattern of genotypes is
tabulated, and the associated risk of disease for each configuration

PLoS Genetics | www.plosgenetics.org 1 February 2012 | Volume 8 | Issue 2 | e1002496

40Thursday, April 11, 13



power across the range of these relationships, even in a large
sample size. Analysis using different methods clearly imposes an
additional multiple testing burden, which cannot be easily
addressed. One, though somewhat cumbersome, way to solve this
problem would be by derivation of empirical P-values taking into
account the variety of methods tested. Another, more straightfor-
ward, approach would be to undertake replication in an
independent sample, using the method which demonstrated best
results at the discovery stage.

In this paper, we have also developed a new method
conceptually based on Liu and Leal’s KBAC method [2] to detect
the association between rare variants and quantitative traits. Our
extension of [2] is implemented in R and is available from the

authors. We have also developed a simulation framework to
compare all major novel statistical methods to identify the
contribution of rare variants to continuous phenotypes under
identical conditions. Our new approach performs poorly if all rare
variants act in the same direction, but performs well when variants
can either increase or decrease phenotype and have large effect.
We note that the presence of randomly assigned rare variants of
smaller effect in size, all tests have a distribution of test statistics
that follows the null distribution (see Text S1).

Collapsing methods demonstrate increasing power when the
trait varies with an increasing number of rare alleles. However,
examples exist where protective and deleterious rare alleles are
present in a gene [21], and in such situations, collapsing methods
do not perform well. On the other hand, SKAT and WOD
performed extremely well compared to other methods in the
continuous traits scenarios, and dichotomous traits (SKAT only)
scenarios, respectively. SKAT in particular, was the only method
that performed well for dichotomous traits when variants could be
protective or deleterious. Methods like WE that assign more
weight to rarer alleles are promising, but only if the gene harbors
several causal variants whose effects are each inversely propor-
tional to their MAF. However, we note that the VT method still
outperforms WE even when employing this assumption.

Our study also provides empirical data to judge the value of
dichotomizing a continuous trait and sequencing only its extremes.
While our design included the extreme quarters of the distribution,
thereby eliminating the need to sequence half the study population
and consequently reducing sequencing costs substantially, we note

Figure 3. Continuous traits: Relationship between effect size, proportion of causal variants, and power. All causal variants have a
deleterious effect. Each box corresponds to a different proportion of causal variants involved in the relationship between rare variants and
continuous traits (from left to right, 10, 15, 20 and 30%). On the x-axis, effect sizes are in standard deviations and correspond to the absolute value of
the average size effect.
doi:10.1371/journal.pgen.1002496.g003

Table 4. Proportion of variance explained by rare variants.

0.5 SD 0.75 SD 1.0 SD 1.25 SD 1.5 SD 2.0 SD 2.5 SD

10% of
causal

0.005 0.012 0.022 0.034 0.049 0.086 0.135

15% of
causal

0.008 0.018 0.032 0.051 0.073 0.129 0.202

20% of
causal

0.011 0.024 0.043 0.067 0.097 0.172 0.269

30% of
causal

0.016 0.036 0.064 0.100 0.144 0.256 0.400

doi:10.1371/journal.pgen.1002496.t004

Power of Rare Variant Methods
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that power was similar to that derived from the entire distribution
particularly only when the proportion of causal variants was high
and the effect sizes moderate. Nonetheless, sampling of the
extremes remains an attractive study design, particularly if the
sampled population is large and a more extreme sub-population is
selected.

Methods have been proposed to weight the relative importance
of rare variants based on various parameters including their
estimated deleterious effect on protein function [17,27]. For
example, the incorporation of estimated functional information,
such as the potential effect of an amino acid change as estimated
by Polyphen or SIFT, might improve power. However, these
scores have been criticized for their high level of misclassification
[22]. Moreover, functional prediction is more challenging when
the variants are non-coding.

The spectrum and frequencies of rare genetic variants are
known to depend on ancestry and age of the population studied
[28]. In this work, we have assumed that our sample consists of a
homogeneous population without stratification into population
subgroups. All the methods that we have examined could find false
associations if population sub-strata existed and were associated
with the phenotype, therefore particular attention must be paid to
population structure when designing rare variant studies.

One of the strengths of our study is the use of Sanger
sequencing data, rather than simulated genotyping data. We have
been able to avoid the simulation of such data by using fully
Sanger-sequenced data on nearly 2,000 individuals at seven
genes. Therefore, no genotypic hypotheses were made to

generate the sequence data. Furthermore, the sample size
employed is among the largest sequenced datasets in the world
at present. Despite the fact that gene 3 had more missing data
and fewer variants, we note that the power results derived from
this gene are similar to all other genes.

We note that our simulations assumed no additive effects when
an individual carries multiple rare variants. However, we note that
very few individuals carry 2 or more rare variants (Table 3). In
addition, we assumed that rare variant effects take precedence
over common variant effects.

In light of our results, we recommend that single-marker tests
should not be used alone when rare variants are present and are
assumed to have small-to-moderate effects on the trait of interest.
On the other hand, as power across all novel rare variants methods
is generally low, the potential for identifying rare variant
associations using gene-based analysis strategies requires improve-
ment. Ideally, the true underlying nature of the association
between the gene and the phenotype should determine the choice
of statistical method, however, this relationship is almost always
unknown. Therefore, performing sensitivity analyses, i.e., assessing
different methods that perform differently under various condi-
tions might be a helpful option in order to interpret the results.
Furthermore we suggest that if one method identifies a gene of
interest that replication of this result should be performed in an
independent sample using the same statistical method. All methods
seemed to perform adequately under their specific model
hypotheses, but do not perform as well when these hypotheses
are violated.

Figure 4. Continuous traits: Relationship between effect size, proportion of causal variants, and power, when causal variants are a
mixture of protective and deleterious effects. Each box corresponds to a different proportion of causal variants involved in the relationship
between rare variants and continuous traits (from left to right, 10, 15, 20 and 30%). On the x-axis, effect sizes are in standard deviations and
correspond to the absolute value of the average size effect.
doi:10.1371/journal.pgen.1002496.g004
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In the next few years, advances in sequencing technology will
enable the production of large quantities of sequence data on large
numbers of individuals, allowing for the cost-effective identification of
rare variants. These data will enable researchers to investigate the role
that rare variants play in disease etiology, in addition to uncovering
functional variants. Our results may provide guidance in the
planning, analysis and interpretation of these large-scale initiatives.

Materials and Methods

Ethics statement
The work described in this manuscript represents a re-use of

data and no new human interventions were conducted. No
additional IRB approvals were sought for this specific portion of
the work. The Committee on Ethics in Clinical Research, CHUV,
Lausanne University, Lausanne, Switzerland approved the
original protocols for sample collection.

Study sample
The subjects used in this paper are a subset of the CoLaus study,

a population-based study of 6,188 Lausanne residents aged 35 to
75 years [29].

Sanger sequencing data
Sanger sequence data for the exons and flanking regions of

seven genes including PLA2G7 from 1,998 individuals were
provided by GlaxoSmithKline (GSK). Methods for performing
the sequencing for the PLA2G7 gene and the additional 6 genes

have been described [30]. The identity of the remaining genes was
not disclosed for proprietary reasons. Sanger sequencing has a low
error rate and is considered a gold-standard for comparison to
high-throughput sequencing studies [31,32]. For simplicity, and
since rare variants are not expected to be in high linkage
disequilibrium (LD) with surrounding variants, we imputed the
missing values of each rare variant independently from others
based on the computed MAF. The percentage of missing
genotypes per variant in a gene ranged from 3% to 11%, with
an average of 5.5% individual missing genotype information per
variant, across all genes (Table 2). All non-polymorphic base-pair
markers were removed from the sequence data.

All seven genes contained both rare and common variants: the
number of polymorphic variants ranged from 29 to 128, and the
proportion of variants with a MAF#1% ranged from 81% to
93%. The majority of these variants were extremely rare, with an
average of 55% of all variants across all genes being singletons.
Table 2 and Table 3 describe the allelic frequencies, and rare
variant distribution of all seven genes. We used these known
genotypes combined with phenotype simulations to compare
several commonly-used and novel statistical methods developed
for rare variants and continuous phenotypes.

Parameters influencing rare variant associations with
complex traits

We developed two simulation sets to illustrate the power of a
variety of commonly-held hypotheses about the possible effects of
rare variants on complex traits. In the first set, we tested collapsing

Figure 5. Dichotomous traits: Relationship between effect size, proportion of causal variants, and power, when causal variants only
have a deleterious effect. Each box corresponds to a different proportion of causal variants involved in the relationship between rare variants and
continuous traits (from left to right, 10, 15, 20 and 30%). On the x-axis, effect sizes are in standard deviations and correspond to the absolute value of
the average size effect.
doi:10.1371/journal.pgen.1002496.g005
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What is the best method 
to detect rare variants?phenotypes, but their power can vary largely when there is

departure from this main hypothesis.

We next assessed to what extent power is influenced by the

effect size and proportion of causal rare variants. In the next set of

simulations, we varied these two parameters to explore more

systematically how much they influence the strength of the signal

between genes and complex traits. The proportions of causal

variants varied from 10, 15, 20, and 30% of all rare variants,

where the causal variants were chosen at random from the

polymorphisms that had low frequency (i.e., MAF#1%). We

assumed seven possible values for the mean effects: 0.5, 0.75, 1,

1.25, 1.5, 2, and 2.5 standard deviations.

Table 1. Summary of phenotype simulations and hypotheses.

Condition to be
selected as a causal
rare variants Assumption

Number of causal
variants

Mean effect size if
carrying allele from a
causal variant

Scenario 1
Null

NONE No association NA 0

Scenario 2
Positive control for collapsing models

MAF,0.01 At least one causal rare implies

deleterious
at least one rare 21.64

Scenario 3
Mixture of rare and common SNPs

MAF,0.01 Causal SNPs are deleterious 4 rare and 4 common 21.64 or 20.07

Scenario 4
Positive control for SKAT and WOD:

Mixture of protective and deleterious

SNP

MAF,0.01 15% causal SNPs:
7.5% deleterious, 7.5%
protective

15% 21.64 or +1.64

Scenario 5
Positive control for Weighting

with sampling 1/MAF

No restriction Causal SNPs are deleterious,

sampling with probability 1/MAF
10% of rare SNPs Largest effect: 22.5

Effect proportional to 1/MAF

Scenario 6
Positive control for Weighting with

uniform sampling

No restriction idem 9, sampling of causal
SNP is uniform

10% of all SNPs Largest effect: 22.5
Effect proportional to 1/MAF

doi:10.1371/journal.pgen.1002496.t001

Figure 1. Power across all methods, per scenario, as described in Table 1, for the average across the seven genes. Footnote: Note that

in some scenarios, different methods overlap. This is the case for scenario 1 and 2, where all methods give similar power.

doi:10.1371/journal.pgen.1002496.g001
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power across the range of these relationships, even in a large
sample size. Analysis using different methods clearly imposes an
additional multiple testing burden, which cannot be easily
addressed. One, though somewhat cumbersome, way to solve this
problem would be by derivation of empirical P-values taking into
account the variety of methods tested. Another, more straightfor-
ward, approach would be to undertake replication in an
independent sample, using the method which demonstrated best
results at the discovery stage.

In this paper, we have also developed a new method
conceptually based on Liu and Leal’s KBAC method [2] to detect
the association between rare variants and quantitative traits. Our
extension of [2] is implemented in R and is available from the

authors. We have also developed a simulation framework to
compare all major novel statistical methods to identify the
contribution of rare variants to continuous phenotypes under
identical conditions. Our new approach performs poorly if all rare
variants act in the same direction, but performs well when variants
can either increase or decrease phenotype and have large effect.
We note that the presence of randomly assigned rare variants of
smaller effect in size, all tests have a distribution of test statistics
that follows the null distribution (see Text S1).

Collapsing methods demonstrate increasing power when the
trait varies with an increasing number of rare alleles. However,
examples exist where protective and deleterious rare alleles are
present in a gene [21], and in such situations, collapsing methods
do not perform well. On the other hand, SKAT and WOD
performed extremely well compared to other methods in the
continuous traits scenarios, and dichotomous traits (SKAT only)
scenarios, respectively. SKAT in particular, was the only method
that performed well for dichotomous traits when variants could be
protective or deleterious. Methods like WE that assign more
weight to rarer alleles are promising, but only if the gene harbors
several causal variants whose effects are each inversely propor-
tional to their MAF. However, we note that the VT method still
outperforms WE even when employing this assumption.

Our study also provides empirical data to judge the value of
dichotomizing a continuous trait and sequencing only its extremes.
While our design included the extreme quarters of the distribution,
thereby eliminating the need to sequence half the study population
and consequently reducing sequencing costs substantially, we note

Figure 3. Continuous traits: Relationship between effect size, proportion of causal variants, and power. All causal variants have a
deleterious effect. Each box corresponds to a different proportion of causal variants involved in the relationship between rare variants and
continuous traits (from left to right, 10, 15, 20 and 30%). On the x-axis, effect sizes are in standard deviations and correspond to the absolute value of
the average size effect.
doi:10.1371/journal.pgen.1002496.g003

Table 4. Proportion of variance explained by rare variants.

0.5 SD 0.75 SD 1.0 SD 1.25 SD 1.5 SD 2.0 SD 2.5 SD

10% of
causal

0.005 0.012 0.022 0.034 0.049 0.086 0.135

15% of
causal

0.008 0.018 0.032 0.051 0.073 0.129 0.202

20% of
causal

0.011 0.024 0.043 0.067 0.097 0.172 0.269

30% of
causal

0.016 0.036 0.064 0.100 0.144 0.256 0.400

doi:10.1371/journal.pgen.1002496.t004
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that power was similar to that derived from the entire distribution
particularly only when the proportion of causal variants was high
and the effect sizes moderate. Nonetheless, sampling of the
extremes remains an attractive study design, particularly if the
sampled population is large and a more extreme sub-population is
selected.

Methods have been proposed to weight the relative importance
of rare variants based on various parameters including their
estimated deleterious effect on protein function [17,27]. For
example, the incorporation of estimated functional information,
such as the potential effect of an amino acid change as estimated
by Polyphen or SIFT, might improve power. However, these
scores have been criticized for their high level of misclassification
[22]. Moreover, functional prediction is more challenging when
the variants are non-coding.

The spectrum and frequencies of rare genetic variants are
known to depend on ancestry and age of the population studied
[28]. In this work, we have assumed that our sample consists of a
homogeneous population without stratification into population
subgroups. All the methods that we have examined could find false
associations if population sub-strata existed and were associated
with the phenotype, therefore particular attention must be paid to
population structure when designing rare variant studies.

One of the strengths of our study is the use of Sanger
sequencing data, rather than simulated genotyping data. We have
been able to avoid the simulation of such data by using fully
Sanger-sequenced data on nearly 2,000 individuals at seven
genes. Therefore, no genotypic hypotheses were made to

generate the sequence data. Furthermore, the sample size
employed is among the largest sequenced datasets in the world
at present. Despite the fact that gene 3 had more missing data
and fewer variants, we note that the power results derived from
this gene are similar to all other genes.

We note that our simulations assumed no additive effects when
an individual carries multiple rare variants. However, we note that
very few individuals carry 2 or more rare variants (Table 3). In
addition, we assumed that rare variant effects take precedence
over common variant effects.

In light of our results, we recommend that single-marker tests
should not be used alone when rare variants are present and are
assumed to have small-to-moderate effects on the trait of interest.
On the other hand, as power across all novel rare variants methods
is generally low, the potential for identifying rare variant
associations using gene-based analysis strategies requires improve-
ment. Ideally, the true underlying nature of the association
between the gene and the phenotype should determine the choice
of statistical method, however, this relationship is almost always
unknown. Therefore, performing sensitivity analyses, i.e., assessing
different methods that perform differently under various condi-
tions might be a helpful option in order to interpret the results.
Furthermore we suggest that if one method identifies a gene of
interest that replication of this result should be performed in an
independent sample using the same statistical method. All methods
seemed to perform adequately under their specific model
hypotheses, but do not perform as well when these hypotheses
are violated.

Figure 4. Continuous traits: Relationship between effect size, proportion of causal variants, and power, when causal variants are a
mixture of protective and deleterious effects. Each box corresponds to a different proportion of causal variants involved in the relationship
between rare variants and continuous traits (from left to right, 10, 15, 20 and 30%). On the x-axis, effect sizes are in standard deviations and
correspond to the absolute value of the average size effect.
doi:10.1371/journal.pgen.1002496.g004
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In the next few years, advances in sequencing technology will
enable the production of large quantities of sequence data on large
numbers of individuals, allowing for the cost-effective identification of
rare variants. These data will enable researchers to investigate the role
that rare variants play in disease etiology, in addition to uncovering
functional variants. Our results may provide guidance in the
planning, analysis and interpretation of these large-scale initiatives.

Materials and Methods

Ethics statement
The work described in this manuscript represents a re-use of

data and no new human interventions were conducted. No
additional IRB approvals were sought for this specific portion of
the work. The Committee on Ethics in Clinical Research, CHUV,
Lausanne University, Lausanne, Switzerland approved the
original protocols for sample collection.

Study sample
The subjects used in this paper are a subset of the CoLaus study,

a population-based study of 6,188 Lausanne residents aged 35 to
75 years [29].

Sanger sequencing data
Sanger sequence data for the exons and flanking regions of

seven genes including PLA2G7 from 1,998 individuals were
provided by GlaxoSmithKline (GSK). Methods for performing
the sequencing for the PLA2G7 gene and the additional 6 genes

have been described [30]. The identity of the remaining genes was
not disclosed for proprietary reasons. Sanger sequencing has a low
error rate and is considered a gold-standard for comparison to
high-throughput sequencing studies [31,32]. For simplicity, and
since rare variants are not expected to be in high linkage
disequilibrium (LD) with surrounding variants, we imputed the
missing values of each rare variant independently from others
based on the computed MAF. The percentage of missing
genotypes per variant in a gene ranged from 3% to 11%, with
an average of 5.5% individual missing genotype information per
variant, across all genes (Table 2). All non-polymorphic base-pair
markers were removed from the sequence data.

All seven genes contained both rare and common variants: the
number of polymorphic variants ranged from 29 to 128, and the
proportion of variants with a MAF#1% ranged from 81% to
93%. The majority of these variants were extremely rare, with an
average of 55% of all variants across all genes being singletons.
Table 2 and Table 3 describe the allelic frequencies, and rare
variant distribution of all seven genes. We used these known
genotypes combined with phenotype simulations to compare
several commonly-used and novel statistical methods developed
for rare variants and continuous phenotypes.

Parameters influencing rare variant associations with
complex traits

We developed two simulation sets to illustrate the power of a
variety of commonly-held hypotheses about the possible effects of
rare variants on complex traits. In the first set, we tested collapsing

Figure 5. Dichotomous traits: Relationship between effect size, proportion of causal variants, and power, when causal variants only
have a deleterious effect. Each box corresponds to a different proportion of causal variants involved in the relationship between rare variants and
continuous traits (from left to right, 10, 15, 20 and 30%). On the x-axis, effect sizes are in standard deviations and correspond to the absolute value of
the average size effect.
doi:10.1371/journal.pgen.1002496.g005
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phenotypes, but their power can vary largely when there is

departure from this main hypothesis.

We next assessed to what extent power is influenced by the

effect size and proportion of causal rare variants. In the next set of

simulations, we varied these two parameters to explore more

systematically how much they influence the strength of the signal

between genes and complex traits. The proportions of causal

variants varied from 10, 15, 20, and 30% of all rare variants,

where the causal variants were chosen at random from the

polymorphisms that had low frequency (i.e., MAF#1%). We

assumed seven possible values for the mean effects: 0.5, 0.75, 1,

1.25, 1.5, 2, and 2.5 standard deviations.

Table 1. Summary of phenotype simulations and hypotheses.

Condition to be
selected as a causal
rare variants Assumption

Number of causal
variants

Mean effect size if
carrying allele from a
causal variant

Scenario 1
Null

NONE No association NA 0

Scenario 2
Positive control for collapsing models

MAF,0.01 At least one causal rare implies

deleterious
at least one rare 21.64

Scenario 3
Mixture of rare and common SNPs

MAF,0.01 Causal SNPs are deleterious 4 rare and 4 common 21.64 or 20.07

Scenario 4
Positive control for SKAT and WOD:

Mixture of protective and deleterious

SNP

MAF,0.01 15% causal SNPs:
7.5% deleterious, 7.5%
protective

15% 21.64 or +1.64

Scenario 5
Positive control for Weighting

with sampling 1/MAF

No restriction Causal SNPs are deleterious,

sampling with probability 1/MAF
10% of rare SNPs Largest effect: 22.5

Effect proportional to 1/MAF

Scenario 6
Positive control for Weighting with

uniform sampling

No restriction idem 9, sampling of causal
SNP is uniform

10% of all SNPs Largest effect: 22.5
Effect proportional to 1/MAF

doi:10.1371/journal.pgen.1002496.t001

Figure 1. Power across all methods, per scenario, as described in Table 1, for the average across the seven genes. Footnote: Note that

in some scenarios, different methods overlap. This is the case for scenario 1 and 2, where all methods give similar power.

doi:10.1371/journal.pgen.1002496.g001
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that power was similar to that derived from the entire distribution
particularly only when the proportion of causal variants was high
and the effect sizes moderate. Nonetheless, sampling of the
extremes remains an attractive study design, particularly if the
sampled population is large and a more extreme sub-population is
selected.

Methods have been proposed to weight the relative importance
of rare variants based on various parameters including their
estimated deleterious effect on protein function [17,27]. For
example, the incorporation of estimated functional information,
such as the potential effect of an amino acid change as estimated
by Polyphen or SIFT, might improve power. However, these
scores have been criticized for their high level of misclassification
[22]. Moreover, functional prediction is more challenging when
the variants are non-coding.

The spectrum and frequencies of rare genetic variants are
known to depend on ancestry and age of the population studied
[28]. In this work, we have assumed that our sample consists of a
homogeneous population without stratification into population
subgroups. All the methods that we have examined could find false
associations if population sub-strata existed and were associated
with the phenotype, therefore particular attention must be paid to
population structure when designing rare variant studies.

One of the strengths of our study is the use of Sanger
sequencing data, rather than simulated genotyping data. We have
been able to avoid the simulation of such data by using fully
Sanger-sequenced data on nearly 2,000 individuals at seven
genes. Therefore, no genotypic hypotheses were made to

generate the sequence data. Furthermore, the sample size
employed is among the largest sequenced datasets in the world
at present. Despite the fact that gene 3 had more missing data
and fewer variants, we note that the power results derived from
this gene are similar to all other genes.

We note that our simulations assumed no additive effects when
an individual carries multiple rare variants. However, we note that
very few individuals carry 2 or more rare variants (Table 3). In
addition, we assumed that rare variant effects take precedence
over common variant effects.

In light of our results, we recommend that single-marker tests
should not be used alone when rare variants are present and are
assumed to have small-to-moderate effects on the trait of interest.
On the other hand, as power across all novel rare variants methods
is generally low, the potential for identifying rare variant
associations using gene-based analysis strategies requires improve-
ment. Ideally, the true underlying nature of the association
between the gene and the phenotype should determine the choice
of statistical method, however, this relationship is almost always
unknown. Therefore, performing sensitivity analyses, i.e., assessing
different methods that perform differently under various condi-
tions might be a helpful option in order to interpret the results.
Furthermore we suggest that if one method identifies a gene of
interest that replication of this result should be performed in an
independent sample using the same statistical method. All methods
seemed to perform adequately under their specific model
hypotheses, but do not perform as well when these hypotheses
are violated.

Figure 4. Continuous traits: Relationship between effect size, proportion of causal variants, and power, when causal variants are a
mixture of protective and deleterious effects. Each box corresponds to a different proportion of causal variants involved in the relationship
between rare variants and continuous traits (from left to right, 10, 15, 20 and 30%). On the x-axis, effect sizes are in standard deviations and
correspond to the absolute value of the average size effect.
doi:10.1371/journal.pgen.1002496.g004
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In the next few years, advances in sequencing technology will
enable the production of large quantities of sequence data on large
numbers of individuals, allowing for the cost-effective identification of
rare variants. These data will enable researchers to investigate the role
that rare variants play in disease etiology, in addition to uncovering
functional variants. Our results may provide guidance in the
planning, analysis and interpretation of these large-scale initiatives.

Materials and Methods

Ethics statement
The work described in this manuscript represents a re-use of

data and no new human interventions were conducted. No
additional IRB approvals were sought for this specific portion of
the work. The Committee on Ethics in Clinical Research, CHUV,
Lausanne University, Lausanne, Switzerland approved the
original protocols for sample collection.

Study sample
The subjects used in this paper are a subset of the CoLaus study,

a population-based study of 6,188 Lausanne residents aged 35 to
75 years [29].

Sanger sequencing data
Sanger sequence data for the exons and flanking regions of

seven genes including PLA2G7 from 1,998 individuals were
provided by GlaxoSmithKline (GSK). Methods for performing
the sequencing for the PLA2G7 gene and the additional 6 genes

have been described [30]. The identity of the remaining genes was
not disclosed for proprietary reasons. Sanger sequencing has a low
error rate and is considered a gold-standard for comparison to
high-throughput sequencing studies [31,32]. For simplicity, and
since rare variants are not expected to be in high linkage
disequilibrium (LD) with surrounding variants, we imputed the
missing values of each rare variant independently from others
based on the computed MAF. The percentage of missing
genotypes per variant in a gene ranged from 3% to 11%, with
an average of 5.5% individual missing genotype information per
variant, across all genes (Table 2). All non-polymorphic base-pair
markers were removed from the sequence data.

All seven genes contained both rare and common variants: the
number of polymorphic variants ranged from 29 to 128, and the
proportion of variants with a MAF#1% ranged from 81% to
93%. The majority of these variants were extremely rare, with an
average of 55% of all variants across all genes being singletons.
Table 2 and Table 3 describe the allelic frequencies, and rare
variant distribution of all seven genes. We used these known
genotypes combined with phenotype simulations to compare
several commonly-used and novel statistical methods developed
for rare variants and continuous phenotypes.

Parameters influencing rare variant associations with
complex traits

We developed two simulation sets to illustrate the power of a
variety of commonly-held hypotheses about the possible effects of
rare variants on complex traits. In the first set, we tested collapsing

Figure 5. Dichotomous traits: Relationship between effect size, proportion of causal variants, and power, when causal variants only
have a deleterious effect. Each box corresponds to a different proportion of causal variants involved in the relationship between rare variants and
continuous traits (from left to right, 10, 15, 20 and 30%). On the x-axis, effect sizes are in standard deviations and correspond to the absolute value of
the average size effect.
doi:10.1371/journal.pgen.1002496.g005

Power of Rare Variant Methods

PLoS Genetics | www.plosgenetics.org 8 February 2012 | Volume 8 | Issue 2 | e1002496

phenotypes, but their power can vary largely when there is

departure from this main hypothesis.

We next assessed to what extent power is influenced by the

effect size and proportion of causal rare variants. In the next set of

simulations, we varied these two parameters to explore more

systematically how much they influence the strength of the signal

between genes and complex traits. The proportions of causal

variants varied from 10, 15, 20, and 30% of all rare variants,

where the causal variants were chosen at random from the

polymorphisms that had low frequency (i.e., MAF#1%). We

assumed seven possible values for the mean effects: 0.5, 0.75, 1,

1.25, 1.5, 2, and 2.5 standard deviations.

Table 1. Summary of phenotype simulations and hypotheses.

Condition to be
selected as a causal
rare variants Assumption

Number of causal
variants

Mean effect size if
carrying allele from a
causal variant

Scenario 1
Null

NONE No association NA 0

Scenario 2
Positive control for collapsing models

MAF,0.01 At least one causal rare implies

deleterious
at least one rare 21.64

Scenario 3
Mixture of rare and common SNPs

MAF,0.01 Causal SNPs are deleterious 4 rare and 4 common 21.64 or 20.07

Scenario 4
Positive control for SKAT and WOD:

Mixture of protective and deleterious

SNP

MAF,0.01 15% causal SNPs:
7.5% deleterious, 7.5%
protective

15% 21.64 or +1.64

Scenario 5
Positive control for Weighting

with sampling 1/MAF

No restriction Causal SNPs are deleterious,

sampling with probability 1/MAF
10% of rare SNPs Largest effect: 22.5

Effect proportional to 1/MAF

Scenario 6
Positive control for Weighting with

uniform sampling

No restriction idem 9, sampling of causal
SNP is uniform

10% of all SNPs Largest effect: 22.5
Effect proportional to 1/MAF

doi:10.1371/journal.pgen.1002496.t001

Figure 1. Power across all methods, per scenario, as described in Table 1, for the average across the seven genes. Footnote: Note that

in some scenarios, different methods overlap. This is the case for scenario 1 and 2, where all methods give similar power.

doi:10.1371/journal.pgen.1002496.g001
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power across the range of these relationships, even in a large
sample size. Analysis using different methods clearly imposes an
additional multiple testing burden, which cannot be easily
addressed. One, though somewhat cumbersome, way to solve this
problem would be by derivation of empirical P-values taking into
account the variety of methods tested. Another, more straightfor-
ward, approach would be to undertake replication in an
independent sample, using the method which demonstrated best
results at the discovery stage.

In this paper, we have also developed a new method
conceptually based on Liu and Leal’s KBAC method [2] to detect
the association between rare variants and quantitative traits. Our
extension of [2] is implemented in R and is available from the

authors. We have also developed a simulation framework to
compare all major novel statistical methods to identify the
contribution of rare variants to continuous phenotypes under
identical conditions. Our new approach performs poorly if all rare
variants act in the same direction, but performs well when variants
can either increase or decrease phenotype and have large effect.
We note that the presence of randomly assigned rare variants of
smaller effect in size, all tests have a distribution of test statistics
that follows the null distribution (see Text S1).

Collapsing methods demonstrate increasing power when the
trait varies with an increasing number of rare alleles. However,
examples exist where protective and deleterious rare alleles are
present in a gene [21], and in such situations, collapsing methods
do not perform well. On the other hand, SKAT and WOD
performed extremely well compared to other methods in the
continuous traits scenarios, and dichotomous traits (SKAT only)
scenarios, respectively. SKAT in particular, was the only method
that performed well for dichotomous traits when variants could be
protective or deleterious. Methods like WE that assign more
weight to rarer alleles are promising, but only if the gene harbors
several causal variants whose effects are each inversely propor-
tional to their MAF. However, we note that the VT method still
outperforms WE even when employing this assumption.

Our study also provides empirical data to judge the value of
dichotomizing a continuous trait and sequencing only its extremes.
While our design included the extreme quarters of the distribution,
thereby eliminating the need to sequence half the study population
and consequently reducing sequencing costs substantially, we note

Figure 3. Continuous traits: Relationship between effect size, proportion of causal variants, and power. All causal variants have a
deleterious effect. Each box corresponds to a different proportion of causal variants involved in the relationship between rare variants and
continuous traits (from left to right, 10, 15, 20 and 30%). On the x-axis, effect sizes are in standard deviations and correspond to the absolute value of
the average size effect.
doi:10.1371/journal.pgen.1002496.g003

Table 4. Proportion of variance explained by rare variants.

0.5 SD 0.75 SD 1.0 SD 1.25 SD 1.5 SD 2.0 SD 2.5 SD

10% of
causal

0.005 0.012 0.022 0.034 0.049 0.086 0.135

15% of
causal

0.008 0.018 0.032 0.051 0.073 0.129 0.202

20% of
causal

0.011 0.024 0.043 0.067 0.097 0.172 0.269

30% of
causal

0.016 0.036 0.064 0.100 0.144 0.256 0.400

doi:10.1371/journal.pgen.1002496.t004
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that power was similar to that derived from the entire distribution
particularly only when the proportion of causal variants was high
and the effect sizes moderate. Nonetheless, sampling of the
extremes remains an attractive study design, particularly if the
sampled population is large and a more extreme sub-population is
selected.

Methods have been proposed to weight the relative importance
of rare variants based on various parameters including their
estimated deleterious effect on protein function [17,27]. For
example, the incorporation of estimated functional information,
such as the potential effect of an amino acid change as estimated
by Polyphen or SIFT, might improve power. However, these
scores have been criticized for their high level of misclassification
[22]. Moreover, functional prediction is more challenging when
the variants are non-coding.

The spectrum and frequencies of rare genetic variants are
known to depend on ancestry and age of the population studied
[28]. In this work, we have assumed that our sample consists of a
homogeneous population without stratification into population
subgroups. All the methods that we have examined could find false
associations if population sub-strata existed and were associated
with the phenotype, therefore particular attention must be paid to
population structure when designing rare variant studies.

One of the strengths of our study is the use of Sanger
sequencing data, rather than simulated genotyping data. We have
been able to avoid the simulation of such data by using fully
Sanger-sequenced data on nearly 2,000 individuals at seven
genes. Therefore, no genotypic hypotheses were made to

generate the sequence data. Furthermore, the sample size
employed is among the largest sequenced datasets in the world
at present. Despite the fact that gene 3 had more missing data
and fewer variants, we note that the power results derived from
this gene are similar to all other genes.

We note that our simulations assumed no additive effects when
an individual carries multiple rare variants. However, we note that
very few individuals carry 2 or more rare variants (Table 3). In
addition, we assumed that rare variant effects take precedence
over common variant effects.

In light of our results, we recommend that single-marker tests
should not be used alone when rare variants are present and are
assumed to have small-to-moderate effects on the trait of interest.
On the other hand, as power across all novel rare variants methods
is generally low, the potential for identifying rare variant
associations using gene-based analysis strategies requires improve-
ment. Ideally, the true underlying nature of the association
between the gene and the phenotype should determine the choice
of statistical method, however, this relationship is almost always
unknown. Therefore, performing sensitivity analyses, i.e., assessing
different methods that perform differently under various condi-
tions might be a helpful option in order to interpret the results.
Furthermore we suggest that if one method identifies a gene of
interest that replication of this result should be performed in an
independent sample using the same statistical method. All methods
seemed to perform adequately under their specific model
hypotheses, but do not perform as well when these hypotheses
are violated.

Figure 4. Continuous traits: Relationship between effect size, proportion of causal variants, and power, when causal variants are a
mixture of protective and deleterious effects. Each box corresponds to a different proportion of causal variants involved in the relationship
between rare variants and continuous traits (from left to right, 10, 15, 20 and 30%). On the x-axis, effect sizes are in standard deviations and
correspond to the absolute value of the average size effect.
doi:10.1371/journal.pgen.1002496.g004
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In the next few years, advances in sequencing technology will
enable the production of large quantities of sequence data on large
numbers of individuals, allowing for the cost-effective identification of
rare variants. These data will enable researchers to investigate the role
that rare variants play in disease etiology, in addition to uncovering
functional variants. Our results may provide guidance in the
planning, analysis and interpretation of these large-scale initiatives.

Materials and Methods

Ethics statement
The work described in this manuscript represents a re-use of

data and no new human interventions were conducted. No
additional IRB approvals were sought for this specific portion of
the work. The Committee on Ethics in Clinical Research, CHUV,
Lausanne University, Lausanne, Switzerland approved the
original protocols for sample collection.

Study sample
The subjects used in this paper are a subset of the CoLaus study,

a population-based study of 6,188 Lausanne residents aged 35 to
75 years [29].

Sanger sequencing data
Sanger sequence data for the exons and flanking regions of

seven genes including PLA2G7 from 1,998 individuals were
provided by GlaxoSmithKline (GSK). Methods for performing
the sequencing for the PLA2G7 gene and the additional 6 genes

have been described [30]. The identity of the remaining genes was
not disclosed for proprietary reasons. Sanger sequencing has a low
error rate and is considered a gold-standard for comparison to
high-throughput sequencing studies [31,32]. For simplicity, and
since rare variants are not expected to be in high linkage
disequilibrium (LD) with surrounding variants, we imputed the
missing values of each rare variant independently from others
based on the computed MAF. The percentage of missing
genotypes per variant in a gene ranged from 3% to 11%, with
an average of 5.5% individual missing genotype information per
variant, across all genes (Table 2). All non-polymorphic base-pair
markers were removed from the sequence data.

All seven genes contained both rare and common variants: the
number of polymorphic variants ranged from 29 to 128, and the
proportion of variants with a MAF#1% ranged from 81% to
93%. The majority of these variants were extremely rare, with an
average of 55% of all variants across all genes being singletons.
Table 2 and Table 3 describe the allelic frequencies, and rare
variant distribution of all seven genes. We used these known
genotypes combined with phenotype simulations to compare
several commonly-used and novel statistical methods developed
for rare variants and continuous phenotypes.

Parameters influencing rare variant associations with
complex traits

We developed two simulation sets to illustrate the power of a
variety of commonly-held hypotheses about the possible effects of
rare variants on complex traits. In the first set, we tested collapsing

Figure 5. Dichotomous traits: Relationship between effect size, proportion of causal variants, and power, when causal variants only
have a deleterious effect. Each box corresponds to a different proportion of causal variants involved in the relationship between rare variants and
continuous traits (from left to right, 10, 15, 20 and 30%). On the x-axis, effect sizes are in standard deviations and correspond to the absolute value of
the average size effect.
doi:10.1371/journal.pgen.1002496.g005
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phenotypes, but their power can vary largely when there is

departure from this main hypothesis.

We next assessed to what extent power is influenced by the

effect size and proportion of causal rare variants. In the next set of

simulations, we varied these two parameters to explore more

systematically how much they influence the strength of the signal

between genes and complex traits. The proportions of causal

variants varied from 10, 15, 20, and 30% of all rare variants,

where the causal variants were chosen at random from the

polymorphisms that had low frequency (i.e., MAF#1%). We

assumed seven possible values for the mean effects: 0.5, 0.75, 1,

1.25, 1.5, 2, and 2.5 standard deviations.

Table 1. Summary of phenotype simulations and hypotheses.

Condition to be
selected as a causal
rare variants Assumption

Number of causal
variants

Mean effect size if
carrying allele from a
causal variant

Scenario 1
Null

NONE No association NA 0

Scenario 2
Positive control for collapsing models

MAF,0.01 At least one causal rare implies

deleterious
at least one rare 21.64

Scenario 3
Mixture of rare and common SNPs

MAF,0.01 Causal SNPs are deleterious 4 rare and 4 common 21.64 or 20.07

Scenario 4
Positive control for SKAT and WOD:

Mixture of protective and deleterious

SNP

MAF,0.01 15% causal SNPs:
7.5% deleterious, 7.5%
protective

15% 21.64 or +1.64

Scenario 5
Positive control for Weighting

with sampling 1/MAF

No restriction Causal SNPs are deleterious,

sampling with probability 1/MAF
10% of rare SNPs Largest effect: 22.5

Effect proportional to 1/MAF

Scenario 6
Positive control for Weighting with

uniform sampling

No restriction idem 9, sampling of causal
SNP is uniform

10% of all SNPs Largest effect: 22.5
Effect proportional to 1/MAF

doi:10.1371/journal.pgen.1002496.t001

Figure 1. Power across all methods, per scenario, as described in Table 1, for the average across the seven genes. Footnote: Note that

in some scenarios, different methods overlap. This is the case for scenario 1 and 2, where all methods give similar power.

doi:10.1371/journal.pgen.1002496.g001

Power of Rare Variant Methods

PLoS Genetics | www.plosgenetics.org 3 February 2012 | Volume 8 | Issue 2 | e1002496

power across the range of these relationships, even in a large
sample size. Analysis using different methods clearly imposes an
additional multiple testing burden, which cannot be easily
addressed. One, though somewhat cumbersome, way to solve this
problem would be by derivation of empirical P-values taking into
account the variety of methods tested. Another, more straightfor-
ward, approach would be to undertake replication in an
independent sample, using the method which demonstrated best
results at the discovery stage.

In this paper, we have also developed a new method
conceptually based on Liu and Leal’s KBAC method [2] to detect
the association between rare variants and quantitative traits. Our
extension of [2] is implemented in R and is available from the

authors. We have also developed a simulation framework to
compare all major novel statistical methods to identify the
contribution of rare variants to continuous phenotypes under
identical conditions. Our new approach performs poorly if all rare
variants act in the same direction, but performs well when variants
can either increase or decrease phenotype and have large effect.
We note that the presence of randomly assigned rare variants of
smaller effect in size, all tests have a distribution of test statistics
that follows the null distribution (see Text S1).

Collapsing methods demonstrate increasing power when the
trait varies with an increasing number of rare alleles. However,
examples exist where protective and deleterious rare alleles are
present in a gene [21], and in such situations, collapsing methods
do not perform well. On the other hand, SKAT and WOD
performed extremely well compared to other methods in the
continuous traits scenarios, and dichotomous traits (SKAT only)
scenarios, respectively. SKAT in particular, was the only method
that performed well for dichotomous traits when variants could be
protective or deleterious. Methods like WE that assign more
weight to rarer alleles are promising, but only if the gene harbors
several causal variants whose effects are each inversely propor-
tional to their MAF. However, we note that the VT method still
outperforms WE even when employing this assumption.

Our study also provides empirical data to judge the value of
dichotomizing a continuous trait and sequencing only its extremes.
While our design included the extreme quarters of the distribution,
thereby eliminating the need to sequence half the study population
and consequently reducing sequencing costs substantially, we note

Figure 3. Continuous traits: Relationship between effect size, proportion of causal variants, and power. All causal variants have a
deleterious effect. Each box corresponds to a different proportion of causal variants involved in the relationship between rare variants and
continuous traits (from left to right, 10, 15, 20 and 30%). On the x-axis, effect sizes are in standard deviations and correspond to the absolute value of
the average size effect.
doi:10.1371/journal.pgen.1002496.g003

Table 4. Proportion of variance explained by rare variants.

0.5 SD 0.75 SD 1.0 SD 1.25 SD 1.5 SD 2.0 SD 2.5 SD

10% of
causal

0.005 0.012 0.022 0.034 0.049 0.086 0.135

15% of
causal

0.008 0.018 0.032 0.051 0.073 0.129 0.202

20% of
causal

0.011 0.024 0.043 0.067 0.097 0.172 0.269

30% of
causal

0.016 0.036 0.064 0.100 0.144 0.256 0.400

doi:10.1371/journal.pgen.1002496.t004
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In the next few years, advances in sequencing technology will
enable the production of large quantities of sequence data on large
numbers of individuals, allowing for the cost-effective identification of
rare variants. These data will enable researchers to investigate the role
that rare variants play in disease etiology, in addition to uncovering
functional variants. Our results may provide guidance in the
planning, analysis and interpretation of these large-scale initiatives.

Materials and Methods

Ethics statement
The work described in this manuscript represents a re-use of

data and no new human interventions were conducted. No
additional IRB approvals were sought for this specific portion of
the work. The Committee on Ethics in Clinical Research, CHUV,
Lausanne University, Lausanne, Switzerland approved the
original protocols for sample collection.

Study sample
The subjects used in this paper are a subset of the CoLaus study,

a population-based study of 6,188 Lausanne residents aged 35 to
75 years [29].

Sanger sequencing data
Sanger sequence data for the exons and flanking regions of

seven genes including PLA2G7 from 1,998 individuals were
provided by GlaxoSmithKline (GSK). Methods for performing
the sequencing for the PLA2G7 gene and the additional 6 genes

have been described [30]. The identity of the remaining genes was
not disclosed for proprietary reasons. Sanger sequencing has a low
error rate and is considered a gold-standard for comparison to
high-throughput sequencing studies [31,32]. For simplicity, and
since rare variants are not expected to be in high linkage
disequilibrium (LD) with surrounding variants, we imputed the
missing values of each rare variant independently from others
based on the computed MAF. The percentage of missing
genotypes per variant in a gene ranged from 3% to 11%, with
an average of 5.5% individual missing genotype information per
variant, across all genes (Table 2). All non-polymorphic base-pair
markers were removed from the sequence data.

All seven genes contained both rare and common variants: the
number of polymorphic variants ranged from 29 to 128, and the
proportion of variants with a MAF#1% ranged from 81% to
93%. The majority of these variants were extremely rare, with an
average of 55% of all variants across all genes being singletons.
Table 2 and Table 3 describe the allelic frequencies, and rare
variant distribution of all seven genes. We used these known
genotypes combined with phenotype simulations to compare
several commonly-used and novel statistical methods developed
for rare variants and continuous phenotypes.

Parameters influencing rare variant associations with
complex traits

We developed two simulation sets to illustrate the power of a
variety of commonly-held hypotheses about the possible effects of
rare variants on complex traits. In the first set, we tested collapsing

Figure 5. Dichotomous traits: Relationship between effect size, proportion of causal variants, and power, when causal variants only
have a deleterious effect. Each box corresponds to a different proportion of causal variants involved in the relationship between rare variants and
continuous traits (from left to right, 10, 15, 20 and 30%). On the x-axis, effect sizes are in standard deviations and correspond to the absolute value of
the average size effect.
doi:10.1371/journal.pgen.1002496.g005
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phenotypes, but their power can vary largely when there is

departure from this main hypothesis.

We next assessed to what extent power is influenced by the

effect size and proportion of causal rare variants. In the next set of

simulations, we varied these two parameters to explore more

systematically how much they influence the strength of the signal

between genes and complex traits. The proportions of causal

variants varied from 10, 15, 20, and 30% of all rare variants,

where the causal variants were chosen at random from the

polymorphisms that had low frequency (i.e., MAF#1%). We

assumed seven possible values for the mean effects: 0.5, 0.75, 1,

1.25, 1.5, 2, and 2.5 standard deviations.

Table 1. Summary of phenotype simulations and hypotheses.

Condition to be
selected as a causal
rare variants Assumption

Number of causal
variants

Mean effect size if
carrying allele from a
causal variant

Scenario 1
Null

NONE No association NA 0

Scenario 2
Positive control for collapsing models

MAF,0.01 At least one causal rare implies

deleterious
at least one rare 21.64

Scenario 3
Mixture of rare and common SNPs

MAF,0.01 Causal SNPs are deleterious 4 rare and 4 common 21.64 or 20.07

Scenario 4
Positive control for SKAT and WOD:

Mixture of protective and deleterious

SNP

MAF,0.01 15% causal SNPs:
7.5% deleterious, 7.5%
protective

15% 21.64 or +1.64

Scenario 5
Positive control for Weighting

with sampling 1/MAF

No restriction Causal SNPs are deleterious,

sampling with probability 1/MAF
10% of rare SNPs Largest effect: 22.5

Effect proportional to 1/MAF

Scenario 6
Positive control for Weighting with

uniform sampling

No restriction idem 9, sampling of causal
SNP is uniform

10% of all SNPs Largest effect: 22.5
Effect proportional to 1/MAF

doi:10.1371/journal.pgen.1002496.t001

Figure 1. Power across all methods, per scenario, as described in Table 1, for the average across the seven genes. Footnote: Note that

in some scenarios, different methods overlap. This is the case for scenario 1 and 2, where all methods give similar power.

doi:10.1371/journal.pgen.1002496.g001
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power across the range of these relationships, even in a large
sample size. Analysis using different methods clearly imposes an
additional multiple testing burden, which cannot be easily
addressed. One, though somewhat cumbersome, way to solve this
problem would be by derivation of empirical P-values taking into
account the variety of methods tested. Another, more straightfor-
ward, approach would be to undertake replication in an
independent sample, using the method which demonstrated best
results at the discovery stage.

In this paper, we have also developed a new method
conceptually based on Liu and Leal’s KBAC method [2] to detect
the association between rare variants and quantitative traits. Our
extension of [2] is implemented in R and is available from the

authors. We have also developed a simulation framework to
compare all major novel statistical methods to identify the
contribution of rare variants to continuous phenotypes under
identical conditions. Our new approach performs poorly if all rare
variants act in the same direction, but performs well when variants
can either increase or decrease phenotype and have large effect.
We note that the presence of randomly assigned rare variants of
smaller effect in size, all tests have a distribution of test statistics
that follows the null distribution (see Text S1).

Collapsing methods demonstrate increasing power when the
trait varies with an increasing number of rare alleles. However,
examples exist where protective and deleterious rare alleles are
present in a gene [21], and in such situations, collapsing methods
do not perform well. On the other hand, SKAT and WOD
performed extremely well compared to other methods in the
continuous traits scenarios, and dichotomous traits (SKAT only)
scenarios, respectively. SKAT in particular, was the only method
that performed well for dichotomous traits when variants could be
protective or deleterious. Methods like WE that assign more
weight to rarer alleles are promising, but only if the gene harbors
several causal variants whose effects are each inversely propor-
tional to their MAF. However, we note that the VT method still
outperforms WE even when employing this assumption.

Our study also provides empirical data to judge the value of
dichotomizing a continuous trait and sequencing only its extremes.
While our design included the extreme quarters of the distribution,
thereby eliminating the need to sequence half the study population
and consequently reducing sequencing costs substantially, we note

Figure 3. Continuous traits: Relationship between effect size, proportion of causal variants, and power. All causal variants have a
deleterious effect. Each box corresponds to a different proportion of causal variants involved in the relationship between rare variants and
continuous traits (from left to right, 10, 15, 20 and 30%). On the x-axis, effect sizes are in standard deviations and correspond to the absolute value of
the average size effect.
doi:10.1371/journal.pgen.1002496.g003

Table 4. Proportion of variance explained by rare variants.

0.5 SD 0.75 SD 1.0 SD 1.25 SD 1.5 SD 2.0 SD 2.5 SD

10% of
causal

0.005 0.012 0.022 0.034 0.049 0.086 0.135

15% of
causal

0.008 0.018 0.032 0.051 0.073 0.129 0.202

20% of
causal

0.011 0.024 0.043 0.067 0.097 0.172 0.269

30% of
causal

0.016 0.036 0.064 0.100 0.144 0.256 0.400

doi:10.1371/journal.pgen.1002496.t004
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that power was similar to that derived from the entire distribution
particularly only when the proportion of causal variants was high
and the effect sizes moderate. Nonetheless, sampling of the
extremes remains an attractive study design, particularly if the
sampled population is large and a more extreme sub-population is
selected.

Methods have been proposed to weight the relative importance
of rare variants based on various parameters including their
estimated deleterious effect on protein function [17,27]. For
example, the incorporation of estimated functional information,
such as the potential effect of an amino acid change as estimated
by Polyphen or SIFT, might improve power. However, these
scores have been criticized for their high level of misclassification
[22]. Moreover, functional prediction is more challenging when
the variants are non-coding.

The spectrum and frequencies of rare genetic variants are
known to depend on ancestry and age of the population studied
[28]. In this work, we have assumed that our sample consists of a
homogeneous population without stratification into population
subgroups. All the methods that we have examined could find false
associations if population sub-strata existed and were associated
with the phenotype, therefore particular attention must be paid to
population structure when designing rare variant studies.

One of the strengths of our study is the use of Sanger
sequencing data, rather than simulated genotyping data. We have
been able to avoid the simulation of such data by using fully
Sanger-sequenced data on nearly 2,000 individuals at seven
genes. Therefore, no genotypic hypotheses were made to

generate the sequence data. Furthermore, the sample size
employed is among the largest sequenced datasets in the world
at present. Despite the fact that gene 3 had more missing data
and fewer variants, we note that the power results derived from
this gene are similar to all other genes.

We note that our simulations assumed no additive effects when
an individual carries multiple rare variants. However, we note that
very few individuals carry 2 or more rare variants (Table 3). In
addition, we assumed that rare variant effects take precedence
over common variant effects.

In light of our results, we recommend that single-marker tests
should not be used alone when rare variants are present and are
assumed to have small-to-moderate effects on the trait of interest.
On the other hand, as power across all novel rare variants methods
is generally low, the potential for identifying rare variant
associations using gene-based analysis strategies requires improve-
ment. Ideally, the true underlying nature of the association
between the gene and the phenotype should determine the choice
of statistical method, however, this relationship is almost always
unknown. Therefore, performing sensitivity analyses, i.e., assessing
different methods that perform differently under various condi-
tions might be a helpful option in order to interpret the results.
Furthermore we suggest that if one method identifies a gene of
interest that replication of this result should be performed in an
independent sample using the same statistical method. All methods
seemed to perform adequately under their specific model
hypotheses, but do not perform as well when these hypotheses
are violated.

Figure 4. Continuous traits: Relationship between effect size, proportion of causal variants, and power, when causal variants are a
mixture of protective and deleterious effects. Each box corresponds to a different proportion of causal variants involved in the relationship
between rare variants and continuous traits (from left to right, 10, 15, 20 and 30%). On the x-axis, effect sizes are in standard deviations and
correspond to the absolute value of the average size effect.
doi:10.1371/journal.pgen.1002496.g004
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In the next few years, advances in sequencing technology will
enable the production of large quantities of sequence data on large
numbers of individuals, allowing for the cost-effective identification of
rare variants. These data will enable researchers to investigate the role
that rare variants play in disease etiology, in addition to uncovering
functional variants. Our results may provide guidance in the
planning, analysis and interpretation of these large-scale initiatives.

Materials and Methods

Ethics statement
The work described in this manuscript represents a re-use of

data and no new human interventions were conducted. No
additional IRB approvals were sought for this specific portion of
the work. The Committee on Ethics in Clinical Research, CHUV,
Lausanne University, Lausanne, Switzerland approved the
original protocols for sample collection.

Study sample
The subjects used in this paper are a subset of the CoLaus study,

a population-based study of 6,188 Lausanne residents aged 35 to
75 years [29].

Sanger sequencing data
Sanger sequence data for the exons and flanking regions of

seven genes including PLA2G7 from 1,998 individuals were
provided by GlaxoSmithKline (GSK). Methods for performing
the sequencing for the PLA2G7 gene and the additional 6 genes

have been described [30]. The identity of the remaining genes was
not disclosed for proprietary reasons. Sanger sequencing has a low
error rate and is considered a gold-standard for comparison to
high-throughput sequencing studies [31,32]. For simplicity, and
since rare variants are not expected to be in high linkage
disequilibrium (LD) with surrounding variants, we imputed the
missing values of each rare variant independently from others
based on the computed MAF. The percentage of missing
genotypes per variant in a gene ranged from 3% to 11%, with
an average of 5.5% individual missing genotype information per
variant, across all genes (Table 2). All non-polymorphic base-pair
markers were removed from the sequence data.

All seven genes contained both rare and common variants: the
number of polymorphic variants ranged from 29 to 128, and the
proportion of variants with a MAF#1% ranged from 81% to
93%. The majority of these variants were extremely rare, with an
average of 55% of all variants across all genes being singletons.
Table 2 and Table 3 describe the allelic frequencies, and rare
variant distribution of all seven genes. We used these known
genotypes combined with phenotype simulations to compare
several commonly-used and novel statistical methods developed
for rare variants and continuous phenotypes.

Parameters influencing rare variant associations with
complex traits

We developed two simulation sets to illustrate the power of a
variety of commonly-held hypotheses about the possible effects of
rare variants on complex traits. In the first set, we tested collapsing

Figure 5. Dichotomous traits: Relationship between effect size, proportion of causal variants, and power, when causal variants only
have a deleterious effect. Each box corresponds to a different proportion of causal variants involved in the relationship between rare variants and
continuous traits (from left to right, 10, 15, 20 and 30%). On the x-axis, effect sizes are in standard deviations and correspond to the absolute value of
the average size effect.
doi:10.1371/journal.pgen.1002496.g005
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phenotypes, but their power can vary largely when there is

departure from this main hypothesis.

We next assessed to what extent power is influenced by the

effect size and proportion of causal rare variants. In the next set of

simulations, we varied these two parameters to explore more

systematically how much they influence the strength of the signal

between genes and complex traits. The proportions of causal

variants varied from 10, 15, 20, and 30% of all rare variants,

where the causal variants were chosen at random from the

polymorphisms that had low frequency (i.e., MAF#1%). We

assumed seven possible values for the mean effects: 0.5, 0.75, 1,

1.25, 1.5, 2, and 2.5 standard deviations.

Table 1. Summary of phenotype simulations and hypotheses.

Condition to be
selected as a causal
rare variants Assumption

Number of causal
variants

Mean effect size if
carrying allele from a
causal variant

Scenario 1
Null

NONE No association NA 0

Scenario 2
Positive control for collapsing models

MAF,0.01 At least one causal rare implies

deleterious
at least one rare 21.64

Scenario 3
Mixture of rare and common SNPs

MAF,0.01 Causal SNPs are deleterious 4 rare and 4 common 21.64 or 20.07

Scenario 4
Positive control for SKAT and WOD:

Mixture of protective and deleterious

SNP

MAF,0.01 15% causal SNPs:
7.5% deleterious, 7.5%
protective

15% 21.64 or +1.64

Scenario 5
Positive control for Weighting

with sampling 1/MAF

No restriction Causal SNPs are deleterious,

sampling with probability 1/MAF
10% of rare SNPs Largest effect: 22.5

Effect proportional to 1/MAF

Scenario 6
Positive control for Weighting with

uniform sampling

No restriction idem 9, sampling of causal
SNP is uniform

10% of all SNPs Largest effect: 22.5
Effect proportional to 1/MAF

doi:10.1371/journal.pgen.1002496.t001

Figure 1. Power across all methods, per scenario, as described in Table 1, for the average across the seven genes. Footnote: Note that

in some scenarios, different methods overlap. This is the case for scenario 1 and 2, where all methods give similar power.

doi:10.1371/journal.pgen.1002496.g001
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power across the range of these relationships, even in a large
sample size. Analysis using different methods clearly imposes an
additional multiple testing burden, which cannot be easily
addressed. One, though somewhat cumbersome, way to solve this
problem would be by derivation of empirical P-values taking into
account the variety of methods tested. Another, more straightfor-
ward, approach would be to undertake replication in an
independent sample, using the method which demonstrated best
results at the discovery stage.

In this paper, we have also developed a new method
conceptually based on Liu and Leal’s KBAC method [2] to detect
the association between rare variants and quantitative traits. Our
extension of [2] is implemented in R and is available from the

authors. We have also developed a simulation framework to
compare all major novel statistical methods to identify the
contribution of rare variants to continuous phenotypes under
identical conditions. Our new approach performs poorly if all rare
variants act in the same direction, but performs well when variants
can either increase or decrease phenotype and have large effect.
We note that the presence of randomly assigned rare variants of
smaller effect in size, all tests have a distribution of test statistics
that follows the null distribution (see Text S1).

Collapsing methods demonstrate increasing power when the
trait varies with an increasing number of rare alleles. However,
examples exist where protective and deleterious rare alleles are
present in a gene [21], and in such situations, collapsing methods
do not perform well. On the other hand, SKAT and WOD
performed extremely well compared to other methods in the
continuous traits scenarios, and dichotomous traits (SKAT only)
scenarios, respectively. SKAT in particular, was the only method
that performed well for dichotomous traits when variants could be
protective or deleterious. Methods like WE that assign more
weight to rarer alleles are promising, but only if the gene harbors
several causal variants whose effects are each inversely propor-
tional to their MAF. However, we note that the VT method still
outperforms WE even when employing this assumption.

Our study also provides empirical data to judge the value of
dichotomizing a continuous trait and sequencing only its extremes.
While our design included the extreme quarters of the distribution,
thereby eliminating the need to sequence half the study population
and consequently reducing sequencing costs substantially, we note

Figure 3. Continuous traits: Relationship between effect size, proportion of causal variants, and power. All causal variants have a
deleterious effect. Each box corresponds to a different proportion of causal variants involved in the relationship between rare variants and
continuous traits (from left to right, 10, 15, 20 and 30%). On the x-axis, effect sizes are in standard deviations and correspond to the absolute value of
the average size effect.
doi:10.1371/journal.pgen.1002496.g003

Table 4. Proportion of variance explained by rare variants.

0.5 SD 0.75 SD 1.0 SD 1.25 SD 1.5 SD 2.0 SD 2.5 SD

10% of
causal

0.005 0.012 0.022 0.034 0.049 0.086 0.135

15% of
causal

0.008 0.018 0.032 0.051 0.073 0.129 0.202

20% of
causal

0.011 0.024 0.043 0.067 0.097 0.172 0.269

30% of
causal

0.016 0.036 0.064 0.100 0.144 0.256 0.400

doi:10.1371/journal.pgen.1002496.t004
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that power was similar to that derived from the entire distribution
particularly only when the proportion of causal variants was high
and the effect sizes moderate. Nonetheless, sampling of the
extremes remains an attractive study design, particularly if the
sampled population is large and a more extreme sub-population is
selected.

Methods have been proposed to weight the relative importance
of rare variants based on various parameters including their
estimated deleterious effect on protein function [17,27]. For
example, the incorporation of estimated functional information,
such as the potential effect of an amino acid change as estimated
by Polyphen or SIFT, might improve power. However, these
scores have been criticized for their high level of misclassification
[22]. Moreover, functional prediction is more challenging when
the variants are non-coding.

The spectrum and frequencies of rare genetic variants are
known to depend on ancestry and age of the population studied
[28]. In this work, we have assumed that our sample consists of a
homogeneous population without stratification into population
subgroups. All the methods that we have examined could find false
associations if population sub-strata existed and were associated
with the phenotype, therefore particular attention must be paid to
population structure when designing rare variant studies.

One of the strengths of our study is the use of Sanger
sequencing data, rather than simulated genotyping data. We have
been able to avoid the simulation of such data by using fully
Sanger-sequenced data on nearly 2,000 individuals at seven
genes. Therefore, no genotypic hypotheses were made to

generate the sequence data. Furthermore, the sample size
employed is among the largest sequenced datasets in the world
at present. Despite the fact that gene 3 had more missing data
and fewer variants, we note that the power results derived from
this gene are similar to all other genes.

We note that our simulations assumed no additive effects when
an individual carries multiple rare variants. However, we note that
very few individuals carry 2 or more rare variants (Table 3). In
addition, we assumed that rare variant effects take precedence
over common variant effects.

In light of our results, we recommend that single-marker tests
should not be used alone when rare variants are present and are
assumed to have small-to-moderate effects on the trait of interest.
On the other hand, as power across all novel rare variants methods
is generally low, the potential for identifying rare variant
associations using gene-based analysis strategies requires improve-
ment. Ideally, the true underlying nature of the association
between the gene and the phenotype should determine the choice
of statistical method, however, this relationship is almost always
unknown. Therefore, performing sensitivity analyses, i.e., assessing
different methods that perform differently under various condi-
tions might be a helpful option in order to interpret the results.
Furthermore we suggest that if one method identifies a gene of
interest that replication of this result should be performed in an
independent sample using the same statistical method. All methods
seemed to perform adequately under their specific model
hypotheses, but do not perform as well when these hypotheses
are violated.

Figure 4. Continuous traits: Relationship between effect size, proportion of causal variants, and power, when causal variants are a
mixture of protective and deleterious effects. Each box corresponds to a different proportion of causal variants involved in the relationship
between rare variants and continuous traits (from left to right, 10, 15, 20 and 30%). On the x-axis, effect sizes are in standard deviations and
correspond to the absolute value of the average size effect.
doi:10.1371/journal.pgen.1002496.g004
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phenotypes, but their power can vary largely when there is

departure from this main hypothesis.

We next assessed to what extent power is influenced by the

effect size and proportion of causal rare variants. In the next set of

simulations, we varied these two parameters to explore more

systematically how much they influence the strength of the signal

between genes and complex traits. The proportions of causal

variants varied from 10, 15, 20, and 30% of all rare variants,

where the causal variants were chosen at random from the

polymorphisms that had low frequency (i.e., MAF#1%). We

assumed seven possible values for the mean effects: 0.5, 0.75, 1,

1.25, 1.5, 2, and 2.5 standard deviations.

Table 1. Summary of phenotype simulations and hypotheses.

Condition to be
selected as a causal
rare variants Assumption

Number of causal
variants

Mean effect size if
carrying allele from a
causal variant

Scenario 1
Null

NONE No association NA 0

Scenario 2
Positive control for collapsing models

MAF,0.01 At least one causal rare implies

deleterious
at least one rare 21.64

Scenario 3
Mixture of rare and common SNPs

MAF,0.01 Causal SNPs are deleterious 4 rare and 4 common 21.64 or 20.07

Scenario 4
Positive control for SKAT and WOD:

Mixture of protective and deleterious

SNP

MAF,0.01 15% causal SNPs:
7.5% deleterious, 7.5%
protective

15% 21.64 or +1.64

Scenario 5
Positive control for Weighting

with sampling 1/MAF

No restriction Causal SNPs are deleterious,

sampling with probability 1/MAF
10% of rare SNPs Largest effect: 22.5

Effect proportional to 1/MAF

Scenario 6
Positive control for Weighting with

uniform sampling

No restriction idem 9, sampling of causal
SNP is uniform

10% of all SNPs Largest effect: 22.5
Effect proportional to 1/MAF

doi:10.1371/journal.pgen.1002496.t001

Figure 1. Power across all methods, per scenario, as described in Table 1, for the average across the seven genes. Footnote: Note that

in some scenarios, different methods overlap. This is the case for scenario 1 and 2, where all methods give similar power.

doi:10.1371/journal.pgen.1002496.g001
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power across the range of these relationships, even in a large
sample size. Analysis using different methods clearly imposes an
additional multiple testing burden, which cannot be easily
addressed. One, though somewhat cumbersome, way to solve this
problem would be by derivation of empirical P-values taking into
account the variety of methods tested. Another, more straightfor-
ward, approach would be to undertake replication in an
independent sample, using the method which demonstrated best
results at the discovery stage.

In this paper, we have also developed a new method
conceptually based on Liu and Leal’s KBAC method [2] to detect
the association between rare variants and quantitative traits. Our
extension of [2] is implemented in R and is available from the

authors. We have also developed a simulation framework to
compare all major novel statistical methods to identify the
contribution of rare variants to continuous phenotypes under
identical conditions. Our new approach performs poorly if all rare
variants act in the same direction, but performs well when variants
can either increase or decrease phenotype and have large effect.
We note that the presence of randomly assigned rare variants of
smaller effect in size, all tests have a distribution of test statistics
that follows the null distribution (see Text S1).

Collapsing methods demonstrate increasing power when the
trait varies with an increasing number of rare alleles. However,
examples exist where protective and deleterious rare alleles are
present in a gene [21], and in such situations, collapsing methods
do not perform well. On the other hand, SKAT and WOD
performed extremely well compared to other methods in the
continuous traits scenarios, and dichotomous traits (SKAT only)
scenarios, respectively. SKAT in particular, was the only method
that performed well for dichotomous traits when variants could be
protective or deleterious. Methods like WE that assign more
weight to rarer alleles are promising, but only if the gene harbors
several causal variants whose effects are each inversely propor-
tional to their MAF. However, we note that the VT method still
outperforms WE even when employing this assumption.

Our study also provides empirical data to judge the value of
dichotomizing a continuous trait and sequencing only its extremes.
While our design included the extreme quarters of the distribution,
thereby eliminating the need to sequence half the study population
and consequently reducing sequencing costs substantially, we note

Figure 3. Continuous traits: Relationship between effect size, proportion of causal variants, and power. All causal variants have a
deleterious effect. Each box corresponds to a different proportion of causal variants involved in the relationship between rare variants and
continuous traits (from left to right, 10, 15, 20 and 30%). On the x-axis, effect sizes are in standard deviations and correspond to the absolute value of
the average size effect.
doi:10.1371/journal.pgen.1002496.g003

Table 4. Proportion of variance explained by rare variants.

0.5 SD 0.75 SD 1.0 SD 1.25 SD 1.5 SD 2.0 SD 2.5 SD

10% of
causal

0.005 0.012 0.022 0.034 0.049 0.086 0.135

15% of
causal

0.008 0.018 0.032 0.051 0.073 0.129 0.202

20% of
causal

0.011 0.024 0.043 0.067 0.097 0.172 0.269

30% of
causal

0.016 0.036 0.064 0.100 0.144 0.256 0.400

doi:10.1371/journal.pgen.1002496.t004
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that power was similar to that derived from the entire distribution
particularly only when the proportion of causal variants was high
and the effect sizes moderate. Nonetheless, sampling of the
extremes remains an attractive study design, particularly if the
sampled population is large and a more extreme sub-population is
selected.

Methods have been proposed to weight the relative importance
of rare variants based on various parameters including their
estimated deleterious effect on protein function [17,27]. For
example, the incorporation of estimated functional information,
such as the potential effect of an amino acid change as estimated
by Polyphen or SIFT, might improve power. However, these
scores have been criticized for their high level of misclassification
[22]. Moreover, functional prediction is more challenging when
the variants are non-coding.

The spectrum and frequencies of rare genetic variants are
known to depend on ancestry and age of the population studied
[28]. In this work, we have assumed that our sample consists of a
homogeneous population without stratification into population
subgroups. All the methods that we have examined could find false
associations if population sub-strata existed and were associated
with the phenotype, therefore particular attention must be paid to
population structure when designing rare variant studies.

One of the strengths of our study is the use of Sanger
sequencing data, rather than simulated genotyping data. We have
been able to avoid the simulation of such data by using fully
Sanger-sequenced data on nearly 2,000 individuals at seven
genes. Therefore, no genotypic hypotheses were made to

generate the sequence data. Furthermore, the sample size
employed is among the largest sequenced datasets in the world
at present. Despite the fact that gene 3 had more missing data
and fewer variants, we note that the power results derived from
this gene are similar to all other genes.

We note that our simulations assumed no additive effects when
an individual carries multiple rare variants. However, we note that
very few individuals carry 2 or more rare variants (Table 3). In
addition, we assumed that rare variant effects take precedence
over common variant effects.

In light of our results, we recommend that single-marker tests
should not be used alone when rare variants are present and are
assumed to have small-to-moderate effects on the trait of interest.
On the other hand, as power across all novel rare variants methods
is generally low, the potential for identifying rare variant
associations using gene-based analysis strategies requires improve-
ment. Ideally, the true underlying nature of the association
between the gene and the phenotype should determine the choice
of statistical method, however, this relationship is almost always
unknown. Therefore, performing sensitivity analyses, i.e., assessing
different methods that perform differently under various condi-
tions might be a helpful option in order to interpret the results.
Furthermore we suggest that if one method identifies a gene of
interest that replication of this result should be performed in an
independent sample using the same statistical method. All methods
seemed to perform adequately under their specific model
hypotheses, but do not perform as well when these hypotheses
are violated.

Figure 4. Continuous traits: Relationship between effect size, proportion of causal variants, and power, when causal variants are a
mixture of protective and deleterious effects. Each box corresponds to a different proportion of causal variants involved in the relationship
between rare variants and continuous traits (from left to right, 10, 15, 20 and 30%). On the x-axis, effect sizes are in standard deviations and
correspond to the absolute value of the average size effect.
doi:10.1371/journal.pgen.1002496.g004
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In the next few years, advances in sequencing technology will
enable the production of large quantities of sequence data on large
numbers of individuals, allowing for the cost-effective identification of
rare variants. These data will enable researchers to investigate the role
that rare variants play in disease etiology, in addition to uncovering
functional variants. Our results may provide guidance in the
planning, analysis and interpretation of these large-scale initiatives.

Materials and Methods

Ethics statement
The work described in this manuscript represents a re-use of

data and no new human interventions were conducted. No
additional IRB approvals were sought for this specific portion of
the work. The Committee on Ethics in Clinical Research, CHUV,
Lausanne University, Lausanne, Switzerland approved the
original protocols for sample collection.

Study sample
The subjects used in this paper are a subset of the CoLaus study,

a population-based study of 6,188 Lausanne residents aged 35 to
75 years [29].

Sanger sequencing data
Sanger sequence data for the exons and flanking regions of

seven genes including PLA2G7 from 1,998 individuals were
provided by GlaxoSmithKline (GSK). Methods for performing
the sequencing for the PLA2G7 gene and the additional 6 genes

have been described [30]. The identity of the remaining genes was
not disclosed for proprietary reasons. Sanger sequencing has a low
error rate and is considered a gold-standard for comparison to
high-throughput sequencing studies [31,32]. For simplicity, and
since rare variants are not expected to be in high linkage
disequilibrium (LD) with surrounding variants, we imputed the
missing values of each rare variant independently from others
based on the computed MAF. The percentage of missing
genotypes per variant in a gene ranged from 3% to 11%, with
an average of 5.5% individual missing genotype information per
variant, across all genes (Table 2). All non-polymorphic base-pair
markers were removed from the sequence data.

All seven genes contained both rare and common variants: the
number of polymorphic variants ranged from 29 to 128, and the
proportion of variants with a MAF#1% ranged from 81% to
93%. The majority of these variants were extremely rare, with an
average of 55% of all variants across all genes being singletons.
Table 2 and Table 3 describe the allelic frequencies, and rare
variant distribution of all seven genes. We used these known
genotypes combined with phenotype simulations to compare
several commonly-used and novel statistical methods developed
for rare variants and continuous phenotypes.

Parameters influencing rare variant associations with
complex traits

We developed two simulation sets to illustrate the power of a
variety of commonly-held hypotheses about the possible effects of
rare variants on complex traits. In the first set, we tested collapsing

Figure 5. Dichotomous traits: Relationship between effect size, proportion of causal variants, and power, when causal variants only
have a deleterious effect. Each box corresponds to a different proportion of causal variants involved in the relationship between rare variants and
continuous traits (from left to right, 10, 15, 20 and 30%). On the x-axis, effect sizes are in standard deviations and correspond to the absolute value of
the average size effect.
doi:10.1371/journal.pgen.1002496.g005
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phenotypes, but their power can vary largely when there is

departure from this main hypothesis.

We next assessed to what extent power is influenced by the

effect size and proportion of causal rare variants. In the next set of

simulations, we varied these two parameters to explore more

systematically how much they influence the strength of the signal

between genes and complex traits. The proportions of causal

variants varied from 10, 15, 20, and 30% of all rare variants,

where the causal variants were chosen at random from the

polymorphisms that had low frequency (i.e., MAF#1%). We

assumed seven possible values for the mean effects: 0.5, 0.75, 1,

1.25, 1.5, 2, and 2.5 standard deviations.

Table 1. Summary of phenotype simulations and hypotheses.

Condition to be
selected as a causal
rare variants Assumption

Number of causal
variants

Mean effect size if
carrying allele from a
causal variant

Scenario 1
Null

NONE No association NA 0

Scenario 2
Positive control for collapsing models

MAF,0.01 At least one causal rare implies

deleterious
at least one rare 21.64

Scenario 3
Mixture of rare and common SNPs

MAF,0.01 Causal SNPs are deleterious 4 rare and 4 common 21.64 or 20.07

Scenario 4
Positive control for SKAT and WOD:

Mixture of protective and deleterious

SNP

MAF,0.01 15% causal SNPs:
7.5% deleterious, 7.5%
protective

15% 21.64 or +1.64

Scenario 5
Positive control for Weighting

with sampling 1/MAF

No restriction Causal SNPs are deleterious,

sampling with probability 1/MAF
10% of rare SNPs Largest effect: 22.5

Effect proportional to 1/MAF

Scenario 6
Positive control for Weighting with

uniform sampling

No restriction idem 9, sampling of causal
SNP is uniform

10% of all SNPs Largest effect: 22.5
Effect proportional to 1/MAF

doi:10.1371/journal.pgen.1002496.t001

Figure 1. Power across all methods, per scenario, as described in Table 1, for the average across the seven genes. Footnote: Note that

in some scenarios, different methods overlap. This is the case for scenario 1 and 2, where all methods give similar power.

doi:10.1371/journal.pgen.1002496.g001
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power across the range of these relationships, even in a large
sample size. Analysis using different methods clearly imposes an
additional multiple testing burden, which cannot be easily
addressed. One, though somewhat cumbersome, way to solve this
problem would be by derivation of empirical P-values taking into
account the variety of methods tested. Another, more straightfor-
ward, approach would be to undertake replication in an
independent sample, using the method which demonstrated best
results at the discovery stage.

In this paper, we have also developed a new method
conceptually based on Liu and Leal’s KBAC method [2] to detect
the association between rare variants and quantitative traits. Our
extension of [2] is implemented in R and is available from the

authors. We have also developed a simulation framework to
compare all major novel statistical methods to identify the
contribution of rare variants to continuous phenotypes under
identical conditions. Our new approach performs poorly if all rare
variants act in the same direction, but performs well when variants
can either increase or decrease phenotype and have large effect.
We note that the presence of randomly assigned rare variants of
smaller effect in size, all tests have a distribution of test statistics
that follows the null distribution (see Text S1).

Collapsing methods demonstrate increasing power when the
trait varies with an increasing number of rare alleles. However,
examples exist where protective and deleterious rare alleles are
present in a gene [21], and in such situations, collapsing methods
do not perform well. On the other hand, SKAT and WOD
performed extremely well compared to other methods in the
continuous traits scenarios, and dichotomous traits (SKAT only)
scenarios, respectively. SKAT in particular, was the only method
that performed well for dichotomous traits when variants could be
protective or deleterious. Methods like WE that assign more
weight to rarer alleles are promising, but only if the gene harbors
several causal variants whose effects are each inversely propor-
tional to their MAF. However, we note that the VT method still
outperforms WE even when employing this assumption.

Our study also provides empirical data to judge the value of
dichotomizing a continuous trait and sequencing only its extremes.
While our design included the extreme quarters of the distribution,
thereby eliminating the need to sequence half the study population
and consequently reducing sequencing costs substantially, we note

Figure 3. Continuous traits: Relationship between effect size, proportion of causal variants, and power. All causal variants have a
deleterious effect. Each box corresponds to a different proportion of causal variants involved in the relationship between rare variants and
continuous traits (from left to right, 10, 15, 20 and 30%). On the x-axis, effect sizes are in standard deviations and correspond to the absolute value of
the average size effect.
doi:10.1371/journal.pgen.1002496.g003

Table 4. Proportion of variance explained by rare variants.

0.5 SD 0.75 SD 1.0 SD 1.25 SD 1.5 SD 2.0 SD 2.5 SD

10% of
causal

0.005 0.012 0.022 0.034 0.049 0.086 0.135

15% of
causal

0.008 0.018 0.032 0.051 0.073 0.129 0.202

20% of
causal

0.011 0.024 0.043 0.067 0.097 0.172 0.269

30% of
causal

0.016 0.036 0.064 0.100 0.144 0.256 0.400

doi:10.1371/journal.pgen.1002496.t004
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that power was similar to that derived from the entire distribution
particularly only when the proportion of causal variants was high
and the effect sizes moderate. Nonetheless, sampling of the
extremes remains an attractive study design, particularly if the
sampled population is large and a more extreme sub-population is
selected.

Methods have been proposed to weight the relative importance
of rare variants based on various parameters including their
estimated deleterious effect on protein function [17,27]. For
example, the incorporation of estimated functional information,
such as the potential effect of an amino acid change as estimated
by Polyphen or SIFT, might improve power. However, these
scores have been criticized for their high level of misclassification
[22]. Moreover, functional prediction is more challenging when
the variants are non-coding.

The spectrum and frequencies of rare genetic variants are
known to depend on ancestry and age of the population studied
[28]. In this work, we have assumed that our sample consists of a
homogeneous population without stratification into population
subgroups. All the methods that we have examined could find false
associations if population sub-strata existed and were associated
with the phenotype, therefore particular attention must be paid to
population structure when designing rare variant studies.

One of the strengths of our study is the use of Sanger
sequencing data, rather than simulated genotyping data. We have
been able to avoid the simulation of such data by using fully
Sanger-sequenced data on nearly 2,000 individuals at seven
genes. Therefore, no genotypic hypotheses were made to

generate the sequence data. Furthermore, the sample size
employed is among the largest sequenced datasets in the world
at present. Despite the fact that gene 3 had more missing data
and fewer variants, we note that the power results derived from
this gene are similar to all other genes.

We note that our simulations assumed no additive effects when
an individual carries multiple rare variants. However, we note that
very few individuals carry 2 or more rare variants (Table 3). In
addition, we assumed that rare variant effects take precedence
over common variant effects.

In light of our results, we recommend that single-marker tests
should not be used alone when rare variants are present and are
assumed to have small-to-moderate effects on the trait of interest.
On the other hand, as power across all novel rare variants methods
is generally low, the potential for identifying rare variant
associations using gene-based analysis strategies requires improve-
ment. Ideally, the true underlying nature of the association
between the gene and the phenotype should determine the choice
of statistical method, however, this relationship is almost always
unknown. Therefore, performing sensitivity analyses, i.e., assessing
different methods that perform differently under various condi-
tions might be a helpful option in order to interpret the results.
Furthermore we suggest that if one method identifies a gene of
interest that replication of this result should be performed in an
independent sample using the same statistical method. All methods
seemed to perform adequately under their specific model
hypotheses, but do not perform as well when these hypotheses
are violated.

Figure 4. Continuous traits: Relationship between effect size, proportion of causal variants, and power, when causal variants are a
mixture of protective and deleterious effects. Each box corresponds to a different proportion of causal variants involved in the relationship
between rare variants and continuous traits (from left to right, 10, 15, 20 and 30%). On the x-axis, effect sizes are in standard deviations and
correspond to the absolute value of the average size effect.
doi:10.1371/journal.pgen.1002496.g004
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In the next few years, advances in sequencing technology will
enable the production of large quantities of sequence data on large
numbers of individuals, allowing for the cost-effective identification of
rare variants. These data will enable researchers to investigate the role
that rare variants play in disease etiology, in addition to uncovering
functional variants. Our results may provide guidance in the
planning, analysis and interpretation of these large-scale initiatives.

Materials and Methods

Ethics statement
The work described in this manuscript represents a re-use of

data and no new human interventions were conducted. No
additional IRB approvals were sought for this specific portion of
the work. The Committee on Ethics in Clinical Research, CHUV,
Lausanne University, Lausanne, Switzerland approved the
original protocols for sample collection.

Study sample
The subjects used in this paper are a subset of the CoLaus study,

a population-based study of 6,188 Lausanne residents aged 35 to
75 years [29].

Sanger sequencing data
Sanger sequence data for the exons and flanking regions of

seven genes including PLA2G7 from 1,998 individuals were
provided by GlaxoSmithKline (GSK). Methods for performing
the sequencing for the PLA2G7 gene and the additional 6 genes

have been described [30]. The identity of the remaining genes was
not disclosed for proprietary reasons. Sanger sequencing has a low
error rate and is considered a gold-standard for comparison to
high-throughput sequencing studies [31,32]. For simplicity, and
since rare variants are not expected to be in high linkage
disequilibrium (LD) with surrounding variants, we imputed the
missing values of each rare variant independently from others
based on the computed MAF. The percentage of missing
genotypes per variant in a gene ranged from 3% to 11%, with
an average of 5.5% individual missing genotype information per
variant, across all genes (Table 2). All non-polymorphic base-pair
markers were removed from the sequence data.

All seven genes contained both rare and common variants: the
number of polymorphic variants ranged from 29 to 128, and the
proportion of variants with a MAF#1% ranged from 81% to
93%. The majority of these variants were extremely rare, with an
average of 55% of all variants across all genes being singletons.
Table 2 and Table 3 describe the allelic frequencies, and rare
variant distribution of all seven genes. We used these known
genotypes combined with phenotype simulations to compare
several commonly-used and novel statistical methods developed
for rare variants and continuous phenotypes.

Parameters influencing rare variant associations with
complex traits

We developed two simulation sets to illustrate the power of a
variety of commonly-held hypotheses about the possible effects of
rare variants on complex traits. In the first set, we tested collapsing

Figure 5. Dichotomous traits: Relationship between effect size, proportion of causal variants, and power, when causal variants only
have a deleterious effect. Each box corresponds to a different proportion of causal variants involved in the relationship between rare variants and
continuous traits (from left to right, 10, 15, 20 and 30%). On the x-axis, effect sizes are in standard deviations and correspond to the absolute value of
the average size effect.
doi:10.1371/journal.pgen.1002496.g005
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Abstract

The role of rare genetic variation in the etiology of complex disease remains unclear. However, the development of next-
generation sequencing technologies offers the experimental opportunity to address this question. Several novel statistical
methodologies have been recently proposed to assess the contribution of rare variation to complex disease etiology.
Nevertheless, no empirical estimates comparing their relative power are available. We therefore assessed the parameters
that influence their statistical power in 1,998 individuals Sanger-sequenced at seven genes by modeling different
distributions of effect, proportions of causal variants, and direction of the associations (deleterious, protective, or both) in
simulated continuous trait and case/control phenotypes. Our results demonstrate that the power of recently proposed
statistical methods depend strongly on the underlying hypotheses concerning the relationship of phenotypes with each of
these three factors. No method demonstrates consistently acceptable power despite this large sample size, and the
performance of each method depends upon the underlying assumption of the relationship between rare variants and
complex traits. Sensitivity analyses are therefore recommended to compare the stability of the results arising from different
methods, and promising results should be replicated using the same method in an independent sample. These findings
provide guidance in the analysis and interpretation of the role of rare base-pair variation in the etiology of complex traits
and diseases.
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Introduction

There is growing evidence that rare variants contribute to the
etiology of complex diseases [1,2,3,4]. A striking difference in the
distributions of the odds ratios (ORs) for common and rare
variants has been illustrated in a wide range of recent publications,
favoring higher ORs for some rare variants (reviewed elsewhere
[5,6,7]). As well, it has been demonstrated that rare coding
variants associated with complex traits are sometimes causal
through amino acid substitution [3,8,9]. For these reasons, rare
variants hold promise as a source of heritability which is not
explained by common base-pair variants.

Identifying rare variants associated with disease requires large
sample sizes since few individuals harbor such polymorphisms. In
addition, for rare variants, the power of single-marker tests, such as
those performed by genome-wide association studies (GWAS), is
poor. Development of alternative methods is thus essential. Over the
past two years, a growing body of methods [2,10,11,12,13,14,15,16,
17,18,19,20] seeking to overcome this limitation has emerged. These

methods generally employ three main strategies: collapsing markers
across a region, weighting and/or prioritizing markers, and
distribution-based approaches.

Li and Leal [20], for example, proposed a method to collapse
rare variants across a region. This and other collapsing methods
are based upon the hypothesis that low-frequency variants are
rare, but in aggregate, they may be common enough to account
for variation in common traits. Under such models, it is assumed
that the probability of being diseased increases with the number of
rare minor alleles. However, this might not always be the case
[21]. Weighting methods assign more importance to alleles based
on many possible criteria, such as minor allele frequency (MAF) in
the control population [17], or possible alterations in protein
function, including measures produced by SIFT and Polyphen2
[11,22]. More recently, methods examining changes in distribu-
tions associated with rare variants [2,23] have been proposed. Liu
and Leal [2] based their novel method on multi-locus genotypic
configurations, where each unique pattern of genotypes is
tabulated, and the associated risk of disease for each configuration
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Our results demonstrate that the power of 
recently proposed statistical methods depend 

strongly on the underlying hypotheses.... No method 
demonstrates consistently acceptable power... Sensitivity 

analyses are therefore recommended.., and promising 
results should be replicated using the same method 

in an independent sample.
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Meaning that...

• Under specific assumptions, we can 
build a method, and it will work 
brilliantly

• The same method may work miserably 
under other set of plausible 
assumptions

• And there are many genetically 
plausible scenarios!
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Overview

• Missing heritability
• Expected composition of heritability
• Mapping rare variation
• Conclusions
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Conclusions

• Rare alleles of small effect are hard to solve 
statistically (mind that “rare” and “small” is 
relative to sample size). Extreme example - 
private de novo mutations

• We need to figure out what of the multiple 
plausible scenarios are more prevalent in reality

• (?) Need methods combining knowledge from 
different domains (evolutionary, systems, and 
functional biology)
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