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Confounding in GWAS

Dark skin is more prevalent in Africans 
than in Europeans. The genotypic 
frequencies are also different between two 
populations. A study of skin color, which 
would mix Africans and Europeans is likely 
to generate multiple false positives
Other causes of genetic stratification are 
“cryptic” relations or systematic pedigree 
structure presented in a sample
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Consequences of 
stratification

0

0.80

<0.05 <0.01 <5x10-8

Proportion of P less than some threshold in the skin color GWA

Not corrected
Corrected
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Methods to deal with 
stratification

• Structured association: populations are 
well-defined, well-separated

• EIGENSTRAT: populations may be less 
well-defined and separated

• Mixed models: very complex structure, 
relatives, genetic isolates

• Genomic control (does not explicitly correct 
for dependencies): correcting residual, small 
degree of stratification
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Distribution of the test

• 200 random SNPs

• In Linkage Equilibrium

• Not related to the 
disease

• No stratification

• The distribution of the 
test statistics for 
association is χ2

1 
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Idea of the genomic 
control

•There is stratification
•Assumption: stratification 

acts in the same manner 
across all loci

•This leads to uniform 
inflation of the test 
statistics

•The distribution of the 
test statistics is λ⋅ χ2

1 (λ≥1)
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Skin color scan
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GWAS of skin color using the HapMap data

GWAS without any association
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Genomic control
• Consider a test distributed as χ2

1 under the null (e.g. trend 
test)

• Compute the vector of test statistics {T2
1, T2

2, T2
3, … , T2

N-1, 
T2

N}

• Estimate λ as

★ Median{T2
1, T2

2, T2
3, … , T2

N-1, T2
N} /0.455

★ Slope of regression of observed onto expected

• The GC-corrected test statistic T2/λ ~ χ2
1 

• In practice, all (or large proportion of) GW test are used to 
estimate λ 
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λ is dependent on 
sample size

λ is related to non-centrality parameter, thus it 
grows with sample size. Therefore λ should be 
estimated per certain sample size. This is 
especially important if 

– SNP call rate is different between SNPs
– When reporting the results
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Standardized λ

• For QT analysis, λn = 1 + (λnref – 1) n/nref 
where nref is the reference sample size

• For case/control design

where n & m refer to size of samples of cases 
and controls

ESP29 25.08.2010 Yurii Aulchenko
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Few notes on GC

•When inflation is large (say, λ > 1.05) other, more 
powerful methods are to be used

•GC assumes that stratification acts in the same manner 
across all loci, which is not always true

•In present form, works only for additive model 

•Inflation factor λ depends on samples size. Thus 

-	 Report of standardized values (say, per 1,000 cases and 
1,000 controls) is recommended

-	 Special methods should be used when number of people 
typed for different SNPs is different
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Structured association

• Identify genetic populations (strata)
• Do stratified analysis; e.g. Cochran-Mantel-

Haenszel test; or meta-analysis of results 
obtained in different strata

• Apply GC to correct for residual inflation 
(1 < λ < 1.05)

• Potential problems: strata not always 
known a priori or easily identified, they also 
may be not well-defined
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Adjust for strata?
Inclusion of strata in your linear model 

Y ~ mu + sex + age+ strata + snp

accounts for the difference in means 
This is NOT EXACTLY what is meant by stratified analysis, which also 
allows for different effects of nuisance covariates in different strata. You 
can do that by model

Y ~ mu + strata*(sex + age) + snp

Still, even this is not exactly the same, as stratified analysis allows for 
different residual variances across strata

You can do that with Linear Mixed Models (LMM) or Generalized 
Estimating Equations (GEE)...
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Estimation of kinship from 
genomic data

	 Genomic estimate of kinship between i and j 
is computed with

	 gik is the genotype (0, 0.5, 1) of the i-th person at k-th SNP

	 pk is the frequency of “1” allele

	 Basically, this matrix tells how similar are 
genomes of people involved
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Mixed model

Vector of quantitative phenotype Y
	 	 	 Y = µ + βg g + G + e

g: genotype indicator vector gi in {0,1,2}
βg: additive affect of the allele

e: random residual effect ~ MVN(0, Iσe
2 )

G: random polygenic effect ~ MVN(0, Φ σG
2 )
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Mixed Models for GWAS

• Excellent method to account for complex 
genetic structure
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Mixed Models for GWAS

• Excellent method to account for complex 
genetic structure

• May be very computationally extensive 

• Therefore is normally used only when 
other methods fail
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Idea of Multidimensional 
Scaling

• Study of N subjects

• NxN matrix of pair-wise distances (0 = the same subject, 1 = 
very different)

• Multi-Dimensional (MD) scaling takes this matrix

– Returns coordinates for N points in a MD-space

– The vectors are called “Principal Axes of Variation” (or Principal 
Components)

– The distance between the points in this MD-space are as close as 
possible to the distances observed in the original NxN matrix 

• Classical MDS is also known as Principal Components 
Analysis
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Example CMDS

Distance matrix

Results of CMDS:

       PC1    PC2

ID1   0.00    0.29

ID2  -0.25   -0.14

ID3   0.25   -0.14

ID1 ID2 ID3

ID1 0 0.1 0.1

ID2 0.1 0 0.1

ID3 0.1 0.1 0
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Example CMDS

Distance matrix

Results of CMDS:

         PC1    PC2

ID1   0.25    0.02

ID2   0.25    0.09

ID3   0.25   -0.11

ID4  -0.75    0.00

ID1 ID2 ID3 ID4

ID1 0 0.1 0.15 1.00

ID2 0.1 0 0.20 1.00

ID3 0.15 0.20 0 1.00

ID4 1.00 1.00 1.00 0

ID4
ID1

ID2

ID3
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PCA of genomic kinship

JPT+CHB

YRI

CEU

PCA of genomic kinship
between HapMap participants
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Idea of EigenSTRAT
• Estimate genetic relations between the study 

participants using genomic data, compute pair-
wise distance matrix

• Extract 3 to 10 principal components (PC) of 
variation from this matrix

• In analysis of association, adjust both 
phenotypes and genotypes for these PCs 
(modification: include  principal axes of 
variation  as covariates in regression model)

• Apply GC to correct for residual inflation (1 < λ 
< 1.05)
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Summary: software & 
functions

• Genomic control: for additive models, implemented in any 
GWAS software, or do it yourself. For other models: we work 
on that … may be released late this year

• Stratified analysis: qtscore() of GenABEL; also you can do 
separate analyses and then meta-analyse

• Genomic kinship matrix (base for EIGENSTRAT, PC-
adjustment): PLINK’s ‘IBD’, GenABEL’s ibs() function

• EIGENSTRAT: EIGENSTRAT, GenABEL’s egscore() function

• Adjustment for PCs: any GWA software supporting 
covariates

• Mixed-models: GenABEL’s mmscore & grammar, Merlin (but 
with pedigree…); MixABEL’s GWFGLS
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Mixed Models for GWAS

 8 

Algorithm 2. Analytical ML estimates of model parameters 

We derived analytical expressions for ML estimation of all model parameters except 2h  by 

equating first-order derivatives of the log-likelihood to zero.  

For convenience, we represent log-likelihood (4) for polygenic model under null 

hypothesis as: 
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The system of expressions (6) can be written in matrix form as 
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So the vector Xβ  is estimated only through h2. 

A partial first-order derivative of the log-likelihood (5) on 2σ  is: 
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