GenABEL tutorial

Copyright 2007-2011, Yurii Aulchenko
February 20, 2012

THIS WORK IS LICENSED UNDER THE CREATIVE COMMONS ATTRIBUTIONSHAREALIKE 3.0 UNPORTED LICENSE. TO VIEW A COPY OF THIS LICENSE, VISIT HTTP://CREATIVECOMMONS.ORG/LICENSES/BY-SA/3.0/ OR SEND A LETTER TO CREATIVE COMMONS, 444 CASTRO STREET, SUITE 900, MOUNTAIN VIEW, CALIFORNIA, 94041, USA.

Contents

1 Overview 7
2 Introduction to R 9
2.1 Basic R data types and operations 9
2.2 Data frames 20
2.3 Exploratory analysis of qualitative and quantitative traits 26
2.4 Regression analysis 36
2.5 Answers to exercises 38
3 Introduction to genetic association analysis in R 45
3.1 Characterisation of genetic data 45
3.2 Exploring genetic data with library genetics 45
3.3 Genetic association analysis 52
3.4 Example association analysis 52
3.5 Exercise: Exploring genetic data using library genetics 56
3.6 Answers to exercises 57
4 Introduction to GenABEL-package 77
4.1 General description of gwaa.data-class 77
4.2 Accessing and modifying phenotypic data 81
4.3 Sub-setting and coercing gwaa.data 83
4.4 Exploring genetic data 87
4.5 Answers to exercises 95
5 Genome-wide association analysis 101
5.1 Data descriptives and first round of GWA analysis 102
5.2 Genetic data QC 111
5.3 Finding genetic sub-structure 114
5.4 GWA association analysis 119
5.5 Genome-wide association analysis exercise 124
5.6 Answers to exercises 126
6 GWA analysis in presence of stratification: theory 139
6.1 Genetic structure of populations 140
6.1.1 Hardy-Weinberg equilibrium 141
6.1.2 Inbreeding 143
6.1.3 Mixture of genetic populations: Wahlund's effect 146
6.2 Effects of population structure on standard tests for association 149
6.2.1 Standard tests for genetic association 149
6.2.2 Effects of genetic structure on standard tests 152
6.2.3 Genomic control 155
6.3 Analysis of structured populations 159
6.3.1 Structured association 160
6.3 .2 Mixed models based approach 162
6.3.3 Estimation of kinship matrix from genomic data 164
6.3.4 EIGENSTRAT and related methods 164
6.3.5 Summary: what method to use? 166
6.4 Links 167
7 GWA in presence of genetic stratification: practice 169
7.1 Analysis with ethnic admixture 169
7.2 Analysis of family data 174
7.3 Example GWA analysis using family-based data 178
7.4 Exercise: analysis of family data 187
7.5 Answers to exercises 188
8 Imperfect knowledge about genotypes 195
8.1 Motivation 195
8.2 Input files 196
8.2.1 SNP information file 196
8.2.2 Genomic predictor file 196
8.2.3 Phenotypic file 197
8.2.4 Optional map file 199
8.3 Running an analysis 199
8.3.1 Basic analysis options 200
8.3.2 Advanced analysis options 201
8.3.3 Running multiple analyses at once: probabel.pl 201
8.4 Output file format 201
8.5 Preparing input files 202
8.6 Memory use and performance 202
8.7 Methodology 203
8.7.1 Analysis of population-based data 203
8.7.2 Analysis of pedigree data 205
8.8 How to cite 207
9 Analysis of imputed data: an example 209
9.1 Analysis of 500 directly typed SNPS 209
9.2 Analysis of imputed data with ProbABEL-package 212
9.3 Analysis of imputed data with MixABEL-package 216
9.4 Answers to exercises 218
10 Meta-analysis of GWA scans 223
10.1 Standard meta-analysis methods 223
10.2 Exercise: meta-analysis of literature data 228
10.3 Reporting GWA results for future meta-analysis 229
10.4 Meta-analysis with MetABEL-package 236
10.5 Answers to the exercise 240
10.5.1 Exercise 91 242
11 Analysis of selected region 245
11.1 Exploring linkage disequilibrium 245
11.2 Haplotype analysis 245
11.3 Analysis of interactions 245
A Importing data to GenABEL-package 247
A. 1 Converting from preferred format 248
A. 2 Converting PLINK tped files 251
A. 3 Converting linkage-like files 253
A. 4 Converting from MACH format 256
A. 5 Converting from text format 256
B GenABEL internals 257
B. 1 Internal structure of gwaa.data-class 257

Chapter 1

Overview

GenABEL-package is an R library developed to facilitate Genome-Wide Association (GWA) analysis of binary and quantitative traits. GenABEL-package is implemented as an R library. R is a free, open source language and environment for general-purpose statistical analysis (available at http://www.r-project.org/). It implements powerful data management and analysis tools. Though it is not strictly necessary to learn everything about R to run GenABEL-package, it is highly recommended as this knowledge will improve flexibility and quality of your analysis.

Originally GenABEL-package was developed to facilitate GWA analysis of quantitative traits using data coming from extended families and/or collected form genetically isolated populations. At the same time GenABEL-package implements a large number of procedures used in analysis of population-based data; it supports analysis of binary and quantitative tarits, and of survival (time-tillevent) data. Most up-to-date information about GenABEL-package can be found at the web-site http://mga.bionet.nsc.ru/nlru/GenABEL/.

GenABEL-package is a part of more extensive ABEL collection (http://mga. bionet.nsc.ru/~yurii/ABEL/) of software supporting different kinds of GWA analyses.

This tutorial was originally written to serve as a set of exercises for the "Advances in population-based studies of complex genetic disorders" (GE03) course of the Netherlands Institute of Health Sciences (Nihes).

If you read this tutorial not as a part of the GE03 course, and you are eager to start with you GWA analysis without reading all the not-so-strictly-necessary staff, start directly from the section 5 (' Genome-wide association analysis').

Otherwise, you can start with R basics and simple association analyises using few SNPs in section 2 ' 'Introduction to R''. In the next section, 4]('Introduction to GenABEL-package') you will learn how to work with the gwaa.data-class, which is used to store GWA data in GenABEL-package and will perform some simple large-scale analyses.

In the next section, 5 ('|Genome-wide association analysis'), you will do quality control of genetic data and do association analysis under realistic conditions. This section is the core of this tutorial.

The section 7 ('GWA in presence of genetic stratification: practice') is dedicated to analysis in presence of populational stratification and analysis of familybased data.

Genetic data imputations are covered in section ??, "??".
The last section, 11 ('Analysis of selected region'), is dedicated to analysis of haplotype association and analysis of SNP interactions.

Information on importing the data from different formats to GenABEL-package is given in appendix A ('Importing data to GenABEL-package'). Answers to exercises are provided at the end of respective chapters.

Experienced R users start directly with the section (4) , Introduction to GenABEL-package').

Chapter 2

Introduction to \mathbf{R}

In this section we will consider base R data types and operations, and tools for analysis of qualitative and quantitative traits. Only basic R functionality - the things which are crucial to know before we can proceed to genetic association analysis - will be covered within this section. If you want to make most of your data, though, we strongly recommend that you improve your knowledge of R using books other than this. A number of excellent manuals ('An introduction to R', 'Simple R', 'Practical Regression and Anova using R', and others) is available free of charge from the R project web-site (http://www.r-project.org).

In the first part of this chapter you will learn about the most important R data types and will learn how to work with R data. Next, we will cover exploratory data analysis. The chapter will end with introduction to regression analysis.

2.1 Basic R data types and operations

On the contrast to many other statistical analysis package, analysis in R is not based on graphic user interface, but is command line-based. When you first start R, a command prompt appears. To get help and overview of R, type help.start() on the command line and press enter. This will start internet browser and open the main page of the R documentation.

Let us first use R as a powerful calculator. You can directly operate with numbers in R. Try multiplying two by three:
> $2 * 3$
[1] 6
Other standard arithmetic operations can be performed in similar manner:
$>2 / 3$
[1] 0.6666667
(division)

[1] 8

(power)
> 2-3
[1] -1
(subtraction)
$>2+3$
[1] 5
(summation) ${ }^{1}$.
Mathematical functions, such as square roots, base-10 logarithm, and exponentiation, are available in R as well:
$>\operatorname{sqrt}(5)$
[1] 2.236068
$>\log 10(2.24)$
[1] 0.350248
$>\exp (0.35)$
[1] 1.419068
Here, we have computed e to the power of base-10 logarithm of the square root of the sum of two and three. After each operation performed, we have rounded the result to the two digits after the floating point - just in order to do less typing.

The arithmetic operations and functions can be nested and therefore we can obtain the above result in one line, and without the 2nd-digit approximation:

```
> exp(log10(sqrt(2+3)))
```


[1] 1.418337

R functions include not only the standard mathematical ones, but also a wide range of statistical function, for example, probability density functions of many probability distributions. We will make extensive use of these at a later stage, when computing significance and estimating statistical power.

For any function with name say 'fun', help may be obtained by typing 'help (fun)' (or ?fun) on the command line.
R help pages have standard layout, documenting usage of the function, explaining function arguments, providing details of implementation and/or usage, explaining the value returned by the function, and giving references and examples of the function use.

[^0]Most of the documented functions have examples of their usage at the end of the 'help' page, and these examples can be evaluated in R. E.g. try 'example(log10)'.

Exercise 1. Explore help for Wilcoxon test

Explore the help page for the Wilcoxon test (function: wilcox.test) and answer the questions:

1. When exact Wilcoxon test is computed by default?
2. If the default conditions for the exact test are not satisfied, what approximation is used?
If you do not know the exact name for the function you look for, try 'help. search("query")', where query is the keyword.

Exercise 2. Finding functions and help pages

Try to find out what are the functions to do

1. Fisher exact test
2. T-test

One of important R operations is assignment, which is done with '<-' operator. A (new) variable name should be provided on the left-hand side of this operator and on the right-hand side, there must be either name of already existing variable or an expression. For example, we if want to assign value ' 2 ' to variable 'a', and value ' 3 ' to the variable 'b' we would use the assignment operator:

```
> a <- 2
> b <- 3
```

Typing the variable name in R command line will return its' value, e.g.

```
>b
```

[1] 3
Evaluation of the expression
$>\exp (\log 10(\operatorname{sqrt}(a+b)))$
[1] 1.418337
gives the expected result we have obtained above using numerical arguments.
While the variables 'a' and 'b' contain single numeric values, variables in general can be multi-dimensional; an one-dimensional example of such is a vector (array). Let us create an example vector and experiment with it:
$>v<-c(1,3,5,7,11)$
Here, 'c()' is a function, which combines its arguments to make a vector. This vector is then assigned to a variable named 'v'.

Now, let us try different operations with this vector:
> $\mathrm{v}+1$
[1] $2 \begin{array}{lllll}2 & 4 & 6 & 8 & 12\end{array}$
It is easy to see that the result is a vector, which is obtained by adding one to each element of the original vector v. Other arithmetic operations and mathematical functions behave in the same way, e.g. the operation is performed for each element of the vector, and the results are returned:
> $1 / v$
[1] 1.000000000 .333333330 .200000000 .142857140 .09090909
$>\log (\mathrm{v})$
[1] 0.0000001 .0986121 .6094381 .9459102 .397895
What happens if two vectors are supplied as function arguments? Let us define a new vector

```
> ov <- c(1,2,3,4,5)
```

and add it to the vector v :

```
> v + ov
```

[1] $2 \begin{array}{lllll}5 & 8 & 11 & 16\end{array}$
You can see that the summation was done element-wise, i.e. the first element of the result vector is obtained as the sum of the first elements of v and ov, the second is the sum of the second elements, and so forth.

Other arithmetic operations with two vectors are performed in the same element-wise manner:

```
> v * ov
```

[1] $1 \begin{array}{lllll}6 & 15 & 28 & 55\end{array}$
(multiplication)
> v^ov

$[1]$	1	9	125	2401	161051

(power).
The vector operations considered above returned a same-length vector as output. There are others - statistical and summary - functions which evaluate a vector as a whole and return a single value as output. For example, to obtain a sum of vector's elements, use

```
> sum(v)
```

[1] 27
Other examples of such functions involve length, returning number of elements of a vector, mean, returning the mean, var, returning the variance, etc.:

```
> length(v)
```

[1] 5
> mean(v)
[1] 5.4
> $\operatorname{var}(\mathrm{v})$
[1] 14.8
One of the basic, and probably most used, data operations in R is sub-setting. This refers to an operations which help you deriving a subset of the data. Let us create a short vector and play a bit with sub-setting. This vector will contain 5 simple character strings:

```
> a <- c("I am element 1","I am element 2","I am element 3","I am element 4","I am element 5")
> a
[1] "I am element 1" "I am element 2" "I am element 3" "I am element 4"
[5] "I am element 5"
```

To find out what is the value of the i-th element of this vector, you can sub-set it by a[i]. For example the 3rd elements is:
> a[3]
[1] "I am element 3"
You can also select a bigger sub-set, e.g. all elements from 2 to 4:
$>a[c(2: 4)]$
[1] "I am element 2" "I am element 3" "I am element 4"
Here, operation $c(2: 4)$ stays for 'combine numbers from 2 to 4 into a vector'. An equivalent result is obtained by
$>a[c(2,3,4)]$
[1] "I am element 2" "I am element 3" "I am element 4"
We can also easily get disjoint elements; e.g. if you want to retrieve elements 1,3 , and 5 , you can do that with
> dje <- c(1,3,5)
> dje
[1] 135
> a[dje]
[1] "I am element 1" "I am element 3" "I am element 5"

One of very attractive features of R data objects is possibility to derive a subset based on some condition. Let us consider two vectors, tmphgt, containing the height of some subjects, and tmpids, containing their identification codes (IDs):

```
> tmphgt <- c(150,175,182,173,192,168)
> tmphgt
[1] 150 175 182 173 192 168
> tmpids <- c("fem1","fem2","man1","fem3","man2","man3")
> tmpids
[1] "fem1" "fem2" "man1" "fem3" "man2" "man3"
```

Imagine you need to derive the IDs of the people with height over 170 cm . To do that, we need to combine several operations. First, we shoudl run the logical function >170 on the height data:

```
> vec <- (tmphgt>170)
vec
```


[1] FALSE TRUE TRUE TRUE TRUE FALSE

This returns a logical vector whose elements are 'TRUE', when a particular element of the tmphgt satisfies the condition >170. The returned logical vector, in turn, can be applied to sub-set any other vector of the same length ${ }^{2}$ including itself. Thus if you need to see what are the heights in people, which are taller than 170 cm , you can use

```
> tmphgt[vec]
```

[1] 175182173192
As you can see, only the elements of tmphgt, for which the corresponding value of vec was 'TRUE', are returned. In the same manner, the logical vector vec can be applied to select elements of the vector of IDs:
> tmpids[vec]
[1] "fem2" "man1" "fem3" "man2"
You can combine more than one logical condition to derive sub-sets. For example, to see what are the IDs of people taller than 170 but shorter than 190 cm , you can use

```
> vec <- (tmphgt>170 & tmphgt<190)
> vec
```

[1] FALSE TRUE TRUE TRUE FALSE FALSE

[^1]```
> tmpids[vec]
```

```
[1] "fem2" "man1" "fem3"
```

A better ${ }^{3}$ way to do logical sub-setting assumes use of the which() function on the top of the logical vector. This function reports which elements are TRUE. To obtain above results you can run:

```
> vec <- which(tmphgt>170 & tmphgt<190)
> vec
```

[1] 234
> tmpids [vec]

```
[1] "fem2" "man1" "fem3"
```

You can see that no vec contains a vector, whose elements are the indexes of the elements of tmphgt for which the logical condition satisfies.

Sub-setting for 2D objects (matrices) is done in similar manner. Let us construct a simple matrix and do several sub-setting operations on it:

```
> a <- matrix(c(11,12,13,
+ 21,22,23,
+ 31,32,33
+),nrow=3,ncol=3)
> a
```

|  | $[, 1]$ | $[, 2]$ | $[, 3]$ |
| :--- | ---: | ---: | ---: |
| $[1]$, | 11 | 21 | 31 |
| $[2]$, | 12 | 22 | 32 |
| $[3]$, | 13 | 23 | 33 |

To obtain the element in the 2nd row and 2nd column, you can use
> a $[2,2]$
[1] 22
To access the elemnt from the second row and third column, use
> $a[2,3]$
[1] 32
Note that here, the row index (2) comes first, and the column index (3) comes second.

To obtain the 2 x 2 set of elements contained in upper left corner, you can do

```
> a[1:2,1:2]
 [,1] [,2]
[1,] 11 21
[2,] 12 22
```

[^2]|  | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- |
| 1 | 1 | 4 | 7 |
| 2 | 2 | 5 | 8 |
| 3 | 3 | 6 | 9 |

Table 2.1: Vector representation of a matrix. Elements in the table are the vector indices of the matrix elements.

Or you can even get the variables, which reside in corners:
$>a[c(1,3), c(1,3)]$

|  | $[, 1]$ | $[, 2]$ |
| :--- | ---: | ---: |
| $[1]$, | 11 | 31 |
| $[2]$, | 13 | 33 |

If one of the dimensions is not specified, complete vector is returned for this dimension. For example, here we retrieve the first row
$>a[1$,
[1] 112131
...and the third column
> $a[, 3]$
[1] 313233
...or columns 1 and 3:
$>a[, c(1,3)]$

|  | $[, 1]$ | $[, 2]$ |
| :--- | ---: | ---: |
| $[1]$, | 11 | 31 |
| $[2]$, | 12 | 32 |
| $[3]$, | 13 | 33 |

Other way to address elements of a matrix is to use one-dimensional index. For example, if you want to access element in the 2 nd row and 2 nd column, instead of
> a[2,2]
[1] 22
you can use
> a[5]
[1] 22

This way of accessing the elements of a matrix is based on the fact, that each matrix can be preseted as a vector, whose elements are numbered consequtively: the element in the upper-left corner has index 1 , the element in the second row of the first column has index 2 , and the last elemnt in the borrom-right corner has the maximal value, as shown in Table 2.1.

As well as with vectors, you can sub-set matrices using logical conditions or indexes. For example, if we want to see what elements of a are greater than 21, we can run

```
> a>21
```

```
 [,1] [,2] [,3]
[1,] FALSE FALSE TRUE
[2,] FALSE TRUE TRUE
[3,] FALSE TRUE TRUE
```

or, better
> which (a>21)
[1] 56789
Note that in the latter case, a vector whose elements give the 1-D indexes of the matrix, is returned. This vector indicates the elemnts of matrix a, for which the condition ( $a>21$ ) is satisfied.

You can obtain the values of the matrix's elements, for which the condition isfulfilled, either by

```
> a[a>21]
[1] \(22 \quad 23313233\)
```

or
> $a[$ which $(a>21)]$
[1] 2223313233
Once again, the latter method should be prefered. Consider an example, where some elements of the matrix are missing (NA) - a situation which is common in real data analysis. Let us replace the elemnt number 5 with NA and perform sub-setting operations on the resulting matrix:
$>a$

|  | $[, 1]$ | $[, 2]$ | $[, 3]$ |
| :--- | ---: | ---: | ---: |
| $[1]$, | 11 | 21 | 31 |
| $[2]$, | 12 | 22 | 32 |
| $[3]$, | 13 | 23 | 33 |
| $>a[5]$ | $<-N A$ |  |  |
| $>a$ |  |  |  |


|  | $[, 1]$ | $[, 2]$ | $[, 3]$ |
| :--- | ---: | ---: | ---: |
| $[1]$, | 11 | 21 | 31 |
| $[2]$, | 12 | NA | 32 |
| $[3]$, | 13 | 23 | 33 |
| $>a[a>21]$ |  |  |  |

[1] NA 23313233
> a[which(a>21)]
[1] $2331 \quad 3233$

You can see that when $a[a>21]$ was used, not only the elements which are greater than 21 were returned, but also NA was. As a rule, this is not what you want, and which should be used unless you do want to make some use of the NA elements.

In this section, we have generated a number of R data objects. Some of these were numeric (e.g. vector of heights, tmphgt) and some were character, or string (e.g. vector of study IDs, tmpids). Some times you need to figure out what is the class of a certain object. This can be done using the class() function. For example,

```
> tmphgt
[1] 150 175 182 173 192 168
> class(tmphgt)
[1] "numeric"
> tmpids
[1] "fem1" "fem2" "man1" "fem3" "man2" "man3"
> class(tmpids)
[1] "character"
```

What happens if we try to find out the class of
$>\mathrm{a}$

|  | $[, 1]$ | $[, 2]$ | $[, 3]$ |
| :--- | ---: | ---: | ---: |
| $[1]$, | 11 | 21 | 31 |
| $[2]$, | 12 | NA | 32 |
| $[3]$, | 13 | 23 | 33 |

- an object, which contains a matrix?
> class (a)
[1] "matrix"

Results are expected - we find out that a is a matrix, which is correct. At the same time, a matrix is an upper-level class, which contains a number of elemnts, belonging to some lower-level (e.g. character/numeric) class. To see what is the class of the matrix's elements, try
> $a[1$,
[1] $11 \quad 2131$
> class $(a[1]$,
[1] "numeric"
which says that elemnts (at least of the first row) are numeric. Because all elements of a matrix should have the same class, we can conclude that a is a matrix containing numeric values.

At this point, it is worthwile inspecting what data objects were created during our work. This can be done with the ls() command:
> ls()
[1] "a" "b" "dje" "ov" "tmphgt" "tmpids" "v" "vec"
Obviously, this "list" command is very useful - you will soon find that it is just too easy to forget the name of a variable which it took long time to create. Some times you may wish to remove some of the data objects because you do not need then anymore. You can remove an object using the rm() command, where the names of objects to be deleted are listed as arguments. For example, to remove tmphgt and tmpids variable you can use

```
> rm(tmphgt,tmpids)
```

If you now look up what data obejcts are still left in you workspace with the ls() command
> ls()
[1] "a" "b" "dje" "ov" "v" "vec"
you find that you have successfully deleted tmphgt and tmpids.
At this point, you can exit $R$ by typing $q()$ on the command line and pressing Enter.

## Summary:

- You can get access to the top-level R documentation by help.start() command. To search help for some keyword keywrd, you can use help.search(keywrd) command. To get description of some function fun, use help(fun).
- You can use R as a powerful calculator
- It is possible to get sub-sets of vectors and matrices by specifying index value or a logical condition (of the same length as the vector / matrix) between square brackets ([, ])
- When you obtain an element of a matrix with $[i, j$ ], $i$ is the row and $j$ is the column of the matrix.
- Function which(A) returns index of the elements of A which are TRUE
- You can see objects available in your workspace by using the ls() command
- Unnecessary object (say, tmphgt) can be deleted from the workspace using rm command, e.g. rm(tmphgt)
- You can leave R using the q() command


## Exercise 3. Exploring srdta

In this exercise, you will explore few vectors representing different data on study subjects described in srdta example data set supplied together with GenABELpackage. First, you need to load GenABEL-package by typing

## > library(GenABEL)

and load the data by

```
> data(srdta)
```

The vector containing study subjects sex can be accessed through male(srdta); this vector's value is one when the corresponding person is male and zero otherwise. The vector containing SNP names can be accessed via snpnames (srdta), chromosome ID - through chromosome (srdta) and map - through map (srdta). Explore these vectors and answer the questions.

1. What is the ID and sex of the first person in the data set?
2. Of the 22 nd person?
3. How many males are observed among first hundred subjects?
4. How many FEMALES are among 4th hundred?
5. What is the male proportion in first 1000 people?
6. What is the FEMALE proportion in second 1000 (1001:2000) people?
7. What is name, chromosome and map position of 33 rd maker?
8. What is distance between markers 25 and 26 ?

### 2.2 Data frames

A data frame is a class of R data, which, basically, is a data table. In such tables, it is usually assumed that rows correspond to subjects (observations) and
columns correspond to variables (characteristics) measured on these subjects. A nice feature of data frames is that columns (variables) have names, and the data can be addressed by referencing to these names $\int^{4}$.

We will explore R data frames using example data set assoc. Start R with double-click on the file named assocbase. RData. You can see the names of the loaded objects by using the "list" command:
$>\operatorname{ls}()$
[1] "assoc"
Thus, only one object is loaded. The class of this object is:

```
> class(assoc)
```

[1] "data.frame"

- a data frame.

The dimensionality of a data frame (or a matrix) can be determined by using the $\operatorname{dim}()$ command:

```
> dim(assoc)
```

[1] 2507
Here, the first number corresponds to the number of rows (subjects) and the second to the number of columns (variables). Thus, the data frame assoc contains the data on 250 subjects, who are characterised by 7 variables each.

Let us now figure out what are the names of the 7 variables present in the data frame. To see what are the variable names, use the command names ():

```
> names(assoc)
```

[1] "subj" "sex" "aff" "qt" "snp4" "snp5" "snp6"
These variables correspond to the personal identifier (ID, variable subj), sex, affection status, quantitative trait qt and several SNPs. Each variable can have its own type (numeric, character, logic), but all variables must have the same length - thus forming a matrix-like data structure.

A variable from a data frame (say, fram), which has some name (say, nam) can be accessed through fram\$nam. This will return a conventional vector, containing the values of the variable. For example to see the affection status (aff) in the data frame assoc, use

```
> assoc$aff
```

| $[1]$ | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $[26]$ | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | $N A$ | 0 | 0 | 0 | 0 | 0 | 0 |
| $[51]$ | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| $[76]$ | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | $N A$ | 0 | 0 | 0 | 0 |

[^3]| $[101]$ | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $[126]$ | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | NA | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| $[151]$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $[176]$ | 0 | 0 | 1 | 1 | NA | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | NA | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
| $[201]$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| $[226]$ | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |

The aff (affected) variable here codes for a case/control status, conventinally, the cases are coded as "1" and controls as "0". You can also see several "NA"s, which stays for missing observation.

## Exercise 4. Exploring assoc

1. Investigate types of the variables presented in data frame assoc. For each variable, write down the class.
Data frame may be thought of as a matrix which is a collection of (potentily different-type) vectors. All sub-setting operations discussed before for matrices are applicable to a data frame, while all operations dicussed for vectors are applicable to data frame's variables.

Thus, as any particular variable present in a data frame is a conventional vector, its elements can be accessed using the vector's indices. For example, if you would like to know what are the ID, sex and affection status for the person with index 75 , you can request
> assoc\$subj [75]
[1] 1409
> assoc\$sex[75]
[1] 1
> assoc\$aff[75]
[1] 0
Alternatively, using the matrix-style of sub-setting, you can see all the data for person 75:

```
> assoc[75,]
```

    subj sex aff qt snp4 snp5 snp6
    751409101.014664 A/B $\quad$ B/A $\quad$ B/B

In the same manner as with matrices, you can get data for e.g. subjects 5 to 15 by

```
> assoc[5:15,]
```

|  | subj | sex | aff | qt |  |  |  |  | snp4 | snp5 | snp6 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: | :---: | :---: |
| 5 | 1533 | 0 | 0 | 0.1009220 | A/B | B/A | B/A |  |  |  |  |
| 6 | 2466 | 1 | 0 | -0.1724321 | A/B | A/A | A/A |  |  |  |  |
| 7 | 2425 | 0 | 0 | -0.3378473 | B/B | A/A | A/A |  |  |  |  |
| 8 | 1068 | 0 | 0 | -1.7112925 | A/A | B/B | <NA |  |  |  |  |
| 9 | 198 | 1 | 0 | -0.4815822 | A/B | B/A | B/A |  |  |  |  |
| 10 | 1496 | 1 | 0 | 1.2281232 | A/A | B/B | B/B |  |  |  |  |
| 11 | 909 | 0 | 0 | 0.5993945 | A/B | B/A | B/A |  |  |  |  |
| 12 | 1213 | 0 | 0 | 1.9792190 | A/A | B/B | B/B |  |  |  |  |
| 13 | 181 | 1 | 0 | 1.5435921 | A/A | B/B | B/B |  |  |  |  |
| 14 | 1783 | 0 | 0 | -1.6242738 | A/B | B/A | B/A |  |  |  |  |
| 15 | 1914 | 0 | 0 | -0.5160331 | A/A | B/B | B/B |  |  |  |  |

The result is actually a new data frame containing data only on people with index from 5 to 15 :

```
> x<-assoc[5:15,]
> class(x)
[1] "data.frame"
> dim(x)
```


## [1] 117

As well as with matrices and vectors, it is possible to sub-set elements of a data frame based on (a combination of) logical conditions. For example, if you are interested in people who have the qt values over 1.4, you can find out what are the indices of these people

```
> vec <- which(assoc$qt>1.4)
>vec
```

```
[1] 12 13 13 33 41 54 68 72 76 76 89 106 118 142 156 161 175 181 193 219 241
```

```
[1] 12 13 13 33 41 54 68 72 76 76 89 106 118 142 156 161 175 181 193 219 241
```

and then show the compelte data with

```
> assoc$subj[vec]
```

[1] $1213 \quad 181 \quad 17371319 \quad 5161355 \quad 186$
[16] $1628 \quad 562 \quad 858 \quad 698$

At the same time, if you only want to check what are the IDs of these people, try
> assoc\$subj[vec]

[16] $1628 \quad 562 \quad 858 \quad 698$
Or, if we are interested to find what are the IDs and what are the SNP genotypes of these people, we can try

```
> assoc[vec,c(1,5,6,7)]
```

|  | subj | snp4 | snp5 | snp6 |
| :--- | ---: | ---: | ---: | ---: |
| 12 | 1213 | A/A | B/B | B/B |
| 13 | 181 | A/A | B/B | B/B |
| 33 | 1737 | A/A | B/B | B/B |
| 41 | 1319 | A/A | B/A | B/A |
| 54 | 516 | A/B | B/A | B/A |
| 68 | 1355 | A/A | B/B | B/B |
| 72 | 186 | A/A | B/A | B/A |
| 76 | 1426 | A/B | B/A | B/A |
| 89 | 1284 | A/A | B/B | B/B |
| 106 | 822 | A/B | B/A | B/A |
| 118 | 2129 | A/B | B/A | B/A |
| 142 | 212 | A/B | B/A | B/A |
| 156 | 1443 | A/A | B/B | B/B |
| 161 | 704 | A/B | B/A | B/A |
| 175 | 1648 | A/B | B/A | B/A |
| 181 | 1628 | A/B | B/A | B/A |
| 193 | 562 | A/A | B/B | B/B |
| 219 | 858 | A/B | B/A | B/A |
| 241 | 698 | B/B | A/A | A/A |

here, we select people identified by vec in the first dimension (subjects), and by $c(1,5,6,7)$ we select first, fifth, sixth and seventh column (variable).

The same result can be obtained using variables' names insted of the variables' indices. To remind you the variables' names:

```
> names(assoc)
```

```
[1] "subj" "sex" "aff" "qt" "snp4" "snp5" "snp6"
```

And now make a vector of the variables' names of interest and filter the data based on it:

```
> namstoshow <- c("subj","snp4","snp5","snp6")
> assoc[vec,namstoshow]
\begin{tabular}{lrrrr}
& subj & snp4 & snp5 & snp6 \\
12 & 1213 & A/A & B/B & B/B \\
13 & 181 & A/A & B/B & B/B \\
33 & 1737 & A/A & B/B & B/B \\
41 & 1319 & A/A & B/A & B/A \\
54 & 516 & A/B & B/A & B/A \\
68 & 1355 & A/A & B/B & B/B \\
72 & 186 & A/A & B/A & B/A \\
76 & 1426 & A/B & B/A & B/A \\
89 & 1284 & A/A & B/B & B/B \\
106 & 822 & A/B & B/A & B/A \\
118 & 2129 & A/B & B/A & B/A \\
142 & 212 & A/B & B/A & B/A \\
156 & 1443 & A/A & B/B & B/B \\
161 & 704 & A/B & B/A & B/A
\end{tabular}
```

| 175 | 1648 | A/B | B/A | B/A |
| ---: | ---: | ---: | ---: | ---: |
| 181 | 1628 | A/B | B/A | B/A |
| 193 | 562 | A/A | B/B | B/B |
| 219 | 858 | A/B | B/A | B/A |
| 241 | 698 | B/B | A/A | A/A |

A more convenient way to access data presented in a data frame is through "attaching" it to the R search path by
> attach (assoc)
After that, the variables can be accessed directly, e.g.
> subj[75]
[1] 1409
instead of assoc\$subj[75].
While it is possible to explore the data presented in a data frame using the sub-setting operations and screen output, and modify certain data elements using the assignment ("<-") operation, you can also explore and modify the data contained in a data frame ${ }^{5}$ by using fix() command (e.g. try fix(assoc)). However, normally this is not necessary.

With attached data frames, a possible complication is that later on you may have several data frames which contain the variables with the same names. The variable which will be used when you directly use the name would be the one from the data frame attached last. You can use detach() function to remove a certain data frame from the search path, e.g. after
> detach (assoc)
we can not use direct reference to the name (try subj [75]) anymore, but have to use the full path instead:
> assoc\$subj[75]
[1] 1409

## Summary:

- The list of available objects can be viewed with ls(); a class of some object obj can be interrogated with class (obj).
- Simple summary statistics for numeric variables can be generated by using summary function
- Histogram for some variable var can be generated by hist(var)
- A variable with name name from a data frame frame, can be accessed through frame\$name.

[^4]- You can attach the data frame to the search path by attach (frame). Then the variables contained in this data frame may be accessed directly. To detach the data frame (because, e.g., you are now interested in other data frame), use detach (frame).


## Exercise 5. Explore phenotypic part of srdta

Load the srdta data object supplied with GenABEL by loading the package with library (GenABEL) and then loading the data with data(srdta). The srdta object contains a data frame with phenotypes. This data frame may be accessed through phdata(srdta). Explore this data frame and answer the questions

1. What is the value of the 4 th variable for the subject number 75 ?
2. What is the value of variable 1 for person 75 ? Check what is the value of this variable for the first ten people. Can you guess what first variable is?
3. What is the sum of variable 2? Can you guess what data variable 2 contains?

### 2.3 Exploratory analysis of qualitative and quantitative traits

Let us now attach the data frame asscoc

```
> attach(assoc)
```

and explore it.
Let us first check how many of the subjects are males. In the sex variable, males are coded with " 1 " and females with " 0 ". Therefore to see the numer of males, you can use

```
>um(sex==1)
```

[1] 129
and to determine what is male sex proportion you can use

```
> sum(sex==1)/length(sex)
```

[1] 0.516
This way to compute the proportion would only work correctly if there are no missing observations (lenght () returns the total length of a variable, including NAs).

Because of the way the males are coded, the same answer is reached by

```
> mean(sex)
```


### 2.3. EXPLORATORY ANALYSIS OF QUALITATIVE AND QUANTITATIVE TRAITS27

[1] 0.516
However, that would not have worked if the sex was coded differently, e.g. with " 1 " for males and " 2 " for females.

Let us now try to find out the mean of the quantitative trait qt. By definition, the mean of a variable, say $x$ (with i-th element denoted as $x_{i}$ ) is

$$
\bar{x}=\frac{\sum_{i=1}^{N} x_{i}}{N}
$$

where $N$ is the number of measurements.
If we try to find out the mean of qt by direct use of this formula, we first need to find out the sum of the qt's elements. The sum() function of R precisely does the operation we need. However, if we try it

```
> sum(qt)
```

[1] NA
this returns "NA". The problem is that the qt variable contains "NA"s (try qt to see these) and by default the "NA" is returned. We can, however, instruct the sum() function to remove "NA"s from consideration:
$>\operatorname{sum}(q t, n a . r m=T)$
[1] -26.4733
where na. $\mathrm{rm}=\mathrm{T}$ tells R that missing variables should be be removed (NonAvailable.ReMove=True) ${ }^{6}$

We can now try to compute the mean with

```
> sum(qt,na.rm=T)/length(qt)
```

[1] -0.1058932
This result, however, is not correct. The length() function returns the total length of a vector, which includes "NA"s as well. Thus we need to compute the number of the qt's elements, which are not missing.

For this, we can use $R$ function is.na(). This function returns TRUE if supplied argument is missing (NA) and FALSE otherwise. Let us apply this function to the vector assoc\$qt:

```
> is.na(qt)
 [1] FALSE FALSE
 [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
 [25] FALSE FALSE
 [37] TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
 [49] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [61] FALSE FALSE
 [73] FALSE FALSE
```

[^5][85] FALSE FALSE
[97] FALSE FALSE
[109] FALSE [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE [133] FALSE [145] FALSE [157] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE [169] FALSE [181] FALSE [193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE [205] FALSE [217] FALSE [229] FALSE [241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

Indeed, the 7 missing elements are correctly identified. However, we are interested in elements which are not missing. To get these, we can use the logical function NOT (!), which changes all FALSE to TRUE and visa versa:

```
> !is.na(qt)
```

|  | RUE | RU | TR | TRU | TR | TRUE | TRUE | TRUE | TR | TRUE |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| [13] | UE | TRUE | TRUE | TRUE | TRUE | TRUE | TRUE | UE | FALSE | UE | TRUE |  |
| [25] | RUE | TRUE | UE | UE | UE | UE | TR | RU | RUE | RUE | TRUE |  |
| [37] | FAL | TRUE |  | TRUE |  | TRUE | FALSE | TRUE | UE | UE | TRUE |  |
| [49] | TRUE | FA | TRUE | TRUE | TRUE | TRUE | TRUE | TRUE | UE | TRUE | TRUE |  |
| [61] | TRUE | RU | TRUE | U | TRUE |  |
| [73] | RUE | RU | TR | TRUE | TRUE | TRUE | TRUE | RU | RUE | RU | TRUE |  |
| [85] | TRU | TRU | TRU | RU | TRUE | TRUE | TRU | TRU | TRU | RU | RU |  |
| [97] | TRU | TRUE | TRU | TRU |  | TRU | TRUE | TRUE | TRUE | RU | RU |  |
| [10] | RU | TRU |  |  |  |  |  | TRU | TRUE | RUE | RUE |  |
|  | TRUE | TRU |  |  |  |  |  | FAL | E | RUE | TRUE |  |
| [133] | TRUE |  |
|  | TRUE | TRUE | TRUE | TRU | TRUE | TRU | TR | TRU | TRUE | RU | TRUE |  |
| [1 | TRUE | TRU | TR | T | TRU | FAL | TR | TRU | TRUE | TRUE | TRUE |  |
| [169] | TRU | TR | TR | TRUE | TRUE | TRUE | TR | TRUE | TRUE | TRUE | True |  |
| $1]$ | TRUE | TRU | TR | TR | TR | TR | TRU | TRU | TRUE | TRU | RUE |  |
| [193] | TRUE | TRU | TRU | TRU | TRU | TRU | TRU | TRUE | TRUE | FALSE | TRUE |  |
| [205] | TRUE | TRU | TRUE | TRUE | TRUE |  |
| [217] | TRUE | TRU | TRUE | TRUE | TRUE |  |
| [210] | TRUE | TRUE | TRUE | TR |  | TRUE | TRUE | TRUE | TRUE | TRUE | TRUE |  |
| 241] | RUE | RUE |  |  |  |  |  |  |  |  |  |  |

Thus the number of elements which are not missing ${ }^{7}$ is

```
> sum(!is.na(qt))
```

[1] 243
Finally, we can compute the mean of the qt with

[^6]
### 2.3. EXPLORATORY ANALYSIS OF QUALITATIVE AND QUANTITATIVE TRAITS29

> sum(qt,na.rm=T)/sum(!is.na(qt))
[1] -0.1089436
While this way of computing the mean is enlightening in the sense of how to treat the missing values, the same correct result should be normally achieved by supplying the na. $\mathrm{rm}=\mathrm{T}$ argument to the mean() function:
$>\operatorname{mean}(q t, n a \cdot r m=T)$
[1] -0.1089436
The function table(x) produces a frequency table for the variable x . Thus, we can use

```
> table(sex)
sex
 0}
1 2 1 1 2 9
```

which, again, tells us that there are 129 males and 121 females in this data set. This function excludes missing observations form consideration.

Tables of other qualitative variables, such as affection and SNPs, can be generated in the same manner.

As with arithmetic operations and mathematical functions, most of the R operations can be combined within a single line. Let us try to combine logical conditions and the table() command to check the distribution of number of affected in men and women separately:

```
> table(aff[which(sex==1)])
 0 1
95 31
> table(aff[which(sex==0)])
 O 1
95 24
```

On $R$ command line pressing the "up-arrow" button makes the last typed command re-appear (pressing it one more time will bring you to the one before the last, so on). This is very handy when you have to repeat the same analysis of different variables

## Exercise 6. Explore assoc

Explore phenotypic variables presented in assoc

1. How many affected and unaffected are present in the data set?
2. What is the proportion of affected?
3. What is the distribution of snp4 (how many different genotype classes are present and what are the counts)?

Contingency tables for pairs of variables (cross-tables) can be generated in R using the table command we have used in previous section to explore frequency distributions. For example, if you want cross-tabulate sex and affection status in the data frame assoc, you can use

```
> table(sex,aff)
 aff
sex 0 1
 05 24
 19531
```

Here, the first variable (sex) is presented in rows and the second (affection status) in columns.

As is usually the case with $R$, the output may be saved as a new object (of class 'table', which is a variety of a matrix):

```
> a<-table(sex,aff)
> class(a)
[1] "table"
>a
 aff
sex 0}
 0 95 24
 1 95 31
```

and this object may be analysed further.
For example, we can easily get the number of affected male with

```
> a[2,2]
```

[1] 31
Alternatively, we can analyse the resulting contingency table a with more complex functions. If we want to see proportions in this table, we can use

```
> prop.table(a)
 aff
sex 0 1
 0 0.38775510 0.09795918
 10.38775510 0.12653061
```

Needless to say, this is equivalent to

```
> prop.table(table(assoc$sex,assoc$aff))
```


### 2.3. EXPLORATORY ANALYSIS OF QUALITATIVE AND QUANTITATIVE TRAITS31

```
 0 1
0 0.38775510 0.09795918
1 0.38775510 0.12653061
```

In the above table, we see what proportion of people belong to four different classes (affected male, affected female, unaffected male and unaffected female). We may be though interested in the proportion of males in affected and unaffected. This may be achieved by

```
> prop.table(a,2)
 aff
sex 0 1
 0 0.5000000 0.4363636
 10.5000000 0.5636364
```

saying us that $56.4 \%$ of affected are male.
Alternatively, we may be interested in proportion of affected among males/females. To answer this question, run

```
> prop.table(a,1)
 aff
sex 0 1
 0 0.7983193 0.2016807
 10.7539683 0.2460317
```

saying us that $56.4 \%$ of male are affected.
Other useful contingency table analysis function is fisher.test, which implements the Fisher Exact Test of independence:

```
> fisher.test(a)
 Fisher's Exact Test for Count Data
data: a
p-value = 0.4457
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
 0.676759 2.482869
sample estimates:
odds ratio
 1.290313
```

Exploration of genetic data within base R, though possible, may be a bit of a pain. For example, we can easily generate contingency table of SNP5 vs affected status:

```
> a <- table(aff,snp5)
>a
 snp5
aff A/A B/A B/B
 0
 1
```

We can also look up what is the proportion of affected among different genotypic groups

```
> prop.table \((a, 2)\)
 snp5
aff A/A B/A B/B
 00.79487180 .77192980 .8000000
 10.20512820 .22807020 .2000000
```

showing that proportion of cases is similar in ' $A / A$ ' and ' $A / B$ ' genotypic groups and somewhat decreased in ' $B / B$ '. It is easy to test if this affection is statistically independent of genotype by

```
> chisq.test(a)
 Pearson's Chi-squared test
data: a
X-squared = 0.2511, df = 2, p-value = 0.882
```

which gives (insignificant) genotypic association test on two degrees of freedom.
However, testing Hardy-Weinberg equilibrium, testing allelic effects, and even computation of allelic frequency is not so straightforward. Such specific genetic tests are implemented in special $R$ libraries, such as genetics and GenABEL-package and will be covered in later sections of this document.

At this moment we will switch to exploratory analysis of quantitative traits. We will make use of the srdta data supplied with GenABEL-package. As you can remember from an exercise, the library is loaded with library (GenABEL) and the data are loaded with data(srdta): Then the phenotypic data frame may be accessed through phdata(srdta).

## Exercise 7. Explore phenotypes in srdta

Explore phenotypic data content of srdta object (phdata(srdta)).

1. How many observations and variables are presented in the data frame?
2. What are the classes of these variables?

As it was mentioned before, the function summary () generates a summary statistics for an object. For example, to see summary for trait qt1, we can use

```
> summary(phdata(srdta)$qt1)
```

| Min. 1st Qu. Median | Mean | 3rd Qu. | Max. | NA's |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -4.6000 | -0.9500 | -0.3100 | -0.2981 | 0.3800 | 3.2000 | 3 |

summary is quite useful function which may operate in different ways for objects of different classes. Try summary (phdata(srdta)).

With $R$, it is also easy to explore the data graphically. For example, the histogram for qt1 may be generated by

Histogram of phdata(srdta)\$qt1


Figure 2.1: Histogram of qt1


Figure 2.2: Scatter-plot of qt1 against qt3

```
hist(phdata(srdta)$qt1)
```

(resulting histogram is shown at figure 2.1)
In similar manner, scatter-plots may be generated. To see relation between qt1 and qt3, you can run
> plot(phdata(srdta)\$qt1,phdata(srdta)\$qt3)
(resulting plot is shown at figure 2.2 )
The mean, median, minimum and maximum of the distribution of the trait may be found out using functions mean, median, min and max, respectively. The variance and standard deviation can be computed with var and sd.

To compute correlation between two variables (or all variables in a matrix/data frame), use cor.

In GenABEL-package, there is a special function designed to facilitate phenotypic quality control. This function takes names of variables and a data frame as an input, and returns summary statistics, list of outliers (using False Discovery Rate) and graphs.

For example, to do QC of sex, age and qt3, try
> check.trait(c("sex","age","qt3"),phdata(srdta))

Trait sex has 2500 measurements
Missing: 0 ( $0 \%$ )


Figure 2.3: Quality control graph for sex, age, qt3

```
Mean = 0.51 ; s.d. = 0.5
NO outliers discovered for trait sex
Trait age has 2500 measurements
Missing: 0 (0 %)
Mean = 50.0378 ; s.d. = 7.060125
NO outliers discovered for trait age
Trait qt3 has 2489 measurements
Missing: 11 (0.44 %)
Mean = 2.60859 ; s.d. = 1.101154
NO outliers discovered for trait qt3
```

The corresponding graph is depicted at figure ??.

Before you start with the exercise: if a function returns unexpected results, and you are confident that syntax was right, checking help page is always a good idea!

Exercise 8. Exploring phenotypic part of srdta

Explore phdata part of srdta object

1. How many people has age over 65 years?
2. What is the sex distribution (proportion of males) in the people over 65 years old?
3. What is the mean, median, minimum and maximum age in the sample?
4. Compare the distribution of qt3 in people younger and older than 65 years. Use function sd(A) to get standard deviation of A
5. Produce distributions of different traits. Do you see something special?
6. What is correlation between qt3 and age?

### 2.4 Regression analysis

While contingency tables, bi-plots and correlation are powerful tools to analyse relations between pairs of variable, a more general framework allowing investigation of relation of an outcome to multiple predictors is regression. In R, function lm implements linear regression modelling, and function glm implements generalised linear regression. In this section, we will use these two functions to analyse quantitative an binary outcomes.

You can do linear regression to check if trait qt2 has relation with sex and age by

```
> a <- lm(phdata(srdta)$qt2 ~ phdata(srdta)$age + phdata(srdta)$sex)
```

The results of analysis are stored in object 'a', which has class 'lm' and contains may sub-objects:

```
> class(a)
[1] "lm"
names(a)
\begin{tabular}{llll}
[1] "coefficients" "residuals" & "effects" & "rank" \\
{\([5]\)} & "fitted.values" "assign" & "qr" & "df.residual" \\
{\([9]\)} & "xlevels" & "call" & "terms"
\end{tabular}
```

At this moment you do not need to understand all these sub-objects; the meaningful summary of analysis is produced with

```
> summary(a)
Call:
lm(formula = phdata(srdta)$qt2 ~ phdata(srdta)$age + phdata(srdta)$sex)
Residuals:
 Min 1Q Median 3Q Max
 -5.65 -1.80 -1.03 -0.31 883.08
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
```

| (Intercept) | -1.55892 | 4.41667 | -0.353 | 0.724 |
| :--- | ---: | ---: | ---: | ---: |
| phdata (srdta)\$age | 0.14022 | 0.08668 | 1.618 | 0.106 |
| phdata (srdta)\$sex | 1.30377 | 1.22393 | 1.065 | 0.287 |

Residual standard error: 30.59 on 2497 degrees of freedom Multiple R-squared: 0.001518, Adjusted R-squared: 0.0007181 F-statistic: 1.898 on 2 and 2497 DF, p-value: 0.1501

You can see that qt2 is not associated with age or sex.
As before, to make easy access to your data (basically, to avoid typing phdata(srdta) before every trait name, you may attach the data to the search path:

```
> attach(phdata(srdta))
```

Then, the above expression to run linear regression analysis simplifies to:

```
> summary(lm(qt2 ~ age + sex))
Call:
lm(formula = qt2 ~ age + sex)
Residuals:
\begin{tabular}{rrrr}
Min & 1Q Median & 3Q & Max
\end{tabular}
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.55892 4.41667 -0.353 0.724
\begin{tabular}{lllll}
age & 0.14022 & 0.08668 & 1.618 & 0.106
\end{tabular}
\begin{tabular}{lllll}
sex & 1.30377 & 1.22393 & 1.065 & 0.287
\end{tabular}
```

Residual standard error: 30.59 on 2497 degrees of freedom
Multiple R-squared: 0.001518, Adjusted R-squared: 0.0007181
F-statistic: 1.898 on 2 and 2497 DF, p-value: 0.1501
with the same results.
Analysis of binary outcomes may be performed using glm function, using binomial family for the error distribution and the link function. For example, to figure out if your binary trait (bt) is associated with sex and age, you need to tell that this is binary trait:

```
> a <- glm(bt ~ age + sex, family="binomial")
> summary(a)
Call:
glm(formula = bt ~ age + sex, family = "binomial")
Deviance Residuals:
 Min 1Q Median 3Q Max
-1.992 -1.091 -0.444 1.094 1.917
```

```
Coefficients
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.639958 0.330519 -14.038 < 2e-16 ***
age 0.088860 0.006463 13.749 < 2e-16 ***
sex 0.379593 0.084138 4.512 6.44e-06 ***
--
Signif. codes: 0 âĂŸ***âĂŹ 0.001 âA
(Dispersion parameter for binomial family taken to be 1)
 Null deviance: 3450.5 on 2488 degrees of freedom
Residual deviance: 3216.5 on 2486 degrees of freedom
 (11 observations deleted due to missingness)
AIC: 3222.5
Number of Fisher Scoring iterations: 4
```

There is strong association between bt and sex and age. If you want to characterise the strength of association to a binary trait with Odds Ratios, take the exponents of the regression coefficient. For example, the odds ratio associated with male is
$>\exp (0.3796)$
[1] 1.4617

### 2.5 Answers to exercises

## Answer of Exercise 1. Explore help for Wilcoxon test

By default (if 'exact' is not specified), an exact p-value is computed if the samples contain less than 50 finite values and there are no ties. Otherwise, a normal approximation is used.

## Answer of Exercise 2. Finding functions and help pages

Try help.search("Fisher") and help.search("Student t-test"). You will find that the corresponding functions are fisher.test t.test.

## Answer of Exercise 3. Exploring srdta

For the first person id is "p1" and sex code is $1(1=$ male, $0=$ female $)$
> idnames(srdta) [1]

```
[1] "p1"
> male(srdta)[1]
p1
```

1

For the 22 nd person id is "p22" and sex code is 1 :
> idnames(srdta) [22]
[1] "p22"
> male(srdta) [22]
p22
1
Among first 100 subjects, there are 53 males:
> sum(male(srdta) [1:100])
[1] 53
Among 4th hundred subjects there are 45 females:
> 100-sum(male(srdta) [301:400])
[1] 45
Male proportion among first 1000 people is
> mean(male(srdta) [1:1000])
[1] 0.508
Female proportion among second 1000 people is
> 1 - mean(male(srdta) [1001:2000])
[1] 0.476
Name, chromosome and map position of the 33rd marker are:
> snpnames (srdta) [33]
[1] "rs422"
> chromosome(srdta) [33]
rs422
"1"
> map(srdta) [33]
rs422
105500
The map positions for and distance between markers 25 and 26 are:
> pos25 <- map(srdta) [25]
> pos25
rs365
91250

```
> pos26 <- map(srdta)[26]
> pos26
rs372
92750
> pos26-pos25
rs372
 1 5 0 0
```


## Answer of Exercise 4. Exploring assoc

Here is an automatic script which explores the classes of variables in assoc:

```
> for (i in names(assoc)) {
+ cat("Variable '",i,"' has class '",class(assoc[,i]),"'\n",sep="")
+ }
Variable 'subj' has class 'integer'
Variable 'sex' has class 'numeric'
Variable 'aff' has class 'numeric'
Variable 'qt' has class 'numeric'
Variable 'snp4' has class 'character'
Variable 'snp5' has class 'character'
Variable 'snp6' has class 'character'
```


## Answer of Exercise 5. Explore phenotypic part of srdta

Load the data and look at the few first rows of the phenotypic data frame:

```
> data(srdta)
> phdata(srdta)[1:5,]
 id sex age qt1 qt2 qt3 bt
p1 p1 1 43.4 -0.58 4.46 1.43 0
p2 p2 1 48.2 0.80 6.32 3.90 1
p3 p3 0 37.9 -0.52 3.26 5.05 1
p4 p4 1 53.8 -1.55 888.00 3.76 1
p5 p5 1 47.5 0.25 5.70 2.89 1
```

Value of the 4 th variable of person 75 :

```
> phdata(srdta)[75,4]
```

$$
\text { [1] }-0.04
$$

Value for the variable 1 is
> phdata(srdta) [75,1]
[1] "p75"
Also, if we check first 10 elements we see

```
> phdata(srdta)[1:10,1]
```

```
[1] "p1" "p2" "p3" "p4" "p5" "p6" "p7" "p8" "p9" "p10"
```

This is personal ID.
The sum for variable 2 is
> sum(phdata(srdta) [,2])
[1] 1275
This is sex variable - so there are 1275 males in the data set.

## Answer of Exercise 6. Explore assoc

The number of affected (coded with ' 1 ') and unaffected (' 0 ') is

```
> table(aff)
aff
 0}
190 55
```

The proportion of unaffected and affected is

```
> prop.table(table(aff))
```

aff

```
0.7755102 0.2244898
```

Distribution of the 'snp4' is

```
> t <- table(snp4)
> t
snp4
A/A A/B B/B
109 105 29
> prop.table(t)
snp4
 A/A A/B B/B
0.4485597 0.4320988 0.1193416
```


## Answer of Exercise 7. Explore phenotypes in srdta

Number of people:

```
> nids(srdta)
```

[1] 2500
Number of variables:

```
> length(names(phdata(srdta)))
```

[1] 7
The same - dimensions of phenotypic data frame:

```
> dim(phdata(srdta))
```

[1] 25007
Class of variables in phenotypic data frame:

```
> for (i in names(phdata(srdta))) {
+ cat("class of variable '",i,"' is '",class(phdata(srdta)[,i]),"'\n",s
+ }
class of variable 'id' is 'character'
class of variable 'sex' is 'integer'
class of variable 'age' is 'numeric'
class of variable 'qt1' is 'numeric'
class of variable 'qt2' is 'numeric'
class of variable 'qt3' is 'numeric'
class of variable 'bt' is 'integer'
```


## Answer of Exercise 8. Exploring phenotypic part of srdta

To obtain the number of people with age $>65$ y.o., you can use any of the following

```
> sum(phdata(srdta)$age>65)
```

[1] 48

```
> vec <- which(phdata(srdta)$age>65)
> length(vec)
[1] 48
```

To get sex of these people use any of:

```
> sx65 <- phdata(srdta)$sex[phdata(srdta)$age>65]
> sx65
```


[39] 10010000111
> sx65 <- phdata(srdta)\$sex[vec]
> sx65
 [39] 100100000111

Thus, number of males is:
> sum(sx65)
[1] 26
To conclude, the proportion of male is 0.541666666666667 .
Distribution of qt3 in people younger and older than 65 are:

```
> summary(phdata(srdta)$qt3[vec])
\begin{tabular}{rrrrrr}
Min. & 1st Qu. & Median & Mean & 3rd Qu. & Max. \\
0.730 & 2.690 & 3.480 & 3.499 & 4.265 & 5.840
\end{tabular}
```

> sd(phdata(srdta)\$qt3[vec],na.rm=TRUE)
[1] 1.128701

```
> young <- which(phdata(srdta)$age<65)
> summary(phdata(srdta)$qt3[young])
\begin{tabular}{rrrrrrr}
Min. & 1st Qu. & Median & Mean & 3rd Qu. & Max. & NA's \\
-1.97 & 1.83 & 2.58 & 2.59 & 3.35 & 6.34 & 11
\end{tabular}
> sd(phdata(srdta)$qt3[young],na.rm=TRUE)
```

[1] 1.093374
Mean, median, min and max of age:
> summary(phdata(srdta)\$age)

| Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 24.10 | 45.10 | 50.00 | 50.04 | 54.80 | 71.60 |

The histogram for qt2 looks strange (you can generate that using hist (phdata (srdta) \$qt2)): it seems there are few very strong outliers. You can also see that with summary:
> summary (phdata(srdta)\$qt2)
Min. 1st Qu. Median Mean 3rd Qu. Max.

| 0.000 | 4.220 | 5.045 | 6.122 | 5.910 | 888.000 |
| :--- | :--- | :--- | :--- | :--- | :--- |

## Chapter 3

## Introduction to genetic association analysis in $\mathbf{R}$


#### Abstract

When analyzing several (dozens of) SNPs, facilities of base R are sufficient and efficient for data storage and analysis. Few specific test, such as these of Hardy-Weinberg Equilibrium (HWE) and Linkage Disequilibrium (LD), are implemented in different libraries, e.g. genetics and GenABEL-package.

In this section, we will describe library genetics and will make use of it to guide you through simple genetic analysis exercise using a small example data set. In the last part, you will investigate a bigger data set as based on the knowledge obtained in the first part, and will answer the questions.


### 3.1 Characterisation of genetic data

### 3.2 Exploring genetic data with library genetics

Library genetics was written by Gregory R. Warnes to facilitate analysis of genetic data in R. This library

- Implements genetic analysis tests, such as test for Hardy-Weinberg equilibrium and Linkage disequilibrium.
- Implements new data classes, such as genotype, haplotype and LD.data.frame.
- Modifies default R functions, such as summary and plot to correctly analyse and present these new classes.
- Facilitates export of the data from R to the formats supported by such genetic analysis packages as GenePop and QTDT.

Start $R$ by double-click on the file ge03d1p1.RData. Load library genetics, which we will need for testing HWE and computations of LD by

```
> library(genetics)
NOTE: THIS PACKAGE IS NOW OBSOLETE.
```


## 46CHAPTER 3. INTRODUCTION TO GENETIC ASSOCIATION ANALYSIS IN R

The R-Genetics project has developed an set of enhanced genetics packages to replace 'genetics'. Please visit the project homepage at http://rgenetics.org for informtion.

The file you have loaded contains single data frame assocg. Let us briefly explore it:

```
> class(assocg)
[1] "data.frame"
> names(assocg)
[1] "subj" "sex" "aff" "qt" "snp4" "snp5" "snp6"
> dim(assocg)
[1] 250 7
```

You can see that assocg looks remarkably similar to the previously explored data frame assoc (section 2.2, page 20). Indeed, they are almost equivalent. Let us present the data for the subjects 5 to 15 and compare this output to that presented on page 23

| $\gg$ assocg[5:15,] |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
|  | subj | sex aff |  | qt | snp4 | snp5 | snp6 |
| 1533 | 1533 | 0 | 0 | 0.1009220 | A/B | B/A | B/A |
| 2466 | 2466 | 1 | 0 | -0.1724321 | A/B | A/A | A/A |
| 2425 | 2425 | 0 | 0 | -0.3378473 | B/B | A/A | A/A |
| 1068 | 1068 | 0 | 0 | -1.7112925 | A/A | B/B | <NA> |
| 198 | 198 | 1 | 0 | -0.4815822 | A/B | B/A | B/A |
| 1496 | 1496 | 1 | 0 | 1.2281232 | A/A | B/B | B/B |
| 909 | 909 | 0 | 0 | 0.5993945 | A/B | B/A | B/A |
| 1213 | 1213 | 0 | 0 | 1.9792190 | A/A | B/B | B/B |
| 181 | 181 | 1 | 0 | 1.5435921 | A/A | B/B | B/B |
| 1783 | 1783 | 0 | 0 | -1.6242738 | A/B | B/A | B/A |
| 1914 | 1914 | 0 | 0 | -0.5160331 | A/A | B/B | B/B |

The data are identical. However, the SNP data presented in the new data frame have special class genotype, as implemented in genetics library:

```
> class(assocg$snp4)
```

```
[1] "genotype" "factor"
```

Previously, the SNP genotypes were coded as characters. This new way of presentation allows library genetics to recognise the SNP data as genetic and analyse them accordingly.

Let us attach the assocg data frame and explore what data analysis advantages are achieved by application of library genetics.

```
> attach(assocg)
```

As we noted in section 2.2, testing Hardy-Weinberg equilibrium, testing allelic effects, and even computation of allelic frequency is not so straightforward in base R. These tests, are, however, easy with library genetics. To see the allelic frequencies and other summary statistics for a SNP, you can use

```
> summary(snp4)
Number of samples typed: 243 (97.2%)
Allele Frequency: (2 alleles)
 Count Proportion
A 323 0.66
B 163 0.34
NA 14 NA
Genotype Frequency:
 Count Proportion
B/B 29 0.12
A/B 105 0.43
A/A 109 0.45
NA
Heterozygosity (Hu) = 0.4467269
Poly. Inf. Content = 0.3464355
```

To check these characteristics in controls and cases separately, you can use

```
> summary(snp4[aff==0])
```

Number of samples typed: 190 (97.9\%)
Allele Frequency: (2 alleles)
Count Proportion
$\begin{array}{lll}\text { A } & 255 & 0.67\end{array}$
$\begin{array}{ll}\text { B } & 125\end{array} 0.33$
NA 8 NA
Genotype Frequency:
Count Proportion
$\begin{array}{lll}\text { B/B } & 22 & 0.12\end{array}$
$\begin{array}{lll}\text { A/B } \quad 81 & 0.43\end{array}$
$\begin{array}{lll}\text { A/A } & 87 & 0.46\end{array}$
NA 4 NA
Heterozygosity (Hu) $=0.4426469$
Poly. Inf. Content $=0.3440288$
> summary (snp4[aff==1])

## 48CHAPTER 3. INTRODUCTION TO GENETIC ASSOCIATION ANALYSIS IN R

```
Number of samples typed: 53 (94.6%)
Allele Frequency: (2 alleles)
Count Proportion
\begin{tabular}{lrr}
A & 68 & 0.64 \\
B & 38 & 0.36 \\
NA & 6 & NA
\end{tabular}
```

| Genotype Frequency: |  |  |
| :--- | ---: | ---: |
| Count |  | Proportion |
| B/B | 7 | 0.13 |
| A/B | 24 | 0.45 |
| A/A | 22 | 0.42 |
| NA | 3 | NA |

Heterozygosity (Hu) $=0.4643306$
Poly. Inf. Content $=0.3541731$
Let us check if HWE holds for the SNPs described in this data frame. We can do exact test for HWE by

```
> HWE.exact(snp4)
 Exact Test for Hardy-Weinberg Equilibrium
data: snp4
N11 = 109, N12 = 105, N22 = 29, N1 = 323, N2 = 163, p-value = 0.666
```

If you want to check HWE using controls only, you can do it by

```
> HWE.exact(snp4[aff==0])
```

Exact Test for Hardy-Weinberg Equilibrium
data: snp4[aff == 0]
$\mathrm{N} 11=87, \mathrm{~N} 12=81, \mathrm{~N} 22=22, \mathrm{~N} 1=255, \mathrm{~N} 2=125, \mathrm{p}$-value $=0.6244$

Let us check if the there is LD between $\operatorname{snp} 4$ and $\operatorname{snp} 5$ :

```
LD(snp4,snp5)
```

Pairwise LD

```
 D D' Corr
Estimates: 0.2009042 0.9997352 0.8683117
 X^2 P-value N
LD Test: 354.3636
 O235
```

The output shows results of the test for significance of LD, and estimates of the magnitude of LD ( $D^{\prime}$ and correlation, $r$ ). To obtain $r^{2}$, you can either square the correlation manually
$>0.8683117 * 0.8683117$
[1] 0.7539652
or simply ask LD () to report it by
> LD $(\operatorname{snp} 4, \operatorname{snp} 5) \${ }^{\prime \prime} R^{\wedge} 2^{\prime \prime}$
[1] 0.7539652

The latter command is possible because the LD() function actually computes more things than it reports. This is quite common for $R$ functions. You can apply names () function to the analysis objects to see (at least part of) what was actually computed. Try
> ld45 <- LD (snp4, snp5)
and check what are the sub-objects contained in this analysis object
> names(ld45)
[1] "call" "D" "D'" "r" "R^2" "n" "X^2"
[8] "P-value"
Any of these variables can be accessed through object\$var syntax, e.g. to check $D^{\prime}$ we can use
> ld45\$" ${ }^{\prime \prime}$ "
[1] 0.9997352

To check LD for more that two SNPs, we can compute an LD analysis object by

```
> ldall <- LD(data.frame(snp4,snp5,snp6))
```

and later check

```
> ldall$"P-value"
 snp4 snp5 snp6
snp4 NA 0 0
snp5 NA NA 0
snp6 NA NA NA
```

to see significance,

```
> ldall$"D'"
```

|  | snp4 | snp5 | snp6 |
| :--- | ---: | ---: | ---: |
| snp4 | NA | 0.9997352 | 0.8039577 |
| snp5 | NA | NA | 0.9997231 |
| snp6 | NA | NA | NA |

for $D^{\prime}$ and

```
> ldall$"R^2"
```



Figure 3.1: $r^{2}$ plot for snp4, snp5 and snp6

|  | snp4 | snp5 | snp6 |
| :--- | ---: | ---: | ---: |
| snp4 | NA | 0.7539652 | 0.5886602 |
| snp5 | NA | NA | 0.8278328 |
| snp6 | NA | NA | NA |

for $r^{2}$.
You can also present e.g. $r^{2}$ matrix as a plot by
> image(ldall\$"R^2")
A more neat way to present it requires specification of the set of threshold (break points) and colors to be used (you do not need to try this example if you do not want):
> image(ldall\$"R^2", breaks=c (0.5,0.6,0.7,0.8,0.9,1), col=heat.colors(5))
Resulting plot is shown at figure 3.1

For any $R$ command, you can get help by typing help(command). Try help(image) if you are interested to understand what are "breaks" and "col"; or try help(heat.colors) to figure this color schema out.

Similar to our HWE checks, we may want to compute (and compare) LD in cases and controls separately:


Figure 3.2: $r^{2}$ plot for $\operatorname{snp} 4, \operatorname{snp} 5$ and snp6. Above diagonal: LD in cases; below: controls

```
> ldcases <- LD(data.frame(snp4,snp5,snp6)[aff==1,])
> ldcases$"R^2"
\begin{tabular}{lrrr}
& snp4 & snp5 & snp6 \\
snp4 & NA & 0.7615923 & 0.6891558 \\
snp5 & NA & NA & 0.8943495 \\
snp6 & NA & NA & NA
\end{tabular}
> ldcontr <- LD(data.frame(snp4,snp5,snp6)[aff==0,])
> ldcontr$"R^2"
\begin{tabular}{lrrr}
& snp4 & snp5 & snp6 \\
snp4 & NA & 0.7512458 & 0.5616395 \\
snp5 & NA & NA & 0.8075894 \\
snp6 & NA & NA & NA
\end{tabular}
```

and even present it results for cases and controls on the same graph (you do not need to produce this graph, which is presented at the figure 3.2):

```
> image(ldcases$"R^2",breaks=c(0.5,0.6,0.7,0.8,0.9,1),col=heat.colors(5))
> image(t(ldcontr$"R^2"),breaks=c(0.5,0.6,0.7,0.8,0.9,1),col=heat.colors(5),add=T)
```


### 3.3 Genetic association analysis

### 3.4 Example association analysis

Now, after we have described genetic and phenotypic data separately, we are ready to test association between these two. In previous sections, we showed that association between a binary trait and genotype may be analysed using contingency tables (functions table, prop.table, fisher.test, etc.). The association between a quantitative trait and genotype may be done using correlations, T-test, etc.

However, a more flexible analysis is possible when using regression modelling. First, we will investigate relation between the quantitative trait qt and the SNPs by using linear regression

```
> mg <- lm(qt ~}\operatorname{snp4)
```

The lm command fits linear regression model to the data and returns an analysis object. The summary of analysis may be generated with

```
> summary(mg)
Call:
lm(formula = qt ~ snp4)
Residuals:
\begin{tabular}{rrrrr}
Min & \(1 Q\) & Median & 3Q & Max \\
-2.63700 & -0.62291 & -0.01225 & 0.58922 & 3.05561
\end{tabular}
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.081114 0.092517 -0.877 0.382
snp4A/B -0.108366 0.132079 -0.820 0.413
snp4B/B
Residual standard error: 0.9659 on 240 degrees of freedom
 (7 observations deleted due to missingness)
Multiple R-squared: 0.003049, Adjusted R-squared: -0.005259
F-statistic: 0.367 on 2 and 240 DF, p-value: 0.6932
```

From the summary output, it is clear that the model assumes arbitrary (estimated) effects of the genotypes $\mathrm{AA}, \mathrm{AB}$ and BB . Neither effect of AB nor BB is significant in this case. The global test on two degrees of freedom (bottom of the output) is also not significant.

If you want to include some covariate into your model, e.g. sex, you can easily do that by adding the term to the formula:

```
> summary(lm(qt~sex+snp4))
Call:
lm(formula = qt ~ sex + snp4)
```

Residuals:


Residual standard error: 0.9676 on 239 degrees of freedom (7 observations deleted due to missingness)
Multiple R-squared: 0.003805, Adjusted R-squared: -0.0087
F-statistic: 0.3043 on 3 and 239 DF, p-value: 0.8223
You can also allow for interaction by using the "*" operator

```
> summary(lm(qt ~sex*snp4))
Call:
lm(formula = qt ~ sex * snp4)
Residuals:
\begin{tabular}{rrrrr}
Min & \(1 Q\) & Median & 3Q & Max \\
-2.57049 & -0.64596 & -0.00264 & 0.61094 & 3.01970
\end{tabular}
Coefficients:
\begin{tabular}{lrrrr}
& Estimate & Std. Error & t value \(\operatorname{Pr}(>|\mathrm{t}|)\) \\
(Intercept) & -0.20579 & 0.13834 & -1.487 & 0.138 \\
sex & 0.22649 & 0.18647 & 1.215 & 0.226 \\
snp4A/B & 0.05222 & 0.19024 & 0.274 & 0.784 \\
snp4B/B & 0.18071 & 0.28576 & 0.632 & 0.528 \\
sex: \(\operatorname{snp} 4 A / B\) & -0.30191 & 0.26566 & -1.136 & 0.257 \\
sex: \(\operatorname{snp} 4 B / B\) & -0.35508 & 0.40531 & -0.876 & 0.382
\end{tabular}
Residual standard error: 0.9684 on 237 degrees of freedom (7 observations deleted due to missingness)
Multiple R-squared: 0.01041, Adjusted R-squared: -0.01047
F-statistic: 0.4984 on 5 and 237 DF, p-value: 0.7773
```

Note that both main effects of sex and snp4, and also effects of interaction are estimated in this model.

Of interest in genetic studies may be three other models: additive, dominant and recessive.

The additive model assumes that the difference between mean trait's values between ' AA ' and ' BB ' is twice the difference between ' AA ' and ' BB ', that is the mean value of the trait for heterozygous genotypes is right in between the two homozygotes. To test additive model, we first need to recode the predictor (genotype) as a numeric factor to be used as covariate. This can be easy done with function as.numeric:

```
> add4 <- as.numeric(snp4)-1
```


## 54CHAPTER 3. INTRODUCTION TO GENETIC ASSOCIATION ANALYSIS IN R

We can check if recoding was done correctly by producing the table

```
> table(snp4,add4)
 add4
snp4 0 1 2
 A/A 109 0 0
 A/B 0 105 0
 B/B 0 0 29
```

Now to test the additive model run

```
> summary(lm(qt~add4))
```

Call:
$\operatorname{lm}(f o r m u l a=q t \quad$ add4)
Residuals:

| Min | 1Q | Median | 3Q | Max |
| ---: | ---: | ---: | ---: | ---: |
| -2.54813 | -0.62104 | -0.02754 | 0.60584 | 3.00652 |

Coefficients:
Estimate Std. Error $t$ value $\operatorname{Pr}(>|t|)$

| (Intercept) | -0.10476 | 0.08710 | -1.203 | 0.230 |
| :--- | :--- | :--- | :--- | :--- |
|  | -0.03563 | 0.09133 | -0.390 | 0.697 |

Residual standard error: 0.9651 on 241 degrees of freedom
(7 observations deleted due to missingness)
Multiple R-squared: 0.0006313, Adjusted R-squared: -0.003516
F-statistic: 0.1522 on 1 and 241 DF, p-value: 0.6968

The model assuming dominant action of the 'A' allele means that the means of genotypes ' AA ' and ' AB ' are the same. This is equivalent to the model of recessive action of 'B' allele. To code SNP4 according to this model, we can use function replace:

```
> dom4 <- add4
> dom4[dom4==2] <- 1
> table(snp4,dom4)
 dom4
snp4 0 1
 A/A 109 0
 A/B 0 105
 B/B 0 29
```

To test association with a binary outcome, we will use function glm with binomial family:

```
> summary(glm(aff~~np4,family="binomial"))
```

```
Call:
glm(formula = aff ~ snp4, family = "binomial")
Deviance Residuals:
\begin{tabular}{rrrrr}
Min & 1Q & Median & 3Q & Max \\
-0.7433 & -0.7204 & -0.6715 & -0.6715 & 1.7890
\end{tabular}
Coefficients:
 Estimate Std. Error z value \(\operatorname{Pr}(>|z|)\)
\begin{tabular}{lrrrr}
(Intercept) & -1.3749 & 0.2386 & -5.761 & \(8.35 \mathrm{e}-09\)
\end{tabular} ***
```

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĀŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ. âĂŹ 0.1 âĂŸ âĂŹ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 254.91 on 242 degrees of freedom
Residual deviance: 254.58 on 240 degrees of freedom
(7 observations deleted due to missingness)
AIC: 260.58
Number of Fisher Scoring iterations: 4

To make a test of global significance of the SNP effect, you can use

```
> anova(glm(aff~snp4,family="binomial"),test="Chisq")
```

Analysis of Deviance Table
Model: binomial, link: logit
Response: aff
Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev $\operatorname{Pr}(>C h i)$
NULL $242 \quad 254.91$
$\begin{array}{llllll}\text { snp4 } & 2 & 0.32894 & 240 & 254.58 & 0.8483\end{array}$

In the manner similar to that described for quantitative traits, additive and dominance/recessive models can be tested by proper coding of the genotypic variable, e.g. to test the additive model, use

```
> summary(glm(aff~as.numeric(snp4),family="binomial"))
Call:
glm(formula = aff ~ as.numeric(snp4), family = "binomial")
Deviance Residuals:
```

| Min | 1Q | Median | 3Q | Max |
| ---: | ---: | ---: | ---: | ---: |
| -0.7549 | -0.7139 | -0.6747 | -0.6747 | 1.7842 |

Coefficients:

|  | Estimate | Std. Error z value $\operatorname{Pr}(>\|\mathrm{z}\|)$ |  |  |
| :--- | ---: | ---: | ---: | ---: |
| (Intercept) | -1.4913 | 0.4164 | $-3.581 \quad 0.000342 * * *$ |  |
| as.numeric (snp4) | 0.1272 | 0.2268 | 0.561 | 0.574994 |

---

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 254.91 on 242 degrees of freedom
Residual deviance: 254.60 on 241 degrees of freedom
(7 observations deleted due to missingness)
AIC: 258.6
Number of Fisher Scoring iterations: 4
Now you have learned all commands necessary to answer the questions of the next section.

Exit R by typing $q$ () command (do not save image) and and proceed to the self exercise.

### 3.5 Exercise: Exploring genetic data using library genetics

Start R by double-click over the file ge03d1p2.RData (Windows) or by changing to the directory containing the data, starting $R$ and loading the data set with load("ge03d1p2.RData") (Linux). Explore the data frame present and answer the questions.

Ex. 1 - How many SNPs are described in this data frame?
Ex. 2 - What is the frequency (proportion) of snp1 allele 'A'?
Ex. 3 - What is its frequency of 'A' in affected (aff==1)?
Ex. 4 - How many cases and controls are present in the data set?
Ex. 5 - If all subjects are used to test HWE, are there any SNPs out of HWE at nominal $P \leq 0.05$ ? Which ones?

Ex. 6 - If only controls are used to test the SNPs which are out of HWE in total sample, are these still out of HWE?

Ex. 7 - Which SNP pairs are in strong LD $\left(r^{2} \geq 0.8\right)$ ?
Ex. 8 - For SNPs in strong LD, what is $r^{2}$ for separate samples of cases and controls?

Ex. 9 - Is there significant association between affection status and sex? What is $P$-value for association?

Ex. 10 - Is association between the disease and qt significant?
Ex. 11 - Which SNPs are significantly associated with affection status at nominal $p$-value $\leq 0.05$ ? Use general genotypic (2 d.f.) model.

Ex. 12 - Test association between aff and snp5 and snp10, allowing for the SNPs interaction effect. Use arbitrary (not an additive) model. Do you observe significant interaction? How can you describe the model of concert action of snp5 and snp10?

Ex. 13 - Test for association between the quantitative trait qt and SNPs $1-10$ using additive model. Which SNPs are associated at nominal $P \leq 0.05$ ?

Ex. 14 - OPTIONAL, difficulty is medium, but may be time-consuming. If you adjust the analysis under additive model for sex, how do the findings change? Before doing the exercise, please check the answer to previous exercise - it shows a quick way to do testing for all 10 SNPs.

Ex. 15 - Which SNPs are associated with the quantitative trait qt at nominal $P \leq 0.05$ when general genotypic (2 d.f. test) model is used?

Ex. 16 - ADVANCED: How can you describe the model of action of the significant SNPs? Test if the data are compatible with additive/dominant/recessive model.

### 3.6 Answers to exercises

Answer (Ex. 1) - The answer is 10 snps:

```
> attach(popdat)
```

> names(popdat)
[1] "subj" "sex" "aff" "qt" "snp1" "snp2" "snp3" "snp4" "snp5"
[10] "snp6" "snp7" "snp8" "snp9" "snp10"

Answer (Ex. 2) - The frequency of ' A ' in all subjects is 0.73 :

```
> summary(snp1)
Number of samples typed: 2374 (95%)
Allele Frequency: (2 alleles)
 Count Proportion
A 3462 0.73
B 1286 0.27
NA 252 NA
```

| Genotype Frequency: |
| :--- |
| Count Proportion |


| B/B | 199 | 0.08 |
| :--- | ---: | ---: |
| A/B | 888 | 0.37 |
| A/A | 1287 | 0.54 |
| NA | 126 | NA |

Heterozygosity (Hu) $=0.3950646$
Poly. Inf. Content $=0.3169762$

Answer (Ex. 3) - The frequency of A in affected subjects is 0.7:

```
> summary(snp1[aff==1])
Allele Frequency: (2 alleles)
 Count Proportion
A 729 0.7
B 309 0.3
NA 60 NA
```

Number of samples typed: 519 ( $94.5 \%$ )

| Genotype Frequency: |  |  |
| :--- | ---: | ---: |
| Count |  | Proportion |
| B/B | 48 | 0.09 |
| A/B | 213 | 0.41 |
| A/A | 258 | 0.50 |
| NA | 30 | NA |

```
Heterozygosity (Hu) = 0.4185428
```

Poly. Inf. Content $=0.3307192$

Answer (Ex. 4) - There are 549 cases and 1951 controls:

```
> table(aff)
```

aff
$0 \quad 1$
1951549

Answer (Ex. 5) - Only SNP 1 is out of HWE in the total sample. Here is a sciript testing all SNPs (no need to reproduce that, just check the results):

```
> for (i in 1:10) {
+ snpname <- paste("snp",i,sep="")
+ cat("HWE P-value for SNP",snpname,"is",HWE.exact(get(snpname))$p.value,"\n")
+ }
HWE P-value for SNP snp1 is 0.01083499
HWE P-value for SNP snp2 is 1
```

```
HWE P-value for SNP snp3 is 0.4197772
HWE P-value for SNP snp4 is 0.8960298
HWE P-value for SNP snp5 is 0.2960967
HWE P-value for SNP snp6 is 0.5207056
HWE P-value for SNP snp7 is 0.6284575
HWE P-value for SNP snp8 is 0.1309458
HWE P-value for SNP snp9 is 0.4457363
HWE P-value for SNP snp10 is 0.7897327
```

Answer (Ex. 6) - Yes, SNP one is out of HWE also in controls:

```
> HWE.exact(snp1[aff==0])
```

Exact Test for Hardy-Weinberg Equilibrium

```
data: snp1[aff == 0]
N11 = 1029, N12 = 675, N22 = 151, N1 = 2733, N2 = 977, p-value =
0.008393
```

Answer (Ex. 7) - SNP pairs 4-5 and 5-6 have $r^{2} \geq 0.8$ :
> LD(popdat[,5:14]) \$"R^2"

|  | snp1 | snp2 | snp3 | snp4 | snp5 | snp6 | snp7 | snp8 | snp9 | snp10 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| snp1 | NA | 0.016 | 0.235 | 0.206 | 0.258 | 0.227 | 0.152 | 0.117 | 0.090 | 0.000 |
| snp2 | NA | NA | 0.004 | 0.004 | 0.005 | 0.004 | 0.000 | 0.000 | 0.000 | 0.000 |
| snp3 | NA | NA | NA | 0.602 | 0.457 | 0.346 | 0.641 | 0.031 | 0.042 | 0.001 |
| snp4 | NA | NA | NA | NA | 0.803 | 0.650 | 0.729 | 0.027 | 0.037 | 0.002 |
| snp5 | NA | NA | NA | NA | NA | 0.874 | 0.586 | 0.034 | 0.046 | 0.002 |
| snp6 | NA | NA | NA | NA | NA | NA | 0.670 | 0.030 | 0.040 | 0.002 |
| snp7 | NA | 0.020 | 0.027 | 0.003 |
| snp8 | NA | 0.002 | 0.000 |
| snp9 | NA | 0.001 |
| snp10 | NA |

Answer (Ex. 8) - For controls,

```
> #LD(popdat[aff==0,8:10])$"R^2"
> LD(data.frame(snp4,snp5,snp6)[aff==0,])$"R^2"
```

|  | snp4 | snp5 | snp6 |
| :--- | ---: | ---: | ---: |
| snp4 | NA | 0.806591 | 0.6419715 |
| snp5 | NA | NA | 0.8661005 |
| snp6 | NA | NA | NA |

For cases,

```
> #LD(popdat[aff==1,8:10])$"R^2"
> LD(data.frame(snp4,snp5,snp6)[aff==1,])$"R^2"
 snp4 snp5 snp6
snp4 NA 0.7951475 0.6773275
```


## 60CHAPTER 3. INTRODUCTION TO GENETIC ASSOCIATION ANALYSIS IN R

| snp5 | NA | NA | 0.9083237 |
| :--- | ---: | ---: | ---: |
| snp6 | NA | NA | NA |

Note that the fact that LD is higher in cases may mean nothing because the estimates of LD are biased upwards with smaller sample sizes. For example in a small sample ( 5 people) of controls we expect even higher LD because of strong upward bias:

```
> LD(popdat[which(aff==0)[1:5],8:10])$"R^2"
 snp4 snp5 snp6
snp4 NA 0.9995876 0.9995876
snp5 NA NA 0.9995876
snp6 NA NA NA
```

More elaborate methods, such as that by ZAYKIN et al. (2006), are required to contrast LD between sample of unequal size.

Answer (Ex. 9) - There is no significant association:

```
> t <- table(aff,sex)
> t
 sex
aff 0 1
 0 973 978
 1260289
> fisher.test(t)
 Fisher's Exact Test for Count Data
data: t
p-value = 0.3104
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
 0.9107753 1.3430565
sample estimates:
odds ratio
 1.105811
> summary(glm(aff~sex,family=binomial()))
Call:
glm(formula = aff ~ sex, family = binomial())
Deviance Residuals:
\begin{tabular}{rrrrr}
Min & 1Q & Median & 3Q & Max \\
-0.7196 & -0.7196 & -0.6882 & -0.6882 & 1.7644
\end{tabular}
Coefficients:
 Estimate Std. Error z value Pr(> |z|)
(Intercept) -1.31970 0.06981 -18.90 <2e-16 ***
sex 0.10062 0.09673 1.04 0.298
```



```
(Dispersion parameter for binomial family taken to be 1)
 Null deviance: 2632.0 on 2499 degrees of freedom
Residual deviance: 2630.9 on 2498 degrees of freedom
AIC: 2634.9
Number of Fisher Scoring iterations: 4
```

Answer (Ex. 10) - There is no significant association:
> summary (glm(aff~qt,family=binomial()))
Call:
glm(formula = aff ~ qt, family = binomial())
Deviance Residuals:

---

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 2632.0 on 2499 degrees of freedom
Residual deviance: 2631.7 on 2498 degrees of freedom
AIC: 2635.7
Number of Fisher Scoring iterations: 4

Answer (Ex. 11) - SNPs 5 and 10 are significantly associated:

```
> for (i in 1:10) {
+ snpname <- paste("snp",i,sep="")
+ cat("\nTesting association between aff and SNP",snpname,":\n")
+ print(anova(glm(aff~get(snpname),family=binomial),test="Chisq"))
+ #print(summary(lm(qt~get(snpname)))$coef)
+ }
Testing association between aff and SNP snp1 :
Analysis of Deviance Table
Model: binomial, link: logit
Response: aff
```

62CHAPTER 3. INTRODUCTION TO GENETIC ASSOCIATION ANALYSIS IN R

```
Terms added sequentially (first to last)
 Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 2373 2493.4
get(snpname) 2 5.4094 2371 2488.0 0.06689 .
Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âăŹŹ 0.01 âĂŸ*âĂŹZ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1
Testing association between aff and SNP snp2 :
Analysis of Deviance Table
Model: binomial, link: logit
Response: aff
Terms added sequentially (first to last)
 Df Deviance Resid. Df Resid. Dev Pr(>Chi)
lllll
Testing association between aff and SNP snp3 :
Analysis of Deviance Table
Model: binomial, link: logit
Response: aff
Terms added sequentially (first to last)
\begin{tabular}{lrrrrr}
& Df Deviance & Resid. Df & Resid. Dev & Pr \((>\) Chi) \\
NULL & & & 2377 & 2503.0 \\
get(snpname) & 2 & 2.6087 & 2375 & 2500.4 & 0.2714
\end{tabular}
Testing association between aff and SNP snp4 :
Analysis of Deviance Table
Model: binomial, link: logit
Response: aff
Terms added sequentially (first to last)
NULL
 Df Deviance Resid. Df Resid. Dev Pr(>Chi)
 2389 2519.1
```

```
get(snpname) 2 5.2755 2387 2513.8 0.07152.
Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĀŹŹ 0.01 âĂŸ*âĂŹ 0.05 âĀŸ.âĀŹ 0.1 âĂŸ âĀŹ 1
Testing association between aff and SNP snp5 :
Analysis of Deviance Table
Model: binomial, link: logit
Response: aff
Terms added sequentially (first to last)
 Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 2382 2440.4
get(snpname) 2 9.2395 2380 2431.2 0.009855 **
Signif. codes: 0 âĀŸ***âĀŹ 0.001 âĂŸ**âĀŹZ 0.01 âÄŸ*âĀŹŹ 0.05 âĀŸ.âĀŹ }0.1\mathrm{ âĀŸ âĀŹ 1
Testing association between aff and SNP snp6 :
Analysis of Deviance Table
Model: binomial, link: logit
Response: aff
Terms added sequentially (first to last)
 Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 2379 2498.9
get(snpname) 2 1.7969 2377 2497.1 0.4072
Testing association between aff and SNP snp7 :
Analysis of Deviance Table
Model: binomial, link: logit
Response: aff
Terms added sequentially (first to last)
 Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 2367 2487.9
get(snpname) 2 1.3604 2365 2486.6 0.5065
Testing association between aff and SNP snp8 :
Analysis of Deviance Table
```

```
Model: binomial, link: logit
Response: aff
Terms added sequentially (first to last)
\begin{tabular}{lrrrrr}
& Df Deviance Resid. Df & Resid. Dev & \(\operatorname{Pr}(>\mathrm{Chi})\) \\
NULL & & & 2370 & 2489.4 \\
get(snpname) & 2 & 5.5375 & 2368 & 2483.9 & 0.06274.
\end{tabular}
```



```
Testing association between aff and SNP snp9 :
Analysis of Deviance Table
Model: binomial, link: logit
Response: aff
Terms added sequentially (first to last)
```

    Df Deviance Resid. Df Resid. Dev Pr(>Chi)
    | NULL |  |  | 2360 | 2476.8 |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| get(snpname) | 2 | 1.1891 | 2358 | 2475.6 | 0.5518 |

Testing association between aff and SNP snp10 :
Analysis of Deviance Table
Model: binomial, link: logit
Response: aff
Terms added sequentially (first to last)

|  | Df Deviance | Resid. Df | Resid. Dev $\operatorname{Pr}(>$ Chi $)$ |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| NULL |  | 2383 | 2475.1 |  |  |
| get(snpname) | 2 | 6.7328 | 2381 | 2468.4 | $0.03451 *$ |



Answer (Ex. 12) - It appears that SNP10 genotype is only relevant in these who are homozygous for the low-risk A allele at the SNP5; in such cases SNP 10 allele B is risk increasing. In these homozygous for SNP 5 A , we observe highly significant increase in risk for heterozygotes for SNP10 and increased (though
not significantly) risk for SNP 10 BB :

```
> summary(glm(aff~}~np5*snp10,family=binomial()))
Call:
glm(formula = aff ~ snp5 * snp10, family = binomial())
Deviance Residuals:
\begin{tabular}{rrrrr}
Min & \(1 Q\) & Median & 3Q & Max \\
-0.9906 & -0.7340 & -0.6323 & -0.5215 & 2.0310
\end{tabular}
Coefficients:
\begin{tabular}{lrrrr}
& Estimate & Std. Error & z value & \(\operatorname{Pr}(>|z|)\) \\
(Intercept) & -1.50840 & 0.08905 & -16.938 & \(<2 \mathrm{e}-166^{* * *}\) \\
snp5A/A & -0.41802 & 0.19722 & -2.120 & \(0.0340 *\) \\
snp5B/B & 0.33441 & 0.13360 & 2.503 & \(0.0123 *\) \\
snp10A/B & -0.01403 & 0.18251 & -0.077 & 0.9387 \\
snp10B/B & -0.14983 & 0.55277 & -0.271 & 0.7863 \\
snp5A/A: snp10A/B & 1.48369 & 0.32750 & 4.530 & \(5.89 \mathrm{e}-06 * * *\) \\
snp5B/B: snp10A/B & 0.12989 & 0.27441 & 0.473 & 0.6360 \\
snp5A/A: snp10B/B & 0.82348 & 0.98963 & 0.832 & 0.4053 \\
snp5B/B:snp10B/B & -0.28562 & 1.23104 & -0.232 & 0.8165
\end{tabular}
```

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 2282.4 on 2268 degrees of freedom
Residual deviance: 2242.9 on 2260 degrees of freedom
(231 observations deleted due to missingness)
AIC: 2260.9
Number of Fisher Scoring iterations: 4

Answer (Ex. 13) - SNPs 1, 4, 5, 6 and 9 are significantly associated at nominal $P \leq 0.05$. Here is a testing script (no need to reproduce that, just check the results):

```
> for (i in 1:10) {
+ snpname <- paste("snp",i,sep="")
+ cat("\nTesting association between qt and SNP",snpname,":\n")
+ testmodel <- lm(qt~as.numeric(get(snpname)))
+ print(summary(testmodel)$coef)
+ }
Testing association between qt and SNP snp1 :
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.11874800 0.05260279 -2.257447 0.024070746
as.numeric(get(snpname)) 0.08859657 0.03147693 2.814651 0.004923315
Testing association between qt and SNP snp2 :
```

66CHAPTER 3. INTRODUCTION TO GENETIC ASSOCIATION ANALYSIS IN R

|  | Estimat | Std. Error | t value | $\operatorname{Pr}(>\|t\|)$ |
| :---: | :---: | :---: | :---: | :---: |
| (Intercept) | 0.09149145 | 0.1841115 | 0.4969352 | 0.6192808 |
| as.numeric(get(snpname)) | -0.07749967 | 0.1806078 | -0.4291047 | 0.6678860 |
| Testing association between qt and SNP snp3 |  |  |  |  |
|  | Estimat | Std. Error | t value | $\operatorname{Pr}(>\|t\|)$ |
| (Intercept) | 0.063827 | 0. 05629376 | 1.1338331 | 0.2569789 |
| as.numeric(get(snpname)) | -0.025171 | 0.02894125 | -0.8697443 | 0.3845280 |
| Testing association between qt and SNP snp4 |  |  |  |  |
|  | Estimat | Std. Error | t value | $\operatorname{Pr}(>\|t\|)$ |
| (Intercept) | 0.1400598 | 0.05612775 | 2.495377 | 0.01264938 |
| as.numeric(get(snpname)) | -0.07284539 | 0.02982557 | -2.442380 | 0.01466282 |
| Testing association between qt and SNP snp5 : |  |  |  |  |
|  | Estimate | Std. Error | t value | $\operatorname{Pr}(>\|t\|)$ |
| (Intercept) | -0.14350846 | 0.06620992 | -2.167477 | 0.03029734 |
| as.numeric(get(snpname)) | 0.07404874 | 0.02941437 | 2.517434 | 0.01188645 |
| Testing association between qt and SNP snp6 : |  |  |  |  |
|  | Estimate | Std. Error | t value | $\operatorname{Pr}(>\|t\|)$ |
| (Intercept) | -0.12737489 | 0.06768096 | -1.881990 | 0.05995937 |
| as.numeric(get(snpname)) | 0.06724115 | 0.02924840 | 2.298969 | 0.02159304 |
| Testing association between qt and SNP snp7 : |  |  |  |  |
|  | Estima | Std. Error | t value | $\operatorname{Pr}(>\|t\|)$ |
| (Intercept) | 0.08884244 | 0.05475991 | 1.622399 | 0.1048511 |
| as.numeric(get(snpname)) | -0.03774136 | 0.03152701 | -1.197112 | 0.2313829 |
| Testing association between qt and SNP snp8 : |  |  |  |  |
|  | Estimat | Std. Error | t value | $\operatorname{Pr}(>\|t\|)$ |
| (Intercept) | -0.05214665 | 0.08116533 | -0.6424744 | 0.5206274 |
| as.numeric(get(snpname)) | 0.06942327 | 0.07222881 | 0.9611576 | 0.3365710 |
| Testing association between qt and SNP snp9 : |  |  |  |  |
|  | Estimate | td. Error | t value | $\operatorname{Pr}(>\|t\|)$ |
| (Intercept) | -0.2201742 | 0.07115711 | -3.094199 0 | 0.0019965937 |
| as.numeric(get(snpname)) | 0.2110978 | 0.06112112 | 3.4537610 | . 0005625794 |
| Testing association between qt and SNP snp10 |  |  |  |  |
|  | Estimate | Std. Error | t value | $\operatorname{Pr}(>\|t\|)$ |
| (Intercept) | -0.01474695 | 0.05749473 | -0.2564921 | 0.7975930 |
| as.numeric(get(snpname)) | 0.03140888 | 0.04251458 | 0.7387789 | 0.4601141 |

Answer (Ex. 14) - Generally, results do not change much: still, SNPs 1, 4, 5,6 and 9 are significantly associated, and $p$-values are close to these observed without adjustment For SNPs

```
> for (i in 1:10) {
```

```
+ snpname <- paste("snp",i,sep="")
+ cat("\nTesting sex-adjusted association between qt and SNP",snpname,":\n")
+ testmodel <- lm(qt~}\mp@subsup{}{}{~
+ print(summary(testmodel)$coef)
+ }
```

Testing sex-adjusted association between qt and SNP snp1 :
Estimate Std. Error $\quad t$ value $\operatorname{Pr}(>|t|)$
(Intercept) -0.12783200 $0.05660623-2.25826720 .024019551$
sex $\quad 0.017662090 .040610740 .43491170 .663666095$
as.numeric(get(snpname)) $0.088688260 .03148302 \quad 2.81701910 .004887301$
Testing sex-adjusted association between qt and SNP snp2 :
Estimate Std. Error $t$ value $\operatorname{Pr}(>|t|)$
(Intercept) 0.081696920 .185258920 .44098780 .6592621
sex $\quad 0.019771180 .041016120 .48203430 .6298261$
as.numeric (get(snpname)) -0.07770464 0.18063757-0.4301688 0.6671120
Testing sex-adjusted association between qt and SNP snp3 :
Estimate Std. Error $t$ value $\operatorname{Pr}(>|t|)$
(Intercept) 0.055188290 .060287760 .91541460 .3600669
sex $\quad 0.016262760 .04057000 \quad 0.40085680 .6885616$
as.numeric(get(snpname)) -0.02491788 $0.02895328-0.86062390 .3895321$
Testing sex-adjusted association between qt and SNP snp4 :
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) 0.126117740 .060400092 .08803880 .03690009
sex $\quad 0.025535290 .040832730 .62536330 .53179244$
as.numeric (get(snpname)) -0.07227905 $0.02984312-2.42196710 .01551079$
Testing sex-adjusted association between qt and SNP snp5 :
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) -0.15272175 $0.06880690-2.21957040 .02654187$
$\begin{array}{llllll}\text { sex } & 0.02009534 & 0.04076087 & 0.4930057 & 0.62205408\end{array}$
as.numeric (get(snpname)) $0.073574520 .02943476 \quad 2.49957910 .01250094$
Testing sex-adjusted association between qt and SNP snp6:
Estimate Std. Error $t$ value $\operatorname{Pr}(>|t|)$
(Intercept) $\quad-0.14110680 \quad 0.07002874-2.01498410 .04401871$
$\begin{array}{llllll}\text { sex } & 0.03117861 & 0.04077551 & 0.7646406 & 0.44456146\end{array}$
as.numeric (get(snpname)) $0.066346020 .02927437 \quad 2.2663517 \quad 0.02351939$
Testing sex-adjusted association between qt and SNP snp7 :
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) 0.066974380 .058796041 .1390970 .2547782
sex $\quad 0.041744680 .040870011 .0214010 .3071689$
as.numeric (get(snpname)) -0.03723286 $0.03153066-1.1808460 .2377825$

Testing sex-adjusted association between qt and SNP snp8 :

68CHAPTER 3. INTRODUCTION TO GENETIC ASSOCIATION ANALYSIS IN R

| (Intercept) | -0.06807682 | 0.08455606 | -0.8051087 | 0.4208378 |
| :---: | :---: | :---: | :---: | :---: |
| sex | 0.02760968 | 0.04102873 | 0.6729354 | 0.5010541 |
| as.numeric(get(snpname)) | 0.07124407 | 0.07228780 | 0.9855614 | 0.3244491 |
| Testing sex-adjusted association between qt and SNP snp9 : |  |  |  |  |
|  | Estimate | Std. Error | t value | $\operatorname{Pr}(>\|t\|)$ |
| (Intercept) | -0.22558672 | 0.07313030 | -3.0847229 | 0.0020610506 |
| sex | 0.01311497 | 0.04074702 | 0.3218632 | 0.7475848790 |
| as.numeric(get(snpname)) | 0.21002414 | 0.06122367 | 3.4304402 | 0.0006129721 |
| Testing sex-adjusted association between qt and SNP snp10 : |  |  |  |  |
|  | Estimate | Std. Error | t value | $\operatorname{Pr}(>\|t\|)$ |
| (Intercept) | -0.02805887 | 0.06107457 | -0.4594198 | 0.6459747 |
| sex | 0.02628396 | 0.04064009 | 0.6467496 | 0.5178563 |
| as.numeric(get(snpname)) | 0.03150834 | 0.04252005 | 0.7410231 | 0.4587525 |

Answer (Ex. 15) - SNPs 1, 4, 5 an 9 are significantly associated at nominal $P \leq 0.05$. SNP 6 is only marginally significantly associated unde the general genotypic model. Here is a testing script (no need to reproduce that, just check the results):

```
> for (i in 1:10) {
+ snpname <- paste("snp",i,sep="")
+ cat("\nTesting association between qt and SNP",snpname,":\n")
+ print(anova(lm(qt~get(snpname)),test="Chisq"))
+ #print(summary(lm(qt~get(snpname)))$coef)
+ }
Testing association between qt and SNP snp1 :
Analysis of Variance Table
```

Response: qt
get(snpname) $\quad 2 \quad 7.8 \quad 3.8995 \quad 3.9845 \quad 0.01873$ *
Residuals $23712320.4 \quad 0.9787$

Testing association between qt and SNP snp2 :
Analysis of Variance Table
Response: qt

|  | Df | Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$ |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| get(snpname) | 1 | 0.18 | 0.18376 | 0.1841 | 0.6679 |
| Residuals | 2372 | 2367.23 | 0.99799 |  |  |

Testing association between qt and SNP snp3 :
Analysis of Variance Table
Response: qt

```
 Df Sum Sq Mean Sq F value Pr (>F)
get(snpname) 2 3.24 1.61986 1.658 0.1907
Residuals 2375 2320.41 0.97701
Testing association between qt and SNP snp4 :
Analysis of Variance Table
Response: qt
 Df Sum Sq Mean Sq F value Pr(>F)
get(snpname) 2 7.68 3.8417 3.8628 0.02114 *
Residuals 2387 2373.94 0.9945
```



```
Testing association between qt and SNP snp5 :
Analysis of Variance Table
Response: qt
\begin{tabular}{lrrrrc}
& Df & Sum Sq Mean Sq F value & \(\operatorname{Pr}(>F)\) \\
get(snpname) & 2 & 6.48 & 3.2418 & 3.2798 & \(0.03781 *\) \\
Residuals & 2380 & 2352.48 & 0.9884 & &
\end{tabular}
Residuals 2380 2352.48 0.9884
Signif. codes: 0 âĂŸ***âĀŹ 0.001 âĂŸ**âĀŹZ 0.01 âÄŸ*âĀŹŹ 0.05 âĀŸ.âĀŹ }0.1\mathrm{ âĀŸ âĂŹ 1
Testing association between qt and SNP snp6 :
Analysis of Variance Table
Response: qt
 Df Sum Sq Mean Sq F value Pr(>F)
get(snpname) 2 5.49 2.74680 2.7808 0.06219 .
Residuals 2377 2347.91 0.98776
Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂ\ddot{Y}*âA
Testing association between qt and SNP snp7 :
Analysis of Variance Table
Response: qt
Df Sum Sq Mean Sq F value Pr(>F)
get(snpname) 2 4.02 2.01212 2.0368 0.1307
Residuals 2365 2336.31 0.98787
Testing association between qt and SNP snp8 :
Analysis of Variance Table
Response: qt
 Df Sum Sq Mean Sq F value Pr(>F)
get(snpname) 2 1.38 0.68987 0.6924 0.5005
Residuals 2368 2359.23 0.99630
```


## 70CHAPTER 3. INTRODUCTION TO GENETIC ASSOCIATION ANALYSIS IN R

```
Testing association between qt and SNP snp9 :
Analysis of Variance Table
Response: qt
 Df Sum Sq Mean Sq F value Pr(>F)
get(snpname) 2 15.6 7.8014 7.9982 0.0003453 ***
Residuals 2358 2300.0 0.9754
--
Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âăŹZ 0.01 âĂŸ*âĂŹŹ 0.05 âĂŸ.âĂŹ }0.1\mathrm{ âĂŸ âĂŹ 1
Testing association between qt and SNP snp10 :
Analysis of Variance Table
Response: qt
 Df Sum Sq Mean Sq F value Pr(>F)
get(snpname) 2 1.19 0.59456 0.6041 0.5467
Residuals 2381 2343.47 0.98424
```

Answer (Ex. 16) - For 'snp1', though the data are compatible with either additive, dominant or recessive model, the additive model provides best fit to the data (largest $p$-value), while the recessive 'B' model provide the wors fit (almost significantly worse than the general model):

```
> table(snp1,as.numeric(snp1))
snp1 1 2 3
 A/A 1287 0 0
 A/B 0 888 0
 B/B 0 0 199
> table(\operatorname{snp1,(as.numeric(snp1)>=2))}
snp1 FALSE TRUE
 A/A 1287 0
 A/B 0 888
 B/B 0 199
> table(snp1,(as.numeric(snp1)>=3))
snp1 FALSE TRUE
 A/A 1287 0
 A/B 888 0
 B/B 0 199
> model_gen <- lm(qt~snp1)
> summary(model_gen)
Call:
lm(formula = qt ~ snp1)
Residuals:
\begin{tabular}{rrrrr}
Min & \(1 Q\) & Median & 3Q & Max \\
-3.5261 & -0.6643 & -0.0111 & 0.6765 & 3.5462
\end{tabular}
```

```
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.02846 0.02758 -1.032 0.3022
snp1A/B 0.08200 0.04316 1.900 0.0575 .
snp1B/B 0.18644 0.07536 2.474 0.0134 *
```



```
Residual standard error: 0.9893 on 2371 degrees of freedom
 (126 observations deleted due to missingness)
Multiple R-squared: 0.00335, Adjusted R-squared: 0.002509
F-statistic: 3.985 on 2 and 2371 DF, p-value: 0.01873
> model_add <- lm(qt~as.numeric(snp1))
> model_dom <- lm(qt~I(as.numeric(snp1)>=2))
> model_rec <- lm(qt~I(as.numeric(snp1)>=3))
> anova(model_add,model_gen,test="Chisq")
Analysis of Variance Table
Model 1: qt ~ as.numeric(snp1)
Model 2: qt ~ snp1
 Res.Df RSS Df Sum of Sq Pr(>Chi)
1 2372 2320.5
2
> anova(model_dom,model_gen,test="Chisq")
Analysis of Variance Table
Model 1: qt ~ I(as.numeric(snp1) >= 2)
Model 2: qt ~ snp1
 Res.Df RSS Df Sum of Sq Pr(>Chi)
1 2372 2322.2
2
> anova(model_rec,model_gen,test="Chisq")
Analysis of Variance Table
Model 1: qt ~ I(as.numeric(snp1) >= 3)
Model 2: qt ~ snp1
 Res.Df RSS Df Sum of Sq Pr(>Chi)
1 2372 2324.0
2 2371 2320.4 1 3.5332 0.05743.
```



For SNPs $4,5,6$, and 9 results are:

```
> for (i in c(4,5,6,9)) {
 snpname <- paste("snp",i,sep="")
 cat("\nTesting SNP",snpname,":\n")
 cursnp <- get(snpname)
 model_gen <- lm(qt~cursnp)
```


## 72CHAPTER 3. INTRODUCTION TO GENETIC ASSOCIATION ANALYSIS IN R

```
+ print(summary(model_gen))
+ model_add <- lm(qt~as.numeric(cursnp))
+ model_dom <- lm(qt~I(as.numeric(cursnp)>=2))
+ model_rec <- lm(qt~I(as.numeric(cursnp)>=3))
+ print(anova(model_add,model_gen,test="Chisq"))
+ print(anova(model_dom,model_gen,test="Chisq"))
+ print(anova(model_rec,model_gen,test="Chisq"))
+ }
```

Testing SNP snp4
Call:
$\operatorname{lm}\left(\right.$ formula $=q t{ }^{\sim}$ cursnp)
Residuals:

| Min | $1 Q$ | Median | 3Q | Max |
| ---: | ---: | ---: | ---: | ---: |
| -3.4311 | -0.6636 | -0.0013 | 0.6737 | 3.5489 |

Coefficients:

|  | Estimate | Std. Error | $t$ value | $\operatorname{Pr}(>\|t\|)$ |
| :--- | ---: | ---: | ---: | ---: |
| (Intercept) | 0.02132 | 0.02972 | 0.717 | 0.4733 |
| cursnpA/A | 0.02953 | 0.04423 | 0.668 | 0.5044 |
| cursnpB/B | -0.14481 | 0.06192 | -2.339 | $0.0194 *$ |

Signif. codes: 0 âĂŸ***âĀŹ 0.001 âĂŸ**âĀŹ 0.01 âĀŸ*âĀŹ 0.05 âĀŸ.âĀŹ 0.1 âĀŸ âĀŹ 1
Residual standard error: 0.9973 on 2387 degrees of freedom
(110 observations deleted due to missingness)
Multiple R-squared: 0.003226, Adjusted R-squared: 0.002391
F-statistic: 3.863 on 2 and 2387 DF, p-value: 0.02114
Analysis of Variance Table
Model 1: qt ~ as.numeric(cursnp)
Model 2: qt ~ cursnp
Res.Df RSS Df Sum of $\mathrm{Sq} \operatorname{Pr}(>\mathrm{Chi})$
123882375.7
$2 \quad 2387 \quad 2373.9 \quad 1 \quad 1.7489 \quad 0.1848$
Analysis of Variance Table
Model 1: qt ~ I(as.numeric (cursnp) >= 2)
Model 2: qt ~ cursnp
Res.Df RSS Df Sum of $\mathrm{Sq} \operatorname{Pr}(>\mathrm{Chi})$
123882379.4
$223872373.9 \quad 1 \quad 5.4391 \quad 0.01936$ *

Analysis of Variance Table
Model 1: qt ~ I(as.numeric (cursnp) >= 3)

```
Model 2: qt ~ cursnp
 Res.Df RSS Df Sum of Sq Pr(>Chi)
1 2388 2374.4
2 2387 2373.9 1 0.44342 0.5043
Testing SNP snp5 :
Call:
lm(formula = qt ~ cursnp)
Residuals:
\begin{tabular}{rrrrr}
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-3.4719 & -0.6589 & -0.0084 & 0.6622 & 3.5285
\end{tabular}
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.01401 0.02878 0.487 0.6264
cursnpA/A -0.09667 0.05611 -1.723 0.0851.
cursnpB/B 0.05727 0.04607 1.243 0.2140
```


Residual standard error: 0.9942 on 2380 degrees of freedom
(117 observations deleted due to missingness)
Multiple R-squared: 0.002749 , Adjusted R-squared: 0.00191
F-statistic: 3.28 on 2 and 2380 DF, p-value: 0.03781
Analysis of Variance Table
Model 1: qt ~ as.numeric(cursnp)
Model 2: qt ~ cursnp
Res.Df RSS Df Sum of $\operatorname{Sq} \operatorname{Pr}(>C h i)$
$1 \quad 23812352.7$
$2 \quad 23802352.5 \quad 1 \quad 0.22152 \quad 0.6359$
Analysis of Variance Table
Model 1: qt ~ I(as.numeric(cursnp) >= 2)
Model 2: qt ~ cursnp
Res.Df RSS Df Sum of $\operatorname{Sq} \operatorname{Pr}(>C h i)$
$1 \quad 23812354.0$
$2 \quad 23802352.5 \quad 1 \quad 1.5273 \quad 0.2138$
Analysis of Variance Table
Model 1: qt ~ I(as.numeric (cursnp) >= 3)
Model 2: qt ~ cursnp
Res.Df RSS Df Sum of $\operatorname{Sq} \operatorname{Pr}(>C h i)$
$1 \quad 23812355.4$
223802352.5122 .93350 .08494 .


```
Testing SNP snp6 :
Call:
lm(formula = qt ~ cursnp)
Residuals:
 Min 1Q Median 3Q Max
-3.4784 -0.6753-0.0064 0.6703 3.5324
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.07617 0.05085 -1.498 0.1343
cursnpB/A 0.09417 0.05886 1.600 0.1097
cursnpB/B 0.14351 0.06096 2.354 0.0186 *

```



```
Residual standard error: 0.9939 on 2377 degrees of freedom
 (120 observations deleted due to missingness)
Multiple R-squared: 0.002334, Adjusted R-squared: 0.001495
F-statistic: 2.781 on 2 and 2377 DF, p-value: 0.06219
Analysis of Variance Table
Model 1: qt ~ as.numeric(cursnp)
Model 2: qt ~ cursnp
 Res.Df RSS Df Sum of Sq Pr(>Chi)
1 2378 2348.2
2 2377 2347.9 1 0.27462 0.598
Analysis of Variance Table
Model 1: qt ~ I(as.numeric(cursnp) >= 2)
Model 2: qt ~ cursnp
 Res.Df RSS Df Sum of Sq Pr(>Chi)
1 2378 2349.1
2 2377 2347.9 1 1.1967 0.271
Analysis of Variance Table
Model 1: qt ~ I(as.numeric(cursnp) >= 3)
Model 2: qt ~ cursnp
 Res.Df RSS Df Sum of Sq Pr(>Chi)
1 2378 2350.4
2 2377 2347.9 1 2.5284 0.1096
Testing SNP snp9 :
Call:
lm(formula = qt ~ cursnp)
```

```
Residuals:
\begin{tabular}{rrrrr}
Min & 1Q & Median & 3Q & Max \\
-3.5482 & -0.6673 & 0.0074 & 0.6546 & 3.6061
\end{tabular}
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.006298 0.021562 -0.292 0.77026
cursnpA/B 0.162230 0.065729 2.468 0.01365 *
cursnpB/B 1.002439 0.313057 3.202 0.00138 **
Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âÁŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1
Residual standard error: 0.9876 on 2358 degrees of freedom
 (139 observations deleted due to missingness)
Multiple R-squared: 0.006738, Adjusted R-squared: 0.005896
F-statistic: 7.998 on 2 and 2358 DF, p-value: 0.0003453
Analysis of Variance Table
Model 1: qt ~ as.numeric(cursnp)
Model 2: qt ~ cursnp
 Res.Df RSS Df Sum of Sq Pr(>Chi)
 2359 2303.9
 2358 2300.0 1 3.9528 0.04411 *

Signif. codes: 0 âĂŸ***âĀŹ 0.001 âĂŸ**âĀŹZ 0.01 âĂŸ*âĂŹZ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1
Analysis of Variance Table
Model 1: qt ~ I(as.numeric(cursnp) >= 2)
Model 2: qt ~ cursnp
 Res.Df RSS Df Sum of Sq Pr(>Chi)
1 2359 2306.8
2 2358 2300.0 1 6.7911 0.008324 **
```



```
Analysis of Variance Table
Model 1: qt ~ I(as.numeric(cursnp) >= 3)
Model 2: qt ~ cursnp
 Res.Df RSS Df Sum of Sq Pr(>Chi)
1 2359 2305.9
2 2358 2300.0 1 5.942 0.01358 *
Signif.codes: 0 âĂŸ***âăŹ 0.001 âĂŸ**âĂŹ 0.01 âăŸ*âĀŹ 0.05 âĀŸ.âĂŹ 0.1 âA
```


## Chapter 4

## Introduction to GenABEL-package

In this section, you will become familiar with the GenABEL-package library, designed for GWA analysis. Compared to genetics package, it provides specific facilities for storage and manipulation of large amounts of data, very fast tests for GWA analysis, and special functions to analyse and graphically present the results of GWA analysis (thus "analysis of analysis").

Start R and load GenABEL-package library using command

```
> library(GenABEL)
```

After that, load example data set using the command

```
> data(srdta)
```


### 4.1 General description of gwaa.data-class

The object you have loaded, srdta, belongs to the gwaa.data class. This is a special class developed to facilitate GWA analysis.

In GWA analysis, different types of data are used. These include the phenotypic and genotypic data on the study participants and chromosome and location of every SNP. For every SNP, it is desirable to know the details of coding (what are alleles? - A, T, G, C? - and what is the strand - ' + ' or '-', 'top' or 'bot'? - this coding is for).

One could attempt to store all phenotypes and genotypes together in a single table, using, e.g. one row per study subject; than the columns will correspond to study phenotypes and SNPs. For a typical GWA data set, this would lead to a table of few thousands rows and few hundreds of thousands to millions of columns. Such a format is generated when one downloads HapMap data for a region. To store GWA data in such tables internally, within R, proves to be inefficient. In GenABEL-package, special data class, gwaa.data-class is used to store GWA data.

You may consider an object of gwaa.data-class as a 'black box' from which you can get specific data using specific functions. If you are interested in internal
structure of the gwaa.data-class, you can find the description in section B. 1 (Internal structure of gwaa.data-class).

The data frame, which contains all phenotypic data in the study may be accessed using the phdata function. Let us have a look at few first rows of the phenotypic data frame of srdta:

```
> phdata(srdta)[1:5,]
 id sex age qt1 qt2 qt3 bt
p1 p1 1 43.4 -0.58 4.46 1.43 0
p2 p2 1 48.2 0.80 6.32 3.90 1
p3 p3 0 37.9 -0.52 3.26 5.05 1
p4 p4 1 53.8 -1.55 888.00 3.76 1
p5 p5 1 47.5 0.25 5.70 2.89 1
```

The rows of this data frame correspond to study subjects, and the columns correspond to the variables. There are two default variables, which are always present in phdata. The first of these is "id", which contains study subject identification code. This identification code can be arbitrary character, numer, or alphanumeric combination, but every person must be coded with an unique ID. The second default variable is "sex", where males are coded with ones ("1") and females are coded with zero ("0").

It is important to understand that this data frame is not supposed to be directly modified by the user, as its structure is coupled to the structure of genotypic data. If at some point you need to manipulate (add/delete) the phenotypes included in phdata, you need to use such GenABEL-package functions as add.phdata and del.phdata (see section 4.2).

The other part of an object of gwaa.data-class is gtdata, which contains all GWA genetic information in an object of class snp.data class. It is not supposed to be modified directly by user. The genotypic data can be accessed through gtdata function, e.g.

```
> gtdata(srdta[1:10,1:10])
@nids = 10
@nsnps = 10
@nbytes = 3
@idnames = p1 p2 p3 p4 p5 p6 p7 p8 p9 p10
@snpnames = rs10 rs18 rs29 rs65 rs73 rs114 rs128 rs130 rs143 rs150
@chromosome = lllllllllllll
@coding = 08 Ob 0c 03 04 03 0c 04 08 0f
@strand = 01 01 02 01 01 01 02 01 01 01
@map = 2500 3500 5750 13500 14250 24500 27000 27250 31000 33250
@male = 110 1 1 0 0 1 0 0
@gtps =
40 40 40 80 40 40 40 40 c0 c0
40 40 00 00 40 40 40 c0 40 40
40 40 00 80 40 40 40 40 c0 c0
```

As you can see, these data are of little direct use as these are stored in an internal format - you need to coerce that to other data type if you want to manipulate / analyse these data using non-GenABEL-package functions (see section ??).

The number of individuals described in an object of gwaa.data-class can be accessed through nids function, e.g.

```
> nids(srdta)
```

[1] 2500
and the number of SNPs using the nsnps function:

```
> nsnps(srdta)
```

[1] 833
The IDs of individuals included in the study can be accessd via idnames function, for example IDs of the first 7 individuals in the study are

```
> idnames(srdta)[1:7]
```

[1] "p1" "p2" "p3" "p4" "p5" "p6" "p7"
The sex of the individuals can be accessed using the male function:

```
> male(srdta)[1:7]
p1 p2 p3 p4 p5 p6 p7
```


where males (heterogametic sex) are assigned with ' 1 ' and a homogametic sex (females) are assigned value ' 0 '.

Names of SNPs can be accessed using snpnames function; for example the names of the first 10 SNPs in the srdta are
> snpnames(srdta) [1:10]
[1] "rs10" "rs18" "rs29" "rs65" "rs73" "rs114" "rs128" "rs130" "rs143"
[10] "rs150"
SNP annotation include (presented for the first 10 SNPs only):

- Chromosome:

```
> chromosome(srdta)[1:10]
 rs10 rs18 rs29 rs65 rs73 rs114 rs128 rs130 rs143 rs150
```

- Map position

```
map(srdta)[1:10]
rs10 rs18 rs29 rs65 rs73 rs114 rs128 rs130 rs143 rs150
2500 3500 5750 13500 14250 24500 27000 27250 31000 33250
```

- Coding (where the second allele is the "effect" or "coded" one):
> coding(srdta) [1:10]

```
rs10 rs18 rs29 rs65 rs73 rs114 rs128 rs130 rs143 rs150
"TG" "GA" "GT" "AT" "AG" "AT" "GT" "AG" "TG" "CA"
```

For every SNP, coding is presented with a pair of characters, for example "AG". For 'AG' polymorphism, you may expect "AA", "AG" and "GG" genotypes to be found in population. The order (that is "AG" vs "GA") is important - the first allele reported is the one which will be used as a reference in association analysis, and thus the effects are reported for the second allele. You can also access the reference allele with the method refallele
> refallele(srdta) [1:10]
rs10 rs18 rs29 rs65 rs73 rs114 rs128 rs130 rs143 rs150
and the effective (or 'coded') allelel with

```
> effallele(srdta)[1:10]
 rs10 rs18 rs29 rs65 rs73 rs114 rs128 rs130 rs143 rs150
 "G" "A" "T" "T" "G" "T" "T" "G" "G" "A"
```

- Strand on which the coding is reported ('+', '-' or missing, 'u'):

```
> strand(srdta)[1:10]
 rs10 rs18 rs29 rs65 rs73 rs114 rs128 rs130 rs143 rs150
 "+" "+" "-" "+" "+" "+" "-" "+" "+" "+"
```


## Summary:

- GenABEL-package uses special data class, gwaa.data-class, to store GWA data.
- To access the content of an object of gwaa.data-class, a number of functions is used


## Exercise 1. Exploring IDs in srdta

Explore srdta.

1. How many people are included in the study?
2. How many of these are males?
3. How many are females?
4. What is male proportion?

## Exercise 2. Exploring SNPs in srdta

Explore SNPs contained in srdta using functions to access SNP names (snpnames) and map (map) location

1. What are names of markers located after $2,490,000$ b.p.?
2. Between $1,100,000$ and $1,105,000$ b.p.?

### 4.2 Accessing and modifying phenotypic data

As it was already mentioned, the object returned by phdata contains phenotypic data and is an conventional data frame, wich obligatory includes 'id' and 'sex' variables, and ordered an a way that it couples to the genotypic data.

Being a data frame, phdata may be accessed using corresponding methods:

```
> phdata(srdta)[1:5,]
```

|  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 p 1 | 1 | 43.4 | -0.58 | 4.46 | 1.43 |  |
| 2 p 2 | 1 | 48.2 | 0.80 | 6.3 | . 90 |  |
| p3 | 0 | 37.9 | -0.52 | 3.26 | 5.05 |  |
| p | 1 | 53.8 | -1.55 | 888.00 | 3.76 |  |
| 5 p5 |  | 47.5 | 0.2 | 5.7 | 2.89 |  |

> class(phdata(srdta))
[1] "data.frame"
> phdata(srdta) [1:5,2]
[1] 11011
> phdata(srdta) [1:5, "sex"]
[1] $11 \begin{array}{llll}1 & 0 & 1\end{array}$
> phdata(srdta)\$sex[1:5]

## [1] $1 \begin{array}{lllll}1 & 0 & 1\end{array}$

The modification of the phenotypic data is performed using special methods, because of specific restrictions on phenotypic data frames. There are two main functions which allow you to add (add.phdata) and delete (del.phdata) phenotypes from phdata part of an object of gwaa.data-class.

For example, if you want to add a variable (say, square of age) computed from the 'age' variable of srdta

```
> phdata(srdta)[1:5,]
```

|  | id | sex | age | qt1 | qt2 | qt3 |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| pt |  |  |  |  |  |  |
| p1 p1 | 1 | 43.4 | -0.58 | 4.46 | 1.43 | 0 |
| p2 p2 | 1 | 48.2 | 0.80 | 6.32 | 3.90 | 1 |
| p3 p3 | 0 | 37.9 | -0.52 | 3.26 | 5.05 | 1 |
| p4 p4 | 1 | 53.8 | -1.55 | 888.00 | 3.76 | 1 |
| p5 p5 | 1 | 47.5 | 0.25 | 5.70 | 2.89 | 1 |

```
> age2 <- phdata(srdta)$age^2
```

you need to use add.phdata function:

```
> srdta <- add.phdata(srdta,newph=age2,name="age_squared")
> phdata(srdta)[1:5,]
 id sex age qt1 qt2 qt3 bt age_squared
p1 p1 1 43.4 -0.58 4.46 1.43 0 1883.56
p2 p2 1 48.2 0.80 6.32 3.90 1
p3 p3 0 37.9 -0.52 3.26 5.05 1 1436.41
p4 p4 1 53.8 -1.55 888.00 3.76 1
p5 p5 1 47.5 0.25 5.70 2.89 1
```

You can add more then one variable at once using the same function, however, in this case the second ('newph') argument of the function should be a data frame, which contains 'id' variable specifing the IDs of individuals. Imagine we have the data for individuals ' p 1 ', ' p 2 ' and ' p 7 ' (we will generate random data for them; pay attention only to the result):

```
> newvalues <- matrix(rnorm(3*5),3,5)
> newdata <- data.frame(id=c("p1", "p2", "p7"),ph1=1,ph2=1,ph3=1,ph4=1,ph5=1)
> newdata[,c(2:6)] <- newvalues
> newdata
\begin{tabular}{rlrrrrr}
& id & ph1 & ph2 & ph3 & ph4 & ph5 \\
1 & p1 & 0.01637399 & 1.31075169 & 0.3362944 & 0.2473321 & -0.9198667 \\
2 & p2 & 0.01150130 & -0.72823371 & -0.1135125 & -0.1537185 & 0.6264636 \\
3 & p7 & -0.37245572 & -0.07185903 & 0.8774198 & 0.5254221 & -0.1078856
\end{tabular}
```

These data can be added to phenotypic data with

```
> srdta <- add.phdata(srdta,newdata)
> phdata(srdta)[1:10,]
```



| p6 | NA | NA | NA |
| :--- | ---: | ---: | ---: |
| p7 | 0.8774198 | 0.5254221 | -0.1078856 |
| p8 | NA | NA | NA |
| p9 | NA | NA | NA |
| p10 | NA | NA | NA |

Finally, if you need, you can delete some phenotypes from the phdata using del.phdata function. Let us delete the phenotypes we have just added:

```
> srdta <- del.phdata(srdta,c("age_squared", "ph1", "ph2", "ph3", "ph4", "ph5"))
```

> phdata(srdta)[1:10,]

|  | id | sex | age | qt1 | qt2 | qt3 | bt |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| p1 | p1 | 1 | 43.4 | -0.58 | 4.46 | 1.43 | 0 |
| p2 | p2 | 1 | 48.2 | 0.80 | 6.32 | 3.90 | 1 |
| p3 | p3 | 0 | 37.9 | -0.52 | 3.26 | 5.05 | 1 |
| p4 | p4 | 1 | 53.8 | -1.55 | 888.00 | 3.76 | 1 |
| p5 | p5 | 1 | 47.5 | 0.25 | 5.70 | 2.89 | 1 |
| p6 | p6 | 0 | 45.0 | 0.15 | 4.65 | 1.87 | 0 |
| p7 | p7 | 0 | 52.0 | -0.56 | 4.64 | 2.49 | 0 |
| p8 | p8 | 1 | 42.5 | NA | 5.77 | 2.68 | 1 |
| p9 | p9 | 0 | 29.7 | -2.26 | 0.71 | 1.45 | 0 |
| p10 | p10 | 0 | 45.8 | -1.32 | 3.26 | 0.85 | 0 |

## Summary:

- Phenotypic data contained in an object of gwaa.data-class can be accessed using phdata functions
- You can add phenotypes using add.phdata function
- You can delete phenotypes using del.phdata function


### 4.3 Sub-setting and coercing gwaa.data

It is possible to sub-set the object, which stores the GWA data in the manner similar to that used for conventional $R$ matrices and data frames. Very primitively, you may think of an object of class gwaa.data as a matrix whose rows correspond to study subjects and columns correspond to SNPs studied (though the actual object is a way more complicated). For example, if we would like to investigate what is the content of srdta for the first 5 people and 3 SNPs, we can run

```
> ssubs <- srdta[1:5,1:3]
```

> class(ssubs)
[1] "gwaa.data"
attr(,"package")
[1] "GenABEL"

As you can see, by sub-setting we obtained a smaller object of gwaa.dataclass. The two major parts it contains are phenotypic data, which can be accessed through phdata (discussed in section 4.2):

```
> phdata(ssubs)
 id sex age qt1 qt2 qt3 bt
p1 p1 1 43.4 -0.58 4.46 1.43 0
p2 p2 1 48.2 0.80
p3 p3 0 37.9 -0.52 3.26 5.05 1
p4 p4 1 53.8 -1.55 888.00 3.76 1
p5 p5 1 47.5 0.25 5.70 2.89 1
```

and genotypc data, whcih can be accessed via gtdata function:

```
> gtdata(ssubs)
@nids = 5
@nsnps = 3
@nbytes = 2
@idnames = p1 p2 p3 p4 p5
@snpnames = rs10 rs18 rs29
@chromosome = 1 1 1
@coding = 08 Ob Oc
@strand = 01 01 02
@map = 2500 3500 5750
@male = 1 1 0 1 1
@gtps =
404040
4040 00
```

whose content is not quite straightforward to read.
To get human-readable information, genotypic object should be coerced to a regular $R$ data type, e.g. character, using as.character() function:

```
> as.character(gtdata(ssubs))
 rs10 rs18 rs29
p1 "T/T" "G/G" "G/G"
p2 "T/T" "G/G" NA
p3 "T/T" "G/G" NA
p4 "T/T" "G/G" NA
p5 "T/T" "G/A" "G/G"
```

Other useful coercion is to "numeric":

```
> as.numeric(gtdata(ssubs))
 rs10 rs18 rs29
p1 0 0 0
p2 0 0 NA
p3 0}000N
p4 0 0 NA
p5 0
```

Note that conversion to numeric happened according to the underlying genotype and the rules specified by SNP coding:

```
> coding(ssubs)
rs10 rs18 rs29
"TG" "GA" "GT"
```

- the genotype, which is made of the 'first' allele of the 'code' is converted to 0 , the heterozygote to ' 1 ' and a himozygote for the second allele is converted to '2'.

For example, when coding is "GA", as is for the rs18 (the second SNP), homozygotes for the first allele, as specified by coding ("G") are converted to zeros ("0"), heterozygotes are converted to ones (" 1 "), and homozygotes for the second allele ("A") are converted to twos (" 2 "). Clearly, when numerically converted data are used for association analysis, the effects will be estimated for the second allele, while first will be used as a reference.

Genotypic data converted to standard R format can be used in any further analysis.

Several useful genetic analysis libraries were developed for R. These include genetics (analysis of linkage disequilibrium and many other useful functions) and haplo.stats (analysis of association between traits and haplotypes). These use there own genetic data formats.

One can translate GenABEL-package genetic data to the format used by "genetics" library by as.genotype():

```
> as.genotype(gtdata(ssubs))
NOTE: THIS PACKAGE IS NOW OBSOLETE.
```

The R-Genetics project has developed an set of enhanced genetics packages to replace 'genetics'. Please visit the project homepage at http://rgenetics.org for informtion.
rs10 rs18 rs29
p1 T/T G/G G/G
p2 T/T G/G <NA>
p3 T/T G/G <NA>
p4 T/T G/G <NA>
p5 T/T G/A G/G
To translate GenABEL-package data to the format used by "haplo.stats" you can use function as.hsgeno()

| rs10.a1 rs10.a2 rs18.a1 rs18.a2 rs29.a1 rs29.a2 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| p1 | 1 | 1 | 1 | 1 | 1 | 1 |
| p2 | 1 | 1 | 1 | 1 | NA | NA |
| p3 | 1 | 1 | 1 | 1 | NA | NA |
| p4 | 1 | 1 | 1 | 1 | NA | NA |
| p5 | 1 | 1 | 1 | 2 | 1 | 1 |

Actually, most users will not need the latter function, as GenABEL-package provides a functional interface to "haplo.stats" (such GenABEL-package functions as scan.haplo() and scan.haplo.2D()).

It is possible to select sub-sets of gwaa. data-class based not only on index (e.g. first 10 people and SNP number 33), but also based on names.

For example, if we would like to retrieve phenotypic data on people with IDs "p141", "p147" and "p2000", we can use

```
> phdata(srdta[c("p141","p147","p2000"),])
 id sex age qt1 qt2 qt3 bt
p141 p141 0 47.2 0.51 5.23 2.17 0
p147 p147 0 43.2 0.14 4.47 1.73 0
p2000 p2000 0 43.1 -1.53 2.78 2.70 1
```

here, the first part of expression sub-sets srdta on selected IDs, and the second tells which part of the retrieved sub-set we want to see. You can try srdta[c("p141", "p147", "p2000"), ], but be prepared to see long output, as all information will be reported.

In similar manner, we can also select on SNP name. For example, if we are interested to see information on SNPs "rs10" and "rs29" for above people, we can run

```
> phdata(srdta[c("p141","p147","p2000"),c("rs10","rs29")])
 id sex age qt1 qt2 qt3 bt
p141 p141 0 47.2 0.51 5.23 2.17 0
p147 p147 0 43.2 0.14 4.47 1.73 0
p2000 p2000 0 43.1 -1.53 2.78 2.70 1
> gtdata(srdta[c("p141","p147","p2000"), c("rs10","rs29")])
@nids = 3
@nsnps = 2
@nbytes = 1
@idnames = p141 p147 p2000
@snpnames = rs10 rs29
@chromosome = 1 1
@coding = 08 0c
@strand = 01 02
@map = 2500 5750
@male = 0 0 0
@gtps =
4040
```

To see the actual genotypes for the above three people and two SNPs, use

```
> as.character(srdta[c("p141","p147","p2000"), c("rs10","rs29")])
 rs10 rs29
p141 "T/T" "G/G"
p147 "T/T" "G/G"
p2000 "T/G" "G/T"
```

or

```
> as.numeric(srdta[c("p141", "p147", "p2000"), c("rs10", "rs29")])
```

rs10 rs29
p141 0
p147 0 0
p2000 1

## Exercise 3. Exploring rs114

Explore genotypes for SNP "rs114"

1. What is the coding and which allele is the reference one?
2. What is the frequency of non-reference ("effective") allele in total sample?
3. What is the frequency of effective allele in male?
4. What is the frequency of effective allele in female?
5. What is the frequency of the reference allele in total sample, males and females?

## Summary:

- It is possible to obtain subsets of objects of gwaa.data-class and snp.data-class using standard 2D sub-setting model [i,j], where i corresponds to study subjects and j corresponds to SNPs.
- It is possible to provide ID and SNP names instead of indexes when subsetting an object of class gwaa.data-class.
- Function as.numeric() converts genotypic data from snp.data-class to regular integer numbers, which can be used in analysis with R.
- Function as.character() converts genotypic data from snp.data-class to character format.
- Function as.genotype() converts genotypic data from snp.data-class to the format used by library genetics.
- Function as.hsgeno() converts genotypic data from snp.data-class to the format used by library haplo.stats.


### 4.4 Exploring genetic data

Implementation of function summary () to summarize genotypic part of gwaa. dataclass is very useful in genetic data exploration and quality control (QC). Let us try application of this function to the ssubs:

```
> a <- summary(ssubs)
> a
 Chromosome Position Strand A1 A2 NoMeasured CallRate Q.2 P. 11 P. }12\mathrm{ P. }2
\begin{tabular}{llllllllllll}
rs10 & 1 & 2500 & + & T & G & 5 & 1.0 & 0.0 & 5 & 0 & 0 \\
rs18 & 1 & 3500 & + & \(G\) & A & 5 & 1.0 & 0.1 & 4 & 1 & 0 \\
rs29 & 1 & 5750 & - & \(G\) & \(T\) & 2 & 0.4 & 0.0 & 2 & 0 & 0
\end{tabular}
1 0.0000000 1.0000000
rs18 1 -0.1111111 0.7386227
rs29 1 0.0000000 1.0000000
```

In the first section, the summary is generated for phenotypic data. In the second section, summary is generated for genotypic data. In this section, NoMeasured refers to the number of genotypes scores, CallRate to the proportion of these, Q. 2 is the frequency of the 'B' allele. The counts in three genotypic classes are provided next. Pexact refers to exact P-value for the test of Hardy-Weinberg equilibrium.

As you've seen above, an object of the class gwaa. data-class is sub-settable in standard manner: [ $i, j$ ], where $i$ is an index of a study subject and $j$ is an index of a SNP. Importantly, i could be a list of indexes:

```
> vec <- which(phdata(srdta)$age>=65)
>vec
```

| [1] | 64 | 122 | 186 | 206 | 207 | 286 | 385 | 386 | 492 | 514 | 525 | 536 | 545 | 565 | 613 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| [16] | 632 | 649 | 673 | 701 | 779 | 799 | 981 | 1008 | 1131 | 1186 | 1223 | 1281 | 1383 | 1471 | 1489 |
| [31] | 1501 | 1565 | 1584 | 1673 | 1679 | 1782 | 1821 | 1832 | 1866 | 1891 | 1953 | 2081 | 2085 | 2140 | 2224 |
| [46] | 2268 | 2291 | 2384 | 2420 | 2453 |  |  |  |  |  |  |  |  |  |  |

> summary(gtdata(srdta[vec, 1:3]))


This shows summary of first three genotypes for people with age greater then or equal to 65 y.o. The same result may be achieved by sub-setting using a vector of logical values:

```
> vec <- (phdata(srdta)$age>=65)
> table(vec)
vec
FALSE TRUE
 2450 50
> summary(gtdata(srdta[vec,1:3]))
```

```
4.4. EXPLORING GENETIC DATA
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Chrom & mosome & Posi & tion & Strand & A1 & A2 & NoMe & & CallRate & Q. 2 & P. 11 & P. 12 \\
\hline rs10 & & 1 & & 2500 & + & T & G & & 8 & 0.96 & 0.1354167 & 36 & 11 \\
\hline rs18 & & 1 & & 3500 & + & G & A & & 47 & 0.94 & 0.2765957 & 25 & 18 \\
\hline rs29 & & 1 & & 5750 & - & G & T & & 45 & 0.90 & 0.1555556 & 32 & 12 \\
\hline & P. 22 & & xact & & Fmax & & & Plrt & & & & & \\
\hline rs10 & 1 & 1.000 & 000 & 0.0 & 2131603 & 0.8 & 884 & 3626 & & & & & \\
\hline rs18 & 4 & 0.724 & 5853 & 0.0 & 4298643 & 0.7 & . 69 & 7067 & & & & & \\
\hline rs29 & & 1.000 & 000 & -0.0 & 1503759 & 0.9 & 9188 & 8943 & & & & & \\
\hline
\end{tabular}
```

or a list with IDs of study subjects:

```
> vec1 <- idnames(srdta)[vec]
> vec1
```

```
[1] "p64" "p122" "p186" "p206" "p207" "p286" "p385" "p386" "p492"
[10] "p514" "p525" "p536" "p545" "p565" "p613" "p632" "p649" "p673"
[19] "p701" "p779" "p799" "p981" "p1008" "p1131" "p1186" "p1223" "p1281"
[28] "p1383" "p1471" "p1489" "p1501" "p1565" "p1584" "p1673" "p1679" "p1782"
[37] "p1821" "p1832" "p1866" "p1891" "p1953" "p2081" "p2085" "p2140" "p2224"
[46] "p2268" "p2291" "p2384" "p2420" "p2453"
```

> summary (gtdata(srdta[vec1,1:3]))
Chromosome Position Strand A1 A2 NoMeasured CallRate Q. 2 P. 11 P. 12

| rs10 | 1 | 2500 | + | T | G | 48 | 0.96 | 0.1354167 | 36 | 11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| rs18 | 1 | 3500 | + | G | A | 47 | 0.94 | 0.2765957 | 25 | 18 |
| rs29 | 1 | 5750 | - | G | T | 45 | 0.90 | 0.1555556 | 32 | 12 |

rs10.22 Pexact Fmax 0.021316030 .8843626
rs18 40.72458530 .042986430 .7697067
rs29 $11.0000000-0.015037590 .9188943$

Let us explore the object returned by summary function when applied to snp.data class in more details:

```
> a <- summary(gtdata(srdta[vec1,1:3]))
> class(a)
```

[1] "data.frame"
Thus, the object returned is a data.frame. Therefore it should have dimensions and names:

```
> dim(a)
[1] 3 14
```

> names (a)

| [1] "Chromosome" "Position" | "Strand" | "A1" | "A2" |  |
| ---: | :--- | :--- | :--- | :--- |
| [6] "NoMeasured" "CallRate" | "Q.2" | "P.11" | "P.12" |  |
| [11] "P.22" | "Pexact" | "Fmax" | "Plrt" |  |

Histogram of crate


Figure 4.1: Histogram of the call rate

Indeed, we derived 8 characteristics ("NoMeasured", "CallRate", "Q.2", "P.11", "P.12", "P.22", "Pexact", "Chromosome") for the first 3 SNPs.

## Exercise 4. Testing HWE for 10 SNPs

Test if Hardy-Weinberg equilibrium holds for the first 10 SNPs

1. Total sample
2. In cases (bt is 1 )
3. In controls (bt is 0 )

Let us analyse the distribution of call rate in the whole study. For this, we first need to obtain the vector of call rates:

```
> sumgt <- summary(gtdata(srdta))
> crate <- sumgt[,"CallRate"]
```

This vector may be presented by a histogram

```
> hist(crate)
```

which shows that most SNPs have call rate between 93 and $97 \%$ (figure 4.1).
As next step, you would like to produce a summary table, showing how many markers had call rate lower than, say, $93 \%$, between 93 and $95 \%$, between 95 and $99 \%$ and more than $99 \%$. You can use catable() command for that:

```
> catable(crate,c(.93,.95,.99))
\begin{tabular}{lrrrr}
& \(X<=0.93\) & \(0.93<X<=0.95\) & \(0.95<X<=0.99\) & \(X>0.99\) \\
No & 0 & 415.000 & 418.000 & 0 \\
Prop & 0 & 0.498 & 0.502 & 0
\end{tabular}
```

Similar procedure may be applied to see deviation from HWE:

```
> hwp <- sumgt[,"Pexact"]
> catable(hwp,c(0.05/nsnps(srdta),0.01,0.05,0.1))
\begin{tabular}{lrrr}
& \(\mathrm{X}<=6.00240096038415 \mathrm{e}-05\) & \(6.00240096038415 \mathrm{e}-05<\mathrm{X}<=0.01\) & \(0.01<\mathrm{X}<=0.05\) \\
No & 2.000 & 7.000 & 23.000 \\
Prop & 0.002 & 0.008 & 0.028
\end{tabular}
```

        \(0.05<X<=0.1 \quad X>0.1\)
    No $\quad 31.000770 .000$
Prop 0.0370 .924

The first cut-off category will detect SNPs which are deviating from HWE at the Bonferroni-corrected P-level.

However, for these data it will make more sense to table cumulative distribution:

```
> catable(hwp,c(0.05/nsnps(srdta),0.01,0.05,0.1),cum=T)
 X<=6.00240096038415e-05 X<=0.01 X<=0.05 X<=0.1 all X
No 2.000 9.000 32.000 63.000 833
Prop 0.002 0.011 0.038
```

If you would like to investigate the minor allele frequency (MAF) distribution, the same logic would apply. First, derive MAF with

```
> afr <- sumgt[,"Q.2"]
> maf <- pmin(afr,(1.-afr))
```

Next, generate histograms for frequency and MAF:

```
> par(mfcol=c(2,1))
> hist(afr)
> hist(maf)
```

(shown at the figure 4.2) and then generate table describing frequency distribution:

```
> catable(afr,c(0.01,0.05,0.1,0.2,0.5,0.8,0.9,0.95,0.99))
\begin{tabular}{lrrrrrrr}
& \(\mathrm{X}<=0.01\) & \(0.01<\mathrm{X}<=0.05\) & \(0.05<\mathrm{X}<=0.1\) & \(0.1<\mathrm{X}<=0.2\) & \(0.2<\mathrm{X}<=0.5\) & \(0.5<\mathrm{X}<=0.8\) \\
No & 22.000 & 53.000 & 99.000 & 132.000 & 313.000 & 187.000 \\
Prop & 0.026 & 0.064 & 0.119 & 0.158 & 0.376 & 0.224 \\
& \(0.8<\mathrm{X}<=0.9\) & \(0.9<\mathrm{X}<=0.95\) & \(0.95<\mathrm{X}<=0.99\) & \(\mathrm{X}>0.99\) & & \\
No & 18.000 & 8.00 & 1.000 & 0 & & \\
Prop & 0.022 & 0.01 & 0.001 & 0 & & \\
l catable(maf, \(c(0,0.01,0.05,0.1,0.2), c u m=T)\)
\end{tabular}
```



Figure 4.2: Histogram of the call rate

|  | $X<=0$ | $X<=0.01$ | $X<=0.05$ | $X<=0.1$ | $X<=0.2$ | all $X$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| No | 0 | 22.000 | 76.000 | 183.00 | 333.0 | 833 |
| Prop | 0 | 0.026 | 0.091 | 0.22 | 0.4 | 1 |

Note that we used " 0 " as the first category - this will give you the number of monomorhic SNPs which we recommend to exclude from analysis.

Other function, perid.summary, produces summary SNP statistics per person. Let us try producing this summary for the first 10 people:

```
> perid.summary(srdta[1:10,])
 NoMeasured NoPoly Hom E(Hom) Var F CallPP
p1 790 707 0.7987342 0.6600319 0.4048662 0.407986159 0.9483794
p2 792 714 0.7474747 0.6585152 0.5090002 0.260508049 0.9507803
p3 783 700 0.6206897 0.6618209 0.4332890 -0.121625581 0.9399760
p4 789 705 0.6070976 0.6601276 0.5251900 -0.156029161 0.9471789
p5 790 707 0.6658228 0.6619821 0.5288936 0.011362319 0.9483794
p6 lllllllllllll
p7 794 709 0.6309824 0.6587669 0.4527349 -0.081423884 0.9531813
p8 llllllllllllll
p9 788 711 0.6675127 0.6573272 0.5599395 0.029723748 0.9459784
p10 797 713 0.6587202 0.6614644 0.4889042 -0.008105999 0.9567827
Het
p1 0.2012658
p2 0.2525253
p3 0.3793103
p4 0.3929024
p5 0.3341772
p6 0.2337992
p7 0.3690176
p8 0.2976040
p9 0.3324873
p10 0.3412798
```

This table lists the number of genotypes scored for the person, call rate, and heterozygosity. The outliers who have increased average heterozygosity may be suggestive of contaminated DNA samples.

Let us analyse the distribution of heterozygosity:

```
> het <- perid.summary(srdta)$Het
> mean(het)
[1] 0.3309457
```

```
> catable(het,c(0.1,0.25,0.3,0.35,0.5))
```

> catable(het,c(0.1,0.25,0.3,0.35,0.5))

|  | $X<=0.1$ | $0.1<X<=0.25$ | $0.25<X<=0.3$ | $0.3<X<=0.35$ | $0.35<X<=0.5$ | $X>0.5$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| No | 7.000 | 73.000 | 339.000 | 1281.000 | 800.00 | 0 |
| Prop 0.003 | 0.029 | 0.136 | 0.512 | 0.32 | 0 |  |

```

\section*{Histogram of het}

Figure 4.3: Histogram of heterozygosity

The resulting histogram is presented in figure 4.3. It is easy to see that few people have very low heterozygosity, but there are no outliers with extremely high values.

In this section, we covered low-level functions summary and perid. summary. Based on these, an upper-level genetic data quality control function, check.marker, is based. That function will be covered in the next section.

\section*{Summary:}
- When summary () function is applied to an gtdata subset of gwaa.dataclass, it return summary statistics for SNPs, including exact test for Hardy-Weinberg equilibrium.
- When perid.summary () function is applied to an object of gwaa.dataclass (or gtdata part of it), it return per-person summary statistics, including the call rate within this person and its' heterozygosity.

\section*{Exercise 5. Characterizing call rate}

Characterise the distribution of call rates within study subjects and produce a histogram. How many people have call rate below \(93 \%\) ?

\subsection*{4.5 Answers to exercises}

Answer (Ex. 1) - Load the data with
```

> data(srdta)

```

Number of people:
> nids (srdta)
[1] 2500
Number of males:
> sum(male(srdta))
[1] 1275
Number of females:
> nids(srdta) - sum(male(srdta))
[1] 1225
... or you could get the same answer like this \({ }^{1}\)
> \(\operatorname{sum}(\) male \((s r d t a)==0)\)
[1] 1225
The proportion of males can be computed using above results

\footnotetext{
\({ }^{1}\) This is something covered later in the section 4.3 (, Sub-setting and coercing gwaa.data')
}
```

> sum(male(srdta))/nids(srdta)

```
[1] 0.51
or by using mean() function:
> mean(male(srdta))
[1] 0.51

Answer (Ex. 2) - The names of markers located after 2,490,000 b.p. are
```

> vec <- (map(srdta)>2490000)

```
> snpnames(srdta) [vec]
```

[1] "rs9273" "rs9277" "rs9279" "rs9283"

```

The names of markers located between 1,100,000 and 1,105,000 b.p. are:
```

> vec <- (map(srdta)>1100000 \& map(srdta)<1105000)
> snpnames(srdta) [vec]
[1] "rs4180" "rs4186" "rs4187"

```

Answer (Ex. 3) - To learn what allele of "rs114" is the reference you need to run
```

> coding(srdta)["rs114"]
rs114
"AT"

```

Here, the first ("A") allele is the reference and thus the second (" T ") is the effective one. Remember that when using as.numeric function to convert the genotypes to human-readable and R-operatable format, the homozygotes for reference will be coded as " 0 ", heterozygotes as " 1 " and the non-reference ("effective") homozygotes will be coded as "2":
```

> table(as.character(gtdata(srdta[,"rs114"])),as.numeric(gtdata(srdta[,"rs114"])))

|  | 0 | 1 | 2 |
| :--- | ---: | ---: | ---: |
| A/A | 1868 | 0 | 0 |
| A/T | 0 | 491 | 0 |
| T/T | 0 | 0 | 34 |

```

To compute frequency of the effective allele of SNP "rs114" in total sample, you can go two ways. First, we can try to take a sum of all "rs114" genotypes and divide it by twice the number of people:
```

> a <- as.numeric(gtdata(srdta[,"rs114"]))
> sum(a)

```

\section*{[1] NA}

This, however, returns NA, because some of the genotypes are missing. We can deal with this problem by running sum() with the option na.rm=TRUE:
```

> sum(a,na.rm=T)

```
[1] 559
so the number of 'effect' alleles is 559 .
However, now we do not know what was the number of people for whom the genotype was measured! - nids would return the total number of people, but not the number of ones measured for "rs114".
This problem can be dealt with through using is.na(A) function which returns true when some element of A is not measured. Thus, the number of people with measured genotype for "rs 114 " is
> nids(srdta)
[1] 2500
> nmeasured <- sum(!is.na(a))
> nmeasured
[1] 2393
(note the "!" before is.na, which means NOT, so we get these elements which are not NA). The frequency of the 'effect' allele thus is
\(>\operatorname{sum}(\mathrm{a}, \mathrm{na} . r m=T) /(2 *\) nmeasured \()\)
[1] 0.116799
An easier way would be to compute mean value of "rs114" with the mean (. . ,na.rm=TRUE) function and divide it by 2 :
```

>mean (a,na.rm=T)/2

```
[1] 0.116799
To compute frequency of the effective allele of "rs114" in males, you can use
```

> amale <- as.numeric(gtdata(srdta[male(srdta)==1,"rs114"]))
> mean(amale,na.rm=T)/2

```
[1] 0.1164216
To compute frequency of the effective allele in females, you can use
> afemale <- as.numeric(gtdata(srdta[male(srdta)==0, "rs114"]))
> mean(afemale, na.rm=T)/2
[1] 0.1171942
The frequencies of the reference allele are computed very simply as one minus the frequency of the effective allele:
> 1 - mean (a,na.rm=T)/2
[1] 0.883201
> 1 - mean(amale,na.rm=T)/2
[1] 0.8835784
> 1 - mean(afemale,na.rm=T)/2
[1] 0.8828058

Answer (Ex. 4) - To test for HWE in first 10 SNPs in total sample > summary(gtdata(srdta[,1:10]))
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Chrom & mosome & Position & Strand & d 11 & A2 & NoMeasured & CallRate & Q. 2 & P. 11 & P. 12 \\
\hline rs10 & & 1 & 2500 & + & & G & 2384 & 0.9536 & 0.13255034 & 1792 & 552 \\
\hline rs18 & & 1 & 3500 & + & + G & A & 2385 & 0.9540 & 0.28029350 & 1232 & 969 \\
\hline rs29 & & 1 & 5750 & - & G & T & 2374 & 0.9496 & 0.13774221 & 1763 & 568 \\
\hline rs65 & & 1 & 13500 & + & A & T & 2378 & 0.9512 & 0.71972246 & 182 & 969 \\
\hline rs73 & & 1 & 14250 & + & + A & G & 2385 & 0.9540 & 0.01341719 & 2331 & 44 \\
\hline rs114 & & 1 & 24500 & + & + A & T & 2393 & 0.9572 & 0.11679900 & 1868 & 491 \\
\hline rs128 & & 1 & 27000 & & G & T & 2391 & 0.9564 & 0.02488499 & 2281 & 101 \\
\hline rs130 & & 1 & 27250 & + & A & G & 2379 & 0.9516 & 0.69377890 & 222 & 1013 \\
\hline rs143 & & 1 & 31000 & + & T & G & 2377 & 0.9508 & 0.47728229 & 655 & 1175 \\
\hline rs150 & & 1 & 33250 & + & + C & A & 2369 & 0.9476 & 0.65998312 & 267 & 1077 \\
\hline & P. 22 & & Pexact & & Fmax & & Plrt & & & & \\
\hline rs10 & 40 & 7.8973 & \(327 \mathrm{e}-01\)-0 & 0.00688 & 80004 & & . \(355343 \mathrm{e}-01\) & & & & \\
\hline rs18 & 184 & 7.6082 & \(230 \mathrm{e}-01-0\) & -0.00701 & 17332 & 7. & . \(315304 \mathrm{e}-01\) & & & & \\
\hline rs29 & 43 & 7.955 & \(141 \mathrm{e}-01-0\) & -0.00724 & 41148 & 7. & . \(227853 \mathrm{e}-01\) & & & & \\
\hline rs65 & 1227 & 6.475 & 412e-01-0.0 & -0.01001 & 16746 & & . \(246577 \mathrm{e}-01\) & & & & \\
\hline rs73 & 10 & 1.792 & 470e-12 0. & 0.30315 & 50234 & & .281239e-12 & & & & \\
\hline rs114 & 34 & 7.6636 & 683e-01 0 & 0.00548 & 87764 & & . \(894076 \mathrm{e}-01\) & & & & \\
\hline rs128 & 9 & 9.408 & 599e-06 0. & 0.12960 & 00629 & 1. & . \(000431 \mathrm{e}-05\) & & & & \\
\hline rs130 & 1144 & 9.615 & \(127 \mathrm{e}-01-0\) & -0.00214 & 40946 & 9. & . \(168114 \mathrm{e}-01\) & & & & \\
\hline rs143 & 547 & 6.512 & 540e-01 0. & 0.00931 & 13705 & & .497695e-01 & & & & \\
\hline rs150 & 1025 & 5.518 & 478e-01 -0 & -0.01294 & 48436 & & .281254e-01 & & & & \\
\hline
\end{tabular}

To test it in cases
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & Chromosome & Position & Strand & & & NoMeasured & CallRate & Q. 2 & P. 11 \\
\hline rs10 & 1 & 2500 & + & T & G & 1197 & 0.9622186 & 0.13700919 & 888 \\
\hline rs18 & 1 & 3500 & + & G & A & 1189 & 0.9557878 & 0.28511354 & 605 \\
\hline rs29 & 1 & 5750 & & G & T & 1176 & 0.9453376 & 0.14285714 & 859 \\
\hline rs65 & 1 & 13500 & + & A & T & 1185 & 0.9525723 & 0.72700422 & 83 \\
\hline rs73 & 1 & 14250 & + & A & G & 1187 & 0.9541801 & 0.01053075 & 1167 \\
\hline rs114 & 1 & 24500 & + & A & T & 1190 & 0.9565916 & 0.12184874 & 918 \\
\hline rs128 & 1 & 27000 & & G & T & 1183 & 0.9509646 & 0.02409129 & 1129 \\
\hline rs130 & 1 & 27250 & + & & G & 1188 & 0.9549839 & 0.68392256 & 117 \\
\hline rs143 & 1 & 31000 & & T & G & 1192 & 0.9581994 & 0.48489933 & 320 \\
\hline rs150 & 1 & 33250 & + & C & A & 1182 & 0.9501608 & 0.66624365 & 127 \\
\hline & P. 12 P. 22 & Pexa & act & & & max & Plrt & & \\
\hline
\end{tabular}
rs10 \(290194.635677 \mathrm{e}-01-0.0245142023 .871421 \mathrm{e}-01\)
rs18 \(490 \quad 947.759191 \mathrm{e}-01-0.0109491587 .052930 \mathrm{e}-01\)
rs29 \(298192.832575 \mathrm{e}-01-0.0347222222 .214580 \mathrm{e}-01\)
rs65 \(4816214.647357 e-01-0.0225954694 .348023 e-01\)
rs73 \(15 \quad 5 \quad 3.988770 \mathrm{e}-08 \quad 0.3936143042 .423624 \mathrm{e}-08\)
rs114 25418 8.924018e-01 \(0.0026068319 .285104 \mathrm{e}-01\)
rs128 \(51 \quad 32.747904 \mathrm{e}-02 \quad 0.0831756743 .157174 \mathrm{e}-02\)
rs130 \(5175548.407527 e-01-0.0065692928 .207476 e-01\)
rs143 \(5882846.848365 \mathrm{e}-01 \quad 0.0125221196 .654994 \mathrm{e}-01\)
rs150 \(5355205.568363 e-01-0.0177560505 .409408 \mathrm{e}-01\)
in controls
```

> summary(gtdata(srdta[phdata(srdta)\$bt==0,1:10]))

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Chrom & mosome & & Position St & Strand & & A2 & & Measured & CallRate & Q. 2 & P. 11 \\
\hline rs10 & & 1 & 1 & 2500 & + & T & G & & 1177 & 0.9453815 & 0.12744265 & 897 \\
\hline rs18 & & 1 & 1 & 3500 & + & G & A & & 1185 & 0.9518072 & 0.27426160 & 623 \\
\hline rs29 & & 1 & & 5750 & & G & T & & 1188 & 0.9542169 & 0.13215488 & 897 \\
\hline rs65 & & 1 & & 13500 & + & A & T & & 1183 & 0.9502008 & 0.71344041 & 98 \\
\hline rs73 & & 1 & & 14250 & + & A & G & & 1188 & 0.9542169 & 0.01641414 & 1154 \\
\hline rs114 & & 1 & & 24500 & + & A & & & 1192 & 0.9574297 & 0.11157718 & 941 \\
\hline rs128 & & 1 & & 27000 & & G & T & & 1197 & 0.9614458 & 0.02589808 & 1141 \\
\hline rs130 & & 1 & & 27250 & + & A & G & & 1181 & 0.9485944 & 0.70491109 & 104 \\
\hline rs143 & & 1 & & 31000 & + & T & G & & 1174 & 0.9429719 & 0.46805792 & 334 \\
\hline rs150 & & 1 & 1 & 33250 & + & C & & & 1176 & 0.9445783 & 0.65306122 & 139 \\
\hline & P. 12 & P. 22 & & Pexact & & & & max & & Plrt & & \\
\hline rs10 & 260 & 20 & & .933317e-01 & & 0067 & 751 & 055 & 8.178295 & 5e-01 & & \\
\hline rs18 & 474 & 88 & & . \(418133 \mathrm{e}-01\) & \(1-0.00\) & 0048 & 812 & 165 & 8.683219 & 9e-01 & & \\
\hline rs29 & 268 & 23 & & .288436e-01 & & 0165 & 525 & 913 & 5.737373 & \(3 \mathrm{e}-01\) & & \\
\hline rs65 & 482 & 603 & & .871139e-01 & & 0035 & 540 & 522 & 9.031273 & \(3 \mathrm{e}-01\) & & \\
\hline rs73 & 29 & 5 & & .941219e-06 & & 2440 & 001 & 185 & 5.537568 & 8e-06 & & \\
\hline rs114 & 236 & 15 & & .846527e-01 & & 0013 & 356 & 081 & 9.627084 & \(4 \mathrm{e}-01\) & & \\
\hline rs128 & 50 & & & .745807e-05 & & 1721 & 107 & 564 & 7.552399 & 9e-05 & & \\
\hline rs130 & 489 & 588 & & .887439e-01 & & 0047 & 728 & 114 & 8.710047 & \(7 \mathrm{e}-01\) & & \\
\hline rs143 & 581 & 259 & & .604122e-01 & 10.00 & 0061 & 165 & 5442 & 8.326938 & e-01 & & \\
\hline rs150 & 538 & 499 & & . \(968462 \mathrm{e}-01\) & -0.000 & 0095 & 574 & 142 & 7.424986 & 6-01 & & \\
\hline
\end{tabular}

SNPs 'rs73' and 'rs128' are out of HWE (at \(p \leq 0.05\)) in total sample, and also in cases and controls.

Answer (Ex. 5) - To characterize ID call rate, you can run the following commands:
```

> idsummary <- perid.summary(srdta)
> idsummary[1:5,]
NoMeasured NoPoly Hom E(Hom) Var F CallPP
p1 790 790 0.7987342 0.6696986 0.5448255 0.3906601 0.9483794
p2 792 792 0.7474747 0.6685502 0.5390602 0.2381191 0.9507803
p3 783 783 0.6206897 0.6712102 0.4888671 -0.1536561 0.9399760
p4 789 789 0.6070976 0.6700900 0.4077382 -0.1909382 0.9471789
p5 790 790 0.6658228 0.6710232 0.4340010 -0.0158077 0.9483794
Het
p1 0.2012658
p2 0.2525253
p3 0.3793103
p4 0.3929024
p5 0.3341772
> idcall <- idsummary\$Call
> idcall[1:5]

```
[1] 0.94837940 .95078030 .93997600 .94717890 .9483794
> catable(idcall, c(0.9,0.93,0.95,0.98,0.99))
\begin{tabular}{lrrrrrr}
& \(X<=0.9\) & \(0.9<X<=0.93\) & \(0.93<X<=0.95\) & \(0.95<X<=0.98\) & \(0.98<X<=0.99\) & \(X>0.99\) \\
No & 0 & 13.000 & 1186.000 & 1301.00 & 0 & 0 \\
Prop & 0 & 0.005 & 0.474 & 0.52 & 0 & 0
\end{tabular}
> table(idcall<0.93)
FALSE TRUE
\(2487 \quad 13\)
To produce a histogram of call rates, use hist(idcall)

\section*{Chapter 5}

\section*{Genome-wide association analysis}

In the first parts of this section you will be guided through a GWA analysis of a small data set. In the last part you will investigate a larger data set by yourself, do a verification study and will answer the questions. All data sets used assume a study in a relatively homogeneous population. Try to finish the first part in the morning and the second part in the afternoon.

Though only few thousands of markers located at four small chromosomes are used in the scan, we still going to call it Genome-Wide (GW), as the amount of data we will use is approaches the amount to be expected in a real experiment. However, because the regions are small, and the LD between SNPs is high, some specific features (e.g. relatively high residual inflation, which occurs because large proportion of SNPs are in LD with the reuly associated ones) are specific features of this data set, which are not observed in true GWA studies.

Start R and load GenABEL-package library by typing
> library (GenABEL)
and load the data which we will use in this section by
> data (ge03d2ex)
Investigate the objects loaded by command
> 1 s ()
[1] "ge03d2ex"
The ge03d2ex is an object of the class gwaa.data:
> class (ge03d2ex)
[1] "gwaa.data"
attr(,"package")
[1] "GenABEL"
To check what are the names of variables in the phenotypic data frame, use
```

> names(phdata(ge03d2ex))
[1] "id" "sex" "age" "dm2" "height" "weight" "diet" "bmi"

```

We can attach this data frame to the \(R\) search path by
```

> attach(phdata(ge03d2ex))

```

\subsection*{5.1 Data descriptives and first round of GWA analysis}

Let us investigate what are the traits presented in the data frame loaded and what are the characteristics of the distribution by using specific GenABEL-package function descriptive.trait:
```

> descriptives.trait(ge03d2ex)

```
\begin{tabular}{lrrr}
& No & Mean & SD \\
id & 136 & NA & NA \\
sex & 136 & 0.529 & 0.501 \\
age & 136 & 49.069 & 12.926 \\
dm2 & 136 & 0.632 & 0.484 \\
height & 135 & 169.440 & 9.814 \\
weight & 135 & 87.397 & 25.510 \\
diet & 136 & 0.059 & 0.236 \\
bmi & 135 & 30.301 & 8.082
\end{tabular}

You can see that phenotypic frame contains the data on 136 people; the data on sex, age, height, weight, diet and body mass index (BMI) are available. Our trait of interest is dm2 (type 2 diabetes). Note that every single piece of information in this data set is simulated; however, we tried to keep our simulations in a way we think the control of T2D may work.

You can produce a summary for cases and controls separately and compare distributions of the traits by
```

> descriptives.trait(ge03d2ex,by=dm2)

```
\begin{tabular}{lrrrrrrrrrr}
& No (by.var=0) & Mean & SD No (by.var=1) & Mean & SD & Ptt & Pkw \\
id & & 50 & NA & NA & 86 & NA & NA & NA & NA \\
sex & & 50 & 0.420 & 0.499 & 86 & 0.593 & 0.494 & 0.053 & 0.052 \\
age & & 50 & 47.038 & 13.971 & 86 & 50.250 & 12.206 & 0.179 & 0.205 \\
dm2 & & 50 & NA & NA & 86 & NA & NA & NA & NA \\
height & & 49 & 167.671 & 8.586 & 86 & 170.448 & 10.362 & 0.097 & 0.141 \\
weight & & 49 & 76.534 & 17.441 & 86 & 93.587 & 27.337 & 0.000 & 0.000 \\
diet & & 50 & 0.060 & 0.240 & 86 & 0.058 & 0.235 & 0.965 & 0.965 \\
bmi & & 49 & 27.304 & 6.463 & 86 & 32.008 & 8.441 & 0.000 & 0.001 \\
& Pexact & & & & & & & & & \\
id & NA & & & & & & & & & \\
sex & 0.074 & & & & & & & & & \\
age & NA & & & & & & & & &
\end{tabular}

\subsection*{5.1. DATA DESCRIPTIVES AND FIRST ROUND OF GWA ANALYSIS103}
\begin{tabular}{lr}
height & NA \\
weight & NA \\
diet & 1.000 \\
bmi & NA
\end{tabular}

Here, the by argument specifies the grouping variable. You can see that cases and controls are different in weight, which is expected, as T2D is associated with obesity.

Similarly, you can produce grand GW descriptives of the marker data by using
```

> descriptives.marker(ge03d2ex)
\$`Minor allele frequency distribution`
X<=0.01 0.01<X<=0.05 0.05< X<=0.1 0.1<X<=0.2 X>0.2
No 146.000 684.000 711.000 904.000 1555.000
Prop 0.036 0.171 0.178
\$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X
No }46.000\quad71.000 125.000 275.000 4000
Prop 0.012 0.018 0.031 0.069 1
\$`Distribution of proportion of successful genotypes (per person)`
X<=0.9 0.9<X<=0.95 0.95<X<=0.98 0.98<X<=0.99 X>0.99

| No | 1.000 | 0 | 0 | 135.000 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Prop 0.007 0 0
\$`Distribution of proportion of successful genotypes (per SNP)`
X<=0.9 0.9<X<=0.95 0.95<X<=0.98 0.98<X<=0.99 X>0.99

| No | 37.000 | 6.000 | 996.000 | 1177.000 | 1784.000 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Prop | 0.009 | 0.002 | 0.249 | 0.204 | 0.446 |

\$`Mean heterozygosity for a SNP`
[1] 0.2582298
\$`Standard deviation of the mean heterozygosity for a SNP`
[1] 0.1592255
\$`Mean heterozygosity for a person`
[1] 0.2476507
\$`Standard deviation of mean heterozygosity for a person`
[1] 0.04291038

```

It is of note that we can see inflation of the proportion of the tests for HWE at particular threshold, as compared to the expected. This may indicate poor genotyping quality and/or genetic stratification.

We can test the GW marker characteristics in controls by
```

> descriptives.marker(ge03d2ex,ids=(dm2==0))

```
```

\$`Minor allele frequency distribution`
X<=0.01 0.01<X<=0.05 0.05<X<=0.1 0.1<X<=0.2 X>0.2
No 233.000 676.000 671.000 898.000 1522.00
Prop 0.058 0.169 0. 0.168 0.224 0.38
\$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X
No 0}3.00014.000 98.000 400
Prop 0 0.001 0.003 0.024 1
\$`Distribution of proportion of successful genotypes (per person)`
X<=0.9 0.9<X<=0.95 0.95<X<=0.98 0.98<X<=0.99 X>0.99
No lllrl
\$`Distribution of proportion of successful genotypes (per SNP)`
X<=0.9 0.9<X<=0.95 0.95<X<=0.98 0.98< X<=0.99 X>0.99
No 37.000 49.000 1523.000 0 2391.000
Prop 0.009 0.012 0.381 0. 0. 0.598
\$`Mean heterozygosity for a SNP`
[1] 0.2555009
\$`Standard deviation of the mean heterozygosity for a SNP`
[1] 0.1618707
\$`Mean heterozygosity for a person`
[1] 0.252572
\$`Standard deviation of mean heterozygosity for a person`
[1] 0.04714886

```

Apparently, HWE distribution holds better in controls than in the total sample.
Let us check whether there are indications that deviation from HWE is due to cases. At this stage we are only interested in HWE distribution table, and therefore will ask to report the distrbution for cases (dm2==1) and report only the table two:
```

> descriptives.marker(ge03d2ex,ids=(dm2==1)) [2]
\$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X
No 45.000 79.00 136.000 268.000 4000
Prop 0.011 0.02 0.034 0.067 1

```
and for the controls
```

> descriptives.marker(ge03d2ex,ids=(dm2==0)) [2]
\$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X

| No | 0 | 3.000 | 14.000 | 98.000 | 4000 |
| :--- | :--- | :--- | :--- | :--- | :--- |

```

\subsection*{5.1. DATA DESCRIPTIVES AND FIRST ROUND OF GWA ANALYSIS105}

It seems that indeed excessive number of markers are out of HWE in cases. If no laboratory procedure (e.g. DNA extraction, genotyping, calling) were done for cases and controls separately, this may indicate possible genetic heterogeneity specific for cases.

In essence, 'descriptives.marker' function uses 'summary' function to generate HW P-values distribution. It may be interesting to generate this distribution using the 'summary' function You do not need to do so, but this example shows how you can generate summaries from underlying SNP-tables. First, we need to compute summary SNP statistics by
```

> s <- summary(gtdata(ge03d2ex[(dm2==1),]))

```

Note the you have produced the summary for the gtdata slot of ge03d2ex; this is the slot which actually contain all genetic data in special compressed format.

You can see first 5 rows of this very long summary table by
```

> s[1:5,]

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & Chrom & nosome & Position & Strand A1 & & NoMeasured & CallRate & & P. 11 \\
\hline rs1646456 & & 1 & 653 & & C G & 85 & 0.9883721 & 0.32941176 & 34 \\
\hline rs4435802 & & 1 & 5291 & \(+\mathrm{C}\) & C A & 86 & 1.0000000 & 0.09302326 & 70 \\
\hline rs946364 & & 1 & 8533 & T & T C & 84 & 0.9767442 & 0.24404762 & 46 \\
\hline rs299251 & & 1 & 10737 & \(+\mathrm{A}\) & A G & 85 & 0.9883721 & 0.03529412 & 79 \\
\hline rs2456488 & & 1 & 11779 & \(+\mathrm{G}\) & G C & 85 & 0.9883721 & 0.33529412 & 38 \\
\hline & P. 12 & P. 22 & Pexact & & Fmax & Plrt & & & \\
\hline rs1646456 & 46 & 5 & 0.05089075 & -0.224937 & 3734 & 0.03233812 & & & \\
\hline rs4435802 & 16 & 0 & 1.00000000 & -0.10256 & 6410 & 0.19978917 & & & \\
\hline rs946364 & 35 & 3 & 0.37413083 & -0.129249 & 4909 & 0.21777250 & & & \\
\hline rs299251 & 6 & 0 & 1.00000000 & -0.0365853 & 8537 & 0.63937447 & & & \\
\hline rs2456488 & 37 & 10 & 0.81059718 & 0.023443 & 4356 & 0.82918345 & & & \\
\hline
\end{tabular}

Note that the column 'Pexact' provides exact HWE test \(P\)-values we need. We can extract these to a separate vector by
```

> pexcas <- s[,"Pexact"]

```
and do characterization of the cummulative distribution by
```

> catable(pexcas,c(0.001,0.01,0.05,0.1,0.5),cumulative=TRUE)

|  | $X<=0.001$ | $X<=0.01$ | $X<=0.05$ | $X<=0.1$ | $X<=0.5$ | all $X$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| No | 79.00 | 136.000 | 268.000 | 390.000 | 1359.00 | 4000 |
| Prop | 0.02 | 0.034 | 0.067 | 0.098 | 0.34 | 1 |

```

You can generate the distribution for controls in similar manner.
Let us first try do GWA scan using the raw (before quality control) data. We will use the score test, as implemented in the qtscore() 1 function of GenABELpackage for testing:
```

> an0 <- qtscore(dm2,ge03d2ex,trait="binomial")

```

\footnotetext{
\({ }^{1}\) consider 'mlreg' function if you want to run true linear regression
}

The first argument used describes the model; here it is rather simple - the affection status, dm2, is supposed to depend on SNP genotype only.

You can see what information is computed by this function by using
```

> anO
***** 'scan.gwaa' object *****
*** Produced with:
qtscore(formula = dm2, data = ge03d2ex, trait.type = "binomial")
*** Test used: binomial
*** no. IDs used: 136 ( id199 id287 id300 , ... )
*** Lambda: 1.033102
*** Results table contains }4000\mathrm{ rows and }9\mathrm{ columns
*** Output for 10 first rows is:
N effB se_effB chi2.1df P1df effAB effBB
rs1646456 135 0.9487666 5.0501959 0.0352941176 0.8509807 1.5558824 0.4831933
rs4435802 134 2.6822601 1.6765631 2.5595403237 0.1096305 2.5142857 NA
rs946364 134 0.6376645 0.4012104 2.5260391714 0.1119810 0.7277883 0.2869565
rs299251 135 0.5592122 0.5740215 0.9490674319 0.3299568 0.5569620 NA
rs2456488 135 0.8669860 1.5393112 0.3172278551 0.5732784 0.9736842 0.6907895
rs3712159 133 0.8282737 2.4803134 0.1115153279 0.7384255 0.5641026 Inf
rs4602970 136 1.5227297 2.2683336 0.4506421219 0.5020302 1.5131579 NA
rs175910 134 0.9949826 57.3970087 0.0003005055 0.9861693 0.5600000 4.0727273
rs1919938 136 0.9303079 3.5515057 0.0686164762 0.7933619 0.1160000 0.1958333
rs8892781 133 1.0953022 14.9055712 0.0053997133 0.9414220 1.0952381 NA
chi2.2df P2df
rs1646456 3.885667042 0.14329734
rs4435802 2.559540324 0.10963046
rs946364 3.020970009 0.22080286
rs299251 0.949067432 0.32995679
rs2456488 0.493411146 0.78137072
rs3712159 1.358996877 0.50687116
rs4602970 0.450642122 0.50203018
rs175910 5.012993241 0.08155345
rs1919938 6.001763944 0.04974318
rs8892781 0.005399713 0.94142198
___ Use 'results(object)' to get complete results table _

```

Here, let us look at the 'Results table'. P1df, P2df and Pc1df are most interesting; the first two are vectors of 1 and 2 d.f. \(P\)-values obtained in the GWA analysis, the last one is 1 d.f. P -value corrected for inflation factor \(\lambda\) (which is presented in lambda object). effB corresponds to (approximate) Odds Ratios estimate for the SNP.

Let us see if there is evidence for the inflation of the test statistics; for that let us obtain \(\lambda\) with
```

> lambda(an0)

```
\$estimate
[1] 1.033102
```

\$se
[1] 0.0005639231
\$iz0
[1] 1
\$iz2
[1] 1

```

The estimate of \(\lambda\) is 1.03 , suggesting inflation of the test and some degree of stratification. Though the value abtained seems to be small, it should be noted that \(\lambda\) grows linearly with smaple size, so for this small number of cases and controls the value is worrisome.

The \(\lambda\) is computed by regression in a Q-Q plot. Both estimation of \(\lambda\) and production of the \(\chi^{2}-\chi^{2}\) plot can be done using the estlambda function; this was already done automatically when running qtscore function, but let us repeat this manually:
```

> estlambda(anO[,"P1df"],plot=TRUE)

```
\$estimate
[1] 1.033102
\$se
[1] 0.0005639231
The corresponding \(\chi^{2}-\chi^{2}\) plot is presented in Figure 5.1.

The 'se' produced by estlambda can not be used to test if inflation is significant and make conclusions about presence of significant or insignificant stratification.

We can also present the obtained results using the "Manhatten plot", where a SNP genomic position is on the X -axes and \(-\log _{10}\) of the \(P\)-value is shown on Y-axes:
```

> plot(anO)

```

The resulting plot is presented in the figure 5.2. By default, \(-\log _{10}(P-\) value \()\) of not corrected 1 d.f. test are presented; see help to figure out how this behaviour can be changed.

We can also add the corrected P-values to the plot with
```

> add.plot(an0,df="Pc1df",col=c("lightblue","lightgreen"))

```

You can see that \(P\)-values corrected by genoic control are uniformly lower than the \(P\)-values from 'raw' analysis. This is to be expected as genomic control simply divides the 'raw' \(\chi^{2}\) statistics by a constant \(\lambda\) for all SNPs.

You can also generate a descriptive table for the "top" (as ranked by P-value) results by

Figure 5.1: \(\chi^{2}-\chi^{2}\) plot for a GWA scan. Black line of slope 1: expected under no inflation; Red line: fitted slope.
```

> descriptives.scan(an0)

```

Summary for top 10 results, sorted by P1df
Chromosome Position Strand A1 A2 N effB se_effB chi2.1df

rs2975760 \(310518480 \quad+\) A T 1343.803800241 .0517298613 .080580
rs7418878 \(12808520 \quad+\) A T 1363.081230600 .9343179510 .875745
rs5308595 310543128 - C G 1333.982549501 .2158287510 .729452
rs4804634 \(12807417 \quad+\quad\) C G 1320.434114560 .1340029010 .494949
rs3224311 \(26009769+\) G C 1353.158317100 .9840149110 .301681

rs8835506 \(26010852+\) A T 1323.177208291 .0027408710 .039543

rs2521089 310487652 - T C 1352.502394930 .81179595 9.502064
P1df effAB
effBB chi2.2df P2df Pc1df
rs1719133 0.00027956230 .40042370 .00000014 .7291160 .00063330520 .0003504258
rs2975760 0.00029837313 .454545510 .00000013 .5473450 .00114348770 .0003732694
rs7418878 0.00097431833 .60512824 .87179512 .1810640 .00226420360 .0011762545
rs5308595 0.0010544366 3.3171429 Inf 10.7664390 .00459301010 .0012699705
rs4804634 0.0011970132 0.52406420 .17391311 .2007670 .00369644620 .0014362332
rs3224311 0.00132909073 .41517864 .25000011 .6582830 .00294059990 .0015897278
\(\begin{array}{llllllllll}\text { rs26325 } 0.0013313876 & 0.1097724 & \text { NA } & 10.298495 & 0.0013313876 & 0.0015923930\end{array}\)

Figure 5.2: \(-\log _{10}(P-\) value \()\) from the genome scan before QC procedure. Raw analysis: darker circles; corrected analysis: lighter circles
```

rs8835506 0.0015321522 3.4903846 4.125000 11.513206 0.0031618340 0.0018248521
rs3925525 0.0019400358 3.2380952 4.121212 10.782867 0.0045554384 0.0022944719
rs2521089 0.0020524092 2.5717703 4.772727 9.933387 0.0069661425 0.0024233145
or, equivalently, by 'summary (an0)'

```

Here you see top 10 results, sorted by P-value with 1 d.f. If you want to sort by the corrected P-value, you can use descriptives.scan (an0, sort="Pc1df"); to see more then 10 (e.g. 25) top results, use descriptives. \(\operatorname{scan}(a n 0\), top=25). You can combine all these options. Large part of results reports NA as effect estimates and 9.99 as \(P\)-value for 2 d.f. test - for these markers only two out of three possible genotypes were observed, and consequently 2 d.f. test could not be performed.

Now let us apply qtscore() function with times argument, which tells it to compute empirical GW (or experiment-wise) significance
```

> an0.e <- qtscore(dm2,ge03d2ex,times=200,quiet=TRUE)
|
| | 0%
|
|====================================================================== | 100%

```
(you may skip the 'quiet=TRUE' argument, then you will see progress)
Now let us generate the summary of the results
```

> descriptives.scan(an0.e,sort="Pc1df")
Summary for top 10 results, sorted by Pc1df
Chromosome Position Strand A1 A2 N effB se_effB chi2.1df
rs1719133 1 4495479 + T A 136 -0.2652064 0.07298850 13.202591
rs2975760 3 10518480 + A T 134 0.2340655 0.06471782 13.080580
rs7418878 1 2808520 + A T 136 0.2089098 0.06334746 10.875745
rs5308595 3 10543128 - C G 133 0.2445516 0.07465893 10.729452
rs4804634 1 2807417 + C G 132 -0.2050449 0.06329344 10.494949
rs3224311 2 6009769 + G C 135 0.2133633 0.06647611 10.301681
rs26325 3 10617781 + A C 135 -0.4875367 0.15192190 10.298495
rs8835506 2 6010852 + A T 132 0.2112000 0.06665565 10.039543
rs505606 1 2807572 - G T 134 0.2247738 0.07384377 9.265392
rs9630764 1 3897972 + T A 135 0.1761178 0.05859262 9.034842
P1df Pc1df effAB effBB chi2.2df P2df
rs1719133 0.450 0.535 -0.2080882 -0.7375000 14.729116 NA
rs2975760 0.465 0.555 0.2755102 0.4090909 13.547345 NA
rs7418878 0.860 0.895 0.2807405 0.3268398 12.181064 NA
rs5308595 0.870 0.920 0.2564832 0.4623656 10.766439 NA
rs4804634 0.905 0.935 -0.1193830-0.3845238 11.200767 NA
rs3224311 0.925 0.950 0.2778634 0.3151515 11.658283 NA
rs26325 0.925 0.955 -0.4875367 NA 10.298495 NA
rs8835506 0.940 0.980 0.2796221 0.3076923 11.513206 NA
rs505606 0.995 0.995 0.2731481 0.2814815 10.279360 NA
rs9630764 0.995 0.995 0.1403941 0.3392857 9.143991 NA

```

Experimental-wise significance is computed by the empirical procedure, thus we consider \(P\)-values \(\leq 0.05\) to be GW-significant. However, none of the SNPs hits GW significance. If, actually, any did pass the threshold, we could not trust the results, because the distribution of the HWE test and presence of inflation factor for the association test statistics suggest that the data may contain multiple errors (indeed they do). Therefore before association analysis we need to do rigorous Quality Control (QC).

Note that at certain SNP, corrected \(P\)-values become equal to 1 - at this point order is arbitrary because sorting could not be done.

\section*{Summary:}
- The descriptives family of functions was developed to facilitate production of tables which can be directly used in a manuscript - it is possible to save the output as a file, which can be open by Excel or Word. See e.g. help(descriptives.trait) for details.
- The inflation of test statistics compared to null (1 d.f.) may be estimated with estlambda function.

\subsection*{5.2 Genetic data QC}

The major genetic data QC function of GenABEL-package is check.marker(). We will now use that to perform our data QC; the output is rather self-explaining. Because of possible genetic heterogeneity of the study data it is good idea to skip Hardy-Weinberg checks in the first round of QC. This can be achieved by setting HWE P-value selection threshold to zero (p.level=0):
```

> qc1 <- check.marker(ge03d2ex,p.level=0)

```

Excluding people/markers with extremely low call rate... 4000 markers and 136 people in total
0 people excluded because of call rate < 0.1
6 markers excluded because of call rate < 0.1
Passed: 3994 markers and 136 people
Running sex chromosome checks...
197 heterozygous X-linked male genotypes found
1 X-linked markers are likely to be autosomal (odds > 1000)
2 male are likely to be female (odds > 1000)
0 female are likely to be male (odds > 1000)
0 people have intermediate X -chromosome inbreeding (\(0.5>\mathrm{F}>0.5\))
If these people/markers are removed, 0 heterozygous male genotypes are left
Passed: 3993 markers and 134 people
no \(\mathrm{X} / \mathrm{Y} / \mathrm{mtDNA}\)-errors to fix

RUN 1
3993 markers and 134 people in total
304 (\(7.613323 \%\)) markers excluded as having low (\(<1.865672 \%\)) minor allele frequency
36 (\(0.9015778 \%\)) markers excluded because of low (\(<95 \%\)) call rate
0 (\(0 \%\)) markers excluded because they are out of HWE (\(\mathrm{P}<0\))
1 (\(0.7462687 \%\)) people excluded because of low (\(\langle 95 \%\)) call rate
Mean autosomal HET is 0.2747262 (s.e. 0.03721277)
3 (2.238806\%) people excluded because too high autosomal heterozygosity (FDR <1\%)
Excluded people had HET >= 0.4856887
Mean IBS is 0.7689332 (s.e. 0.02075883), as based on 2000 autosomal markers
2 (\(1.492537 \%\)) people excluded because of too high IBS (\(>=0.95\))
In total, 3653 (\(91.4851 \%\)) markers passed all criteria
In total, 128 (\(95.52239 \%\)) people passed all criteria
RUN 2
3653 markers and 128 people in total
80 (\(2.189981 \%\)) markers excluded as having low (\(<1.953125 \%\)) minor allele frequency
0 (\(0 \%\)) markers excluded because of low (\(<95 \%\)) call rate
0 (\(0 \%\)) markers excluded because they are out of HWE (\(\mathrm{P}<0\))
0 (\(0 \%\)) people excluded because of low (\(\langle 95 \%\)) call rate
Mean autosomal HET is 0.2748341 (s.e. 0.01695461)
0 people excluded because too high autosomal heterozygosity (FDR <1\%)
Mean IBS is 0.7686821 (s.e. 0.01823143), as based on 2000 autosomal markers
```

0 (0%) people excluded because of too high IBS (>=0.95)
In total, 3573 (97.81002%) markers passed all criteria
In total, 128 (100%) people passed all criteria

```

\section*{RUN 3}

3573 markers and 128 people in total
0 (\(0 \%\)) markers excluded as having low (\(<1.953125 \%\)) minor allele frequency
0 (\(0 \%\)) markers excluded because of low (\(\langle 95 \%\)) call rate
0 (\(0 \%\)) markers excluded because they are out of HWE (\(\mathrm{P}<0\))
\(0(0 \%)\) people excluded because of low (\(<95 \%\)) call rate
Mean autosomal HET is 0.2748341 (s.e. 0.01695461)
0 people excluded because too high autosomal heterozygosity (FDR <1\%)
Mean IBS is 0.7700861 (s.e. 0.01754752), as based on 2000 autosomal markers
\(0(0 \%)\) people excluded because of too high IBS (>=0.95)
In total, 3573 (\(100 \%\)) markers passed all criteria
In total, 128 (\(100 \%\)) people passed all criteria
Note that normally you will \(N E V E R\) run this simple form of the QC function - you should always provide a number of thresholds specific to the platform you used for genotyping. See help to check.marker () for detailed list of arguments. Default values used by the function are rather relaxed compared to the thresholds routinely used nowadays with most of the platforms.

\begin{abstract}
The computation of all pairwise proportion of alleles identical-by-state (IBS) by ibs() function, which is also called by check.marker() may take quite some time, which is proportional to the square of the number of subjects. This is not a problem with the small number of people we use for this example or when modern computers are used. However, the computers in the Nihes computer room are very old. Therefore be prepared to wait for long time when you will do a self-exercise with 1,000 people.
\end{abstract}

From the output you can see that QC starts with checking the data for SNPs and people with extremely low call rate. Six markers are excluded from further analysis due to very low call rate. Next, X-chromosomal errors are identified. The function finds out that all errors (heterozygous male X-genotypes) are due to two people with wrong sex assigned and one marker, which looks like an autosomal one. This actually could be a marker from pseudoautosomal region, which should have been arranged as a separate "autosome". Nine people are found to have intermediate inbreeding at the X-chromosome and also excluded from analysis.

Then, the procedure finds the markers with low call rate (\(\leq 0.95\) by default) across people, markers with low MAF (by default, low MAF is defined as less than few copies of the rare allele, see help for details); people with low call rate (default value: \(\leq 0.95\)) across SNPs, people with extreme heterozygosity (at FDR 0.01) and these who have GW IBS \(\geq 0.95\). These default parameters may be changed if you wish (consult help).

Because some of the people fail to pass the tests, the data set is not guaranteed to be really "clean" after single iteration, e.g. some marker may not
pass the call threshold after we exclude few informative (but apparently having low quality) samples. Therefore the QC is repeated iteratively until no further errors are found.

You can generate short summary of QC by marker and by person through
```

> summary(qc1)

```
\begin{tabular}{lrrrrr}
\$`Per-SNP & fails statistics \\
& NoCall & NoMAF & NoHWE & Redundant & Xsnpfail \\
NoCall & 42 & 0 & 0 & 0 & 0 \\
NoMAF & NA & 384 & 0 & 0 & 0 \\
NoHWE & NA & NA & 0 & 0 & 0 \\
Redundant & NA & NA & NA & 0 & 0 \\
Xsnpfail & NA & NA & NA & NA & 1
\end{tabular}
\$`Per-person fails statistics`
\begin{tabular}{lrrrrrrr}
& IDnoCall & HetFail & IBSFail & isfemale & ismale & isXXY & otherSexErr \\
IDnoCall & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
HetFail & NA & 3 & 0 & 0 & 0 & 0 & 0 \\
IBSFail & NA & NA & 2 & 0 & 0 & 0 & 0 \\
isfemale & NA & NA & NA & 2 & 0 & 0 & 0 \\
ismale & NA & NA & NA & NA & 0 & 0 & 0 \\
isXXY & NA & NA & NA & NA & NA & 0 & 0 \\
otherSexErr & NA & NA & NA & NA & NA & NA & 0
\end{tabular}

Note that the original data, ge03d2ex, are not modified during the procedure; rather, check.markers() generate a list of markers and people which pass or do not pass certain QC criteria. The objects returned by check.markers() are:
```

> names(qc1)

```
\begin{tabular}{cllll}
[1] & "nofreq" & "nocall" & "nohwe" & "Xmrkfail" \\
[6] "idnocall" & "ibsfail" & "isfemale" & "ismale" & "otherSexErr" \\
[11] "snpok" & "idok" & "call" & &
\end{tabular}

The element idok provides the list of people who passed all QC criteria, and snpok provides the list of SNPs which passed all criteria. You can easily generate a new data set, which will consist only of these people and markers by
```

> data1 <- ge03d2ex[qc1$idok,qc1$snpok]

```

If there are any residual sporadic X-errors (male heterozygosity), these can (and should!) be fixed (set to NA) by
```

> data1 <- Xfix(data1)
no X/Y/mtDNA-errors to fix

```

Applying this function does not make any difference for the example data set, but you will need to use it for the bigger data set.

At this point, we are ready to work with the new, cleaned, data set data1. However, if we try
> length (dm2)
[1] 136
we can see that the original phenotypic data are attached to the search path (there are only 128 people left in the 'clean' data set). Therefore we need to detach the data by
```

> detach(phdata(ge03d2ex))

```
and attach new data by
```

> attach(phdata(data1))

```

At this stage, let us check if the first round of QC improves the fit of genetic data to HWE, which may have been violated due to by genotyping errors which we hopefully (at least partly!) eliminated:
```

> descriptives.marker(data1)[2]
\$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X
No 44.000 66.000 117.000 239.000 3573
Prop 0.012 0.018 0.033 0.067 1
> descriptives.marker(data1[dm2==1,])[2]
\$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X
No 46.000 70.00 127.000 228.000 3573
Prop 0.013 0.02 0.036 0.064 1
> descriptives.marker(data1[dm2==0,])[2]
\$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X
No 0 0 7.000 91.000 3573
Prop 0 0 0.002 0.025 1

```

You can see that the fit to HWE improved, but cases are still have excess number of markers out of HWE. This may be due to genetic sub-structure.

\subsection*{5.3 Finding genetic sub-structure}

Now, we are ready for the second round of QC - detection of genetic outliers which may contaminate our results. We will detect genetic outliers using a technique, which resembles the one suggested by Price at al.

As the first step, we will compute a matrix of genomic kinship between all pairs of people, using only autosoma \({ }^{2}\) markers by
```

> data1.gkin <- ibs(data1[,autosomal(data1)],weight="freq")

```

\footnotetext{
\({ }^{2}\) the list of autosomal markers contained in data is returned by autosomla(data) function
}

This step may take few minutes on large data sets or when using old computers!

You can see the 5 x 5 upper left sub-matrix by
```

> data1.gkin[1:5,1:5]

```
id199 id300 id403 id415 id666
id199 0.4944277663255 .000000003253 .000000003241 .000000003257 .0000000
id300 -0.011754266 0.49360296 3261.000000003250 .000000003264 .0000000
id403 -0.012253378 \(\quad-0.01262949 \quad 0.50541775 \quad 3247.00000000 \quad 3262.0000000\)
\(\begin{array}{lrrrrr}\text { id415 }-0.001812109 & 0.01388179 & -0.02515438 & 0.53008236 & 3251.0000000 \\ \text { id666 -0.018745051 } & -0.02127344 & 0.02083723 & -0.02014175 & 0.5306584\end{array}\)

The numbers below the diagonal show the genomic estimate of kinship (aka 'genomic kinship' or 'genome-wide IBD'), the numbers on the diagonal correspond to 0.5 plus the genomic homozigosity, and the numbers above the diagonal tell how many SNPs were typed successfully for both subjects (thus the IBD estimate is derived using this number of SNPs).

Second, we transform this matrix to a distance matrix using standard R command
```

> data1.dist <- as.dist(0.5-data1.gkin)

```

Finally, we perform Classical Multidimensional Scaling by
```

> data1.mds <- cmdscale(data1.dist)

```
by default, the first two principal components are computed and returned.

This may take few minutes on large data sets or when using old computers!

We can present the results graphically by
```

> plot(data1.mds)

```

The resulting plot is presented in figure 5.3. Each point on the plot corresponds to a person, and the 2D distances between points were fitted to be as close as possible to these presented in the original IBS matrix. You can see that study subjects clearly cluster in two groups.

You can identify the points belonging to clusters by
> km <- kmeans(data1.mds, centers=2, nstart=1000)
> cl1 <- names(which(km\$cluster==1))
> cl2 <- names(which(km\$cluster==2))
\(>\) if (length(cl1)>length(cl2)) \{x<-cl2;cl2<-cl1; cl1<-x\}
> cl1
```

[1] "id2097" "id6954" "id2136" "id858"

```


Figure 5.3: Mapping samples on the space of the first two Principle Components resulting from analysis of genomic kinship. Red dots identify genetic outliers
```

    [1] "id199" "id300" "id403" "id415" "id666" "id689" "id765" "id830"
    [9] "id908" "id980" "id994" "id1193" "id1423" "id1505" "id1737" "id1827"
    [17] "id1841" "id2068" "id2094" "id2151" "id2317" "id2618" "id2842" "id2894"
[25] "id2985" "id3354" "id3368" "id3641" "id3831" "id3983" "id4097" "id4328"
[33] "id4380" "id4395" "id4512" "id4552" "id4710" "id4717" "id4883" "id4904"
[41] "id4934" "id4961" "id5014" "id5078" "id5274" "id5275" "id5454" "id5853"
[49] "id5926" "id5969" "id6237" "id6278" "id6352" "id6501" "id6554" "id6663"
[57] "id6723" "id7499" "id7514" "id7541" "id7598" "id7623" "id7949" "id8059"
[65] "id8128" "id8281" "id8370" "id8400" "id8433" "id8772" "id8880" "id8890"
[73] "id8957" "id8996" "id9082" "id9901" "id9930" "id1857" "id2528" "id4862"
[81] "id9184" "id5677" "id6407" "id5472" "id2135" "id8545" "id4333" "id1670"
[89] "id1536" "id6917" "id6424" "id3917" "id9628" "id9635" "id4729" "id5190"
[97] "id6399" "id6062" "id620" "id1116" "id6486" "id41" "id677" "id4947"
[105] "id9749" "id6428" "id7488" "id5949" "id2924" "id5783" "id4096" "id903"
[113] "id9049" "id185" "id1002" "id362" "id9014" "id5044" "id2749" "id2286"
[121] "id4743" "id4185" "id8330" "id6934"

```

Four outliers are presented in the smaller cluster.

Now you will need to use the BIGGER cluster for to select study subjects. Whether this will be cl1 or cl2 in you case, is totally random.

We can form a data set which is free from outliers by using only people from the bigger cluster:
```

> data2 <- data1[cl2,]

```

After we dropped the outliers, we need to repeat QC using check.markers (). At this stage, we want to allow for HWE checks (we will use only controls and exclude markers with FDR \(\leq 0.2\)):
```

> qc2 <- check.marker(data2,hweids=(phdata(data2)\$dm2==0),fdr=0.2)
Excluding people/markers with extremely low call rate...
3 5 7 3 markers and 1 2 4 people in total
0 people excluded because of call rate < 0.1
0 markers excluded because of call rate < 0.1
Passed: 3573 markers and 124 people
Running sex chromosome checks...
O heterozygous X-linked male genotypes found
O X-linked markers are likely to be autosomal (odds > 1000 )
O male are likely to be female (odds > 1000 )
O female are likely to be male (odds > 1000 )
0 people have intermediate X-chromosome inbreeding (0.5 > F > 0.5)
If these people/markers are removed, O heterozygous male genotypes are left
Passed: 3573 markers and 124 people
no X/Y/mtDNA-errors to fix

```

RUN 1
3573 markers and 124 people in total
40 (\(1.119507 \%\)) markers excluded as having low (<2.016129\%) minor allele frequency
0 (\(0 \%\)) markers excluded because of low (\(<95 \%\)) call rate
\(0(0 \%)\) markers excluded because they are out of HWE (FDR <0.2)
0 (\(0 \%\)) people excluded because of low (\(<95 \%\)) call rate
Mean autosomal HET is 0.2780246 (s.e. 0.01642372)
0 people excluded because too high autosomal heterozygosity (FDR <1\%)
Mean IBS is 0.7696232 (s.e. 0.01262416), as based on 2000 autosomal markers
0 (\(0 \%\)) people excluded because of too high IBS (\(>=0.95\))
In total, 3533 (\(98.88049 \%\)) markers passed all criteria
In total, 124 (\(100 \%\)) people passed all criteria
RUN 2
3533 markers and 124 people in total
0 (\(0 \%\)) markers excluded as having low (\(<2.016129 \%\)) minor allele frequency
\(0(0 \%)\) markers excluded because of low (\(<95 \%\)) call rate
```

0 (0%) markers excluded because they are out of HWE (FDR <0.2)
0 (0%) people excluded because of low (<95%) call rate
Mean autosomal HET is 0.2780246 (s.e. 0.01642372)
O people excluded because too high autosomal heterozygosity (FDR <1%)
Mean IBS is 0.7735284 (s.e. 0.01235526), as based on 2000 autosomal markers
0 (0%) people excluded because of too high IBS (>=0.95)
In total, 3533 (100%) markers passed all criteria
In total, 124 (100%) people passed all criteria
> summary(qc2)
\$`Per-SNP fails statistics`
NoCall NoMAF NoHWE Redundant Xsnpfail
NoCall 0
NoMAF NA 40 0 0
NoHWE NA NA 0 0
Redundant
\$`Per-person fails statistics`
IDnoCall HetFail IBSFail isfemale ismale isXXY otherSexErr
IDnoCall 0 0 0 0 % 0 % 0 0
HetFail NA
IBSFail NA NA 0
isfemale NA NA NA 0
ismale NA NA NA NA 0
isXXY NA NA NA NA NA 0 0
otherSexErr NA NA NA NA NA NA 0

```

If the procedure did not run, check previous Note.

Indeed, in the updated data set few markers do not pass our QC criteria and we need to drop a few markers. This is done by
```

data2 <- data2[qc2$idok,qc2$snpok]

```

This is going to be our final analysis data set, therefore let us attach the phenotypic data to the search path, then we do not need to type phdata(data2)\$... to access dm2 status or other variables:
```

detach(phdata(data1))
attach(phdata(data2))

#### 

\#ge03d2ex.clean <- data2
\#save(ge03d2ex.clean,file="ge03d2ex.clean.RData")

#### 

```

Before proceeding to GWA, let us check if complete QC improved the fit of genetic data to HWE:
```

> descriptives.marker(data2)[2]
\$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X

| No | 1 | 2.000 | $2 \mathrm{e}+01$ | 101.000 | 3533 |
| :--- | :--- | ---: | ---: | ---: | ---: |
| Prop | 0 | 0.001 | $6 \mathrm{e}-03$ | 0.029 | 1 |

> descriptives.marker(data2[phdata(data2)\$dm2==1,])[2]
\$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X
No 0

```

```

> descriptives.marker(data2[phdata(data2)\$dm2==0,])[2]
\$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X

| No | 0 | 0 | 7.000 | 91.000 | 3533 |
| :--- | :--- | :--- | :--- | :--- | :--- |

```

You can see that now there is no excessive number of SNPs out of HWE in the sample (total, or cases, or controls)

\subsection*{5.4 GWA association analysis}

Let us start again with descriptives of the phenotypic and marker data
```

> descriptives.trait(data2,by=dm2)

```
\begin{tabular}{lrrrrrrrr}
& No (by.var=0) & Mean & SD No(by.var=1) & Mean & SD & Ptt & Pkw \\
id & 47 & NA & NA & 77 & NA & NA & NA & NA \\
sex & 47 & 0.426 & 0.500 & 77 & 0.597 & 0.494 & 0.065 & 0.064 \\
age & 47 & 45.752 & 13.313 & 77 & 50.593 & 12.465 & 0.047 & 0.062 \\
dm2 & 47 & NA & NA & 77 & NA & NA & NA & NA \\
height & 46 & 167.911 & 8.689 & 77 & 170.423 & 10.646 & 0.157 & 0.213 \\
weight & 46 & 77.015 & 17.528 & 77 & 94.160 & 26.963 & 0.000 & 0.000 \\
diet & 47 & 0.064 & 0.247 & 77 & 0.065 & 0.248 & 0.981 & 0.981 \\
bmi & 46 & 27.424 & 6.598 & 77 & 32.235 & 8.335 & 0.001 & 0.001
\end{tabular}
\begin{tabular}{lr}
& Pexact \\
id & NA \\
sex & 0.067 \\
age & NA \\
dm2 & NA \\
height & NA \\
weight & NA \\
diet & 1.000 \\
bmi & NA
\end{tabular}

You can see that relation to weight is maintained in this smaller, but hopefully cleaner, data set; moreover, relation to age becomes boundary significant.

If you check descriptives of markers (only HWE part shown)
```

> descriptives.marker(data2)[2]
\$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X
No 1 2.000 2e+01 101.000 3533
Prop 0 0.001 6e-03 0.029 1

```
you can see that the problems with HWE are apparently fixed; we may guess that these were caused by the Wahlund's effect.

Run the score test on the cleaned data by
```

> data2.qt <- qtscore(dm2,data2,trait="binomial")

```
and check lambda
```

> lambda(data2.qt)
\$estimate
[1] 1.036958
\$se
[1] 0.0007178
\$iz0
[1] 1.009061
\$iz2
[1] 1

```
there is still some inflation, which is explained by the fact that we investigate only few short chromosomes with high LD and few causative variants.

Produce the association analysis plot by
```

> plot(data2.qt,df="Pc1df")
(figure 5.4).
Produce the scan summary by
> descriptives.scan(data2.qt,sort="Pc1df")
Summary for top 10 results, sorted by Pc1df
Chromosome Position Strand A1 A2 N effB se_effB chi2.1df
rs1719133 1 4495479 + T A 124 0.3167801 0.08614528 13.522368
rs4804634 1 2807417 + C G 121 0.4119844 0.12480696 10.896423
rs8835506 2 6010852 + A T 121 3.5378209 1.08954331 10.543448
rs4534929 1 4474374 + C G 123 0.4547151 0.14160410 10.311626
rs1013473 1 4487262 + A T 124 2.7839368 0.86860745 10.272393
rs3925525 2 6008501 + C G 124 3.2807631 1.03380675 10.070964
rs3224311 2 6009769 + G C 124 3.2807631 1.03380675 10.070964
rs2975760 3 10518480 + A T 123 3.1802120 1.00916993 9.930784
rs2521089 3 10487652 - T C 123 2.7298775 0.87761175 9.675679
rs1048031 1 4485591 + G T 122 0.4510793 0.14548378 9.613391
P1df effAB effBB chi2.2df P2df Pc1df

```


Figure 5.4: \(-\log _{10}(\) Corrected \(P\) - value) from the genome scan after the QC procedure
```

rs1719133 0.0002357368 0.3740771 0.0000000 14.677906 0.0006497303 0.0003048399
rs4804634 0.0009635013 0.6315789 0.1739130 12.375590 0.0020543516 0.0011885463
rs8835506 0.0011660066 4.0185185 4.0185185 12.605556 0.0018312105 0.0014292471
rs4534929 0.0013219476 0.4830918 0.1739130 10.510272 0.0052206352 0.0016136479
rs1013473 0.0013503553 3.0495868 5.8441558 10.926296 0.0042401869 0.0016471605
rs3925525 0.0015062424 3.6923077 4.0000000 11.765985 0.0027864347 0.0018306610
rs3224311 0.0015062424 3.6923077 4.0000000 11.765985 0.0027864347 0.0018306610
rs2975760 0.0016253728 3.0000000 8.0000000 10.172522 0.0061810866 0.0019704699
rs2521089 0.0018672326 3.0147059 5.0000000 10.543296 0.0051351403 0.0022533033
rs1048031 0.0019316360 0.4844720 0.1714286 9.965696 0.0068545128 0.0023284084

```

Comparison with the top 10 from the scan before QC shows that results changed substantially with only few markers overlapping.

You can see similar results when accessing empirical GW significance:
```

> data2.qte <- qtscore(dm2,data2,times=200,quiet=TRUE,trait="binomial")
|
| 0%
|
|========================================================================== 1 100%

```
> descriptives.scan(data2.qte,sort="Pc1df")
```

Summary for top 10 results, sorted by Pc1df
Chromosome Position Strand A1 A2 N effB se_effB chi2.1df
rs1719133 1 4495479 + T A 124 0.3167801 0.08614528 13.522368
rs4804634 1 2807417 + C G 121 0.4119844 0.12480696 10.896423
rs8835506 2 6010852 + A T 121 3.5378209 1.08954331 10.543448
rs4534929 1 4 474374 + C G 123 0.4547151 0.14160410 10.311626
rs1013473 1 4487262 + A T 124 2.7839368 0.86860745 10.272393
rs3925525 2 6008501 + C G 124 3.2807631 1.03380675 10.070964
rs3224311 2 6009769 + G C 124 3.2807631 1.03380675 10.070964
rs2975760 3 10518480 + A T 123 3.1802120 1.00916993 9.930784
rs1048031 1 4485591 + G T 122 0.4510793 0.14548378 9.613391
rs2521089 3 10487652 - T C 123 2.7298775 0.87761175 9.675679
P1df Pc1df effAB effBB chi2.2df P2df
rs1719133 0.340 0.440 0.3740771 0.0000000 14.677906 0.530
rs4804634 0.835 0.890 0.6315789 0.1739130 12.375590 0.920
rs8835506 0.890 0.920 4.0185185 4.0185185 12.605556 0.905
rs4534929 0.905 0.940 0.4830918 0.1739130 10.510272 1.000
rs1013473 0.910 0.940 3.0495868 5.8441558 10.926296 1.000
rs3925525 0.930 0.965 3.6923077 4.0000000 11.765985 0.955
rs3224311 0.930 0.965 3.6923077 4.0000000 11.765985 0.955
rs2975760 0.940 0.970 3.0000000 8.0000000 10.172522 1.000
rs1048031 0.970 0.985 0.4844720 0.1714286 9.965696 1.000
rs2521089 0.965 0.985 3.0147059 5.0000000 10.543296 1.000

```

Again, none of the SNPs hits GW \(5 \%\) significance. Still, you can see that after QC top markers achieve somewhat "better" significance.

In the last part, we will do several adjusted and stratified analyses. Only empirical P-values will be estimated to make the story shorter. To adjust for sex and age, we can
```

> data2.qtae <- qtscore(dm2~sex+age,data2,times=200,quiet=T,trait="binomial")
|
| 0%
I
||======================================================================== | 100%

```
> descriptives.scan(data2.qtae)
Summary for top 10 results, sorted by P1df
 Chromosome Position Strand A1 A2 N effB se_effB chi2.1df

rs2398949 \(144828375 \quad-\quad\) A C 1220.41635990 .125321711 .037861

\(\begin{array}{lllllllllllllllllll}\text { rs7522488 } & 3 & 11689797 & \text { - G A } 123 & 1.8718644 & 0.5707656 & 10.755565\end{array}\)
rs8835506 \(26010852+\mathrm{A}\) T 1212.05754310 .650189910 .014228
rs1037237 \(311690145 \quad+\quad\) C G 1241.81442820 .573566010 .007206

\(\begin{array}{llllllllllll}\text { rs1013473 } & 1 & 4487262 & + & \text { A } 124 & 1.8148181 & 0.5864622 & 9.576043\end{array}\)

```

    P1df Pc1df effAB effBB chi2.2df P2df
    rs1719133 0.430 0.545 0.4853657 0.2242383 13.367455 0.825
rs2398949 0.850 0.940 0.3110042 2.8197228 16.111010 0.335
rs4804634 0.890 0.955 0.7420448 0.3389525 12.112794 0.985
rs7522488 0.890 0.955 1.3995557 3.1160361 11.256933 1.000
rs8835506 0.955 0.975 2.3758119 2.2365358 12.302956 0.975
rs1037237 0.955 0.980 1.3400938 2.9836475 10.674189 1.000
rs3925525 0.960 0.980 2.3028971 2.2451502 11.988964 0.990
rs3224311 0.960 0.980 2.3028971 2.2451502 11.988964 0.990
rs1013473 0.965 0.990 1.8390955 2.8613308 9.893424 1.000
rs1048031 0.970 0.990 0.6453091 0.3417444 9.840158 1.000

```

You can see that there is little difference between adjusted and unadjusted analysis, but this is not always the case; adjustment may make your study much more powerful when covariates explain a large proportion of environmental trait variation.

Finally, let us do stratified (by BMI) analysis. We will contracts obese (\(B M I \geq 30\)) cases to all controls.
```

> data2.qtse <- qtscore(dm2~sex+age,data2,ids=((bmi>30 \& dm2==1) | dm2==0),times=200,quiet=TRUE
I
| 0%
|
||======================================================================== 1 100%

```
> descriptives.scan(data2.qtse,sort="Pc1df")
Summary for top 10 results, sorted by Pc1df
\begin{tabular}{lrrrrrrrrrr}
& Chromosome Position & Strand A1 & A2 & N & effB & se_effB & chi2.1df \\
rs7522488 & 3 & 11689797 & - & G & A 88 & 1.7561171 & 0.5560485 & 9.97428216 \\
rs1037237 & 3 & 11690145 & + & C & G 88 & 1.7561171 & 0.5560485 & 9.97428216 \\
rs9630764 & 1 & 3897972 & + & T & A 88 & 1.7595598 & 0.5615384 & 9.81858908 \\
rs1891586 & 1 & 2297398 & - & C & T 88 & 0.5340528 & 0.1733886 & 9.48696549 \\
rs3215698 & X & 13559835 & - & T & A 88 & 0.4806715 & 0.1571512 & 9.35537756 \\
rs1646456 & 1 & 653 & + & C & G 87 & 0.8853536 & 1.3981894 & 0.40096049 \\
rs4435802 & 1 & 5291 & + & C & A 86 & 1.7961795 & 1.1926370 & 2.26820816 \\
rs946364 & 1 & 8533 & - & T & C 86 & 0.7682453 & 0.5994013 & 1.64272311 \\
rs299251 & 1 & 10737 & + & A & G 88 & 0.6819981 & 0.8106956 & 0.70770257 \\
rs2456488 & 1 & 11779 & + & G & C 87 & 0.9613536 & 4.4351609 & 0.04698374
\end{tabular}
rs7522488 0.910 0.925 1.3215457 3. 12454021129904790.99
rs1037237 0.910 0.925 1.3215457 3.124540211 .29904790 .99
rs9630764 0.930 \(0.9401 .93461103 .3161548 \quad 9.83161631 .00\)
rs1891586 \(0.9700 .975 \quad 0.58362920 .3065275 \quad 9.51821351 .00\)
rs3215698 \(0.9750 .9800 .34066930 .2701336 \quad 9.94171331 .00\)
rs1646456 \(1.0001 .0001 .14557300 .6013127 \quad 2.20154621 .00\)
rs4435802 1.0001 .0001 .7919867 NA 2.26820821 .00
rs946364 1.0001 .0000 .87911950 .46964962 .18811751 .00
rs299251 \(1.0001 .000 \quad 0.6835419 \quad \mathrm{NA} \quad 0.70770261 .00\)
rs2456488 \(1.0001 .0001 .07135600 .8544801 \quad 0.33195821 .00\)

Again, noting interesting at GW significance level. If we would have had found something, naturally, we would not known if we mapped a T2D or obesity gene (or a gene for obesity in presence of T2D, or the one for T2D in presence of obesity).

Let us save 'data1', 'data1.gkin', 'data2.qt' and 'cl1' objects now
> save(data1, cl1,data1.gkin, data2.qt,file="data1.RData")
These data will be used later in section 7, 'GWA in presence of genetic stratification: practice,', in which we will perform GWA using different methods to account for strtatification, and will compare the results with these obtaining by removing outliers ('data2.qt').

Let us also save the cleaned 'data2' object, which will be later used in section 10 ('Meta-analysis of GWA scans' \()\) :
```

> save(data2,file="data2.RData")

```

At this point, you acquired the knowledge necessary for the self-exercise. Please close R by q () command and proceed to the next section.

\subsection*{5.5 Genome-wide association analysis exercise}

During the exercise, you will work with a larger data set (approximately 1,000 people and \(7,000+\) SNPs). You are to do complete three-round QC; perform GWA analysis with dm2 as the outcome of interest and identify 10 SNPs which you would like to take to the stage 2 (replication) scan. You will do replication analysis using a confirmatory data set. If you did everything right, the SNPs which you identified as significant or replicated will be located in know T2D genes.

Please keep in mind that the data are simulated, and do not take your findings too seriously!

Start R by going to "Start -> Programs -> R -> R-?.?.?". Load GenABELpackage library by
> library (GenABEL)
The two data sets we will use in this exercise are part of the GenABELpackage distribution. The first one ("discovery" set) can be loaded by
```

> data(ge03d2)

```

Please move along the lines detailed in the guided exercise and try to answer following questions:
Ex. 1 - How many cases and controls are presented in the original data set?
Ex. 2 - How many markers are presented in the original data set?
Ex. 3 - Is there evidence for inflation of the HWE test staistics?
Ex. 4 - Analyse empirical GW significance. How many SNPs pass genomewide significance threshold, after correction for the inflation factor? Write down the names of these SNPs for further comparison.

Ex. 5 - Perform first steps of the genetic data QC.

Ex. 6 - How many males are 'genetically' females?
Ex. 7 - How many females are 'genetically' males?
Ex. 8 - How many people are quessed to have 'XXY' genotype?
Ex. 9 - How many sporadic X errors do you still observe even when the female male and non-X X-markers are removed? (do not forget to Xfix() these

Ex. 10 - How many "twin" DNAs did you discover?
Ex. 11 - Perform second step of QC.
Ex. 12 - How many genetic outliers did you discover?
Ex. 13 - How many cases and controls are presented in the data after QC?
Ex. 14 - How many markers are presented in the data after QC?
Ex. 15 - Is there evidence for inflation of the HWE test staistics?
Ex. 16 - Perform GWA analysis of the cleaned data, using asimptotic test and plot the results. What is the estimate of \(\lambda\) for the 1 d.f. test?

Ex. 17 - Analyse empirical GW significance. How many SNPs pass genomewide significance threshold, after correction for the inflation factor?

Ex. 18 - Do these SNPs overlap much with the ones ranked at the top before the QC? If not, what could be the reason?

Ex. 19 - Select 10 SNPs which you would like to follow-up. Say, you've selected rs1646456, rs7950586, rs4785242, rs4435802, rs2847446, rs946364, rs299251, rs2456488, rs1292700, and rs8183220. Make a vector of these SNPs with
> vec12<-c ("rs1646456", "rs7950586", "rs4785242", "rs4435802", "rs2847446", "rs946364", "rs299251", "r
Load the stage 2 (replicaton) data set by
> data (ge03d2c)
and select the subset of SNPs you need by
> confdat <- ge03d2c[,vec12]
Analyse the confdat for association with dm2.
Ex. 20 - Given the two-stage design, and applying the puristic criteria specified in the lecture, for how many SNPs you can claim a significant finding?

Ex. 21 - Using the same criteria, for how many SNPs you can claim a replicated finding?

Ex. 22 - If time permits, characterise the mode of inheritance of the significant SNPs. You can convert data from GenABEL-package format to the format used by dgc.genetics and genetics libraries by using as.genotype() function. Consult help for details. Please do not attempt to convert more then few
dozens SNPs: the format of genetics is not compressed, which means conversion may take long and your low-memory computer may even crash if you attempt to convert the whole data set.

Ex. 23 - If time permits, do analysis with adjustment for covariates and stratified analysis.

Ex. 24 - If time permits, try to do first round of QC allowing for HWE checks (assume FDR of 0.1 for total sample). In this case, can you still detect stratification in the "cleaned" data?

\subsection*{5.6 Answers to exercises}
```

Answer (Ex. 1) - :
> table(phdata(ge03d2)\$dm2)
0 1
4 8 7 4 6 3

```
Answer (Ex. 2) -:
> nsnps(ge03d2)
[1] 7589
Answer (Ex. 3) - Yes:
> descriptives.marker (ge03d2) [2]
\(\${ }^{`}\) Cumulative distr. of number of SNPs out of HWE, at different alpha`
 \(\mathrm{X}<=1 \mathrm{e}-04 \mathrm{X}<=0.001 \mathrm{X}<=0.01 \mathrm{X}<=0.05\) all X
No \(\quad 331.000 \quad 367.000479 .000807 .000 \quad 7589\)
\(\begin{array}{llllll}\text { Prop } & 0.044 & 0.048 & 0.063 & 0.106 & 1\end{array}\)
Answer (Ex. 4) -:
> res0 <- qtscore(dm2,data=ge03d2, times=200,quiet=TRUE,trait="binomial")
 |
 1 | 0\%
 I
 \(\mid===1100 \%\)
> lambda (res0)
\$estimate
[1] 2.036652
\$se
[1] 0.006781986
\$iz0
[1] 1.665047
\$iz2
[1] 2.569015
> ds <- descriptives.scan(res0)
Summary for top 10 results, sorted by P1df
> ds
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & Chromosome & Position & n Strand & A1 & A2 & N & effB & se_effB & chi2.1df \\
\hline rs6386070 & 1 & 583935 & 5 & G & C & 942 & 2.9769291 & 0.57274468 & 27.01561 \\
\hline rs7903146 & 1 & 1047389 & 9 & A & T & 940 & 0.4822300 & 0.09228697 & 27.30409 \\
\hline rs3845221 & 1 & 1874765 & 5 & G & T & 942 & 3.2495601 & 0.59849064 & 29.48047 \\
\hline rs4015712 & 1 & 2137388 & 8 & C & A & 944 & 2.9654812 & 0.55264526 & 28.79370 \\
\hline rs4266194 & 1 & 2250206 & 6 & C & A & 942 & 3.1037676 & 0.55951975 & 30.77142 \\
\hline rs8284432 & 1 & 2300686 & 6 & C & T & 939 & 2.5585433 & 0.45843497 & 31.14799 \\
\hline rs6933749 & 1 & 2936968 & 8 & A & T & 944 & 3.0964415 & 0.58149584 & 28.35519 \\
\hline rs2784788 & 1 & 3030569 & 9 & G & A & 943 & 3.1078567 & 0.57169496 & 29.55243 \\
\hline rs4804116 & 2 & 6129372 & 2 & C & G & 939 & 0.3321288 & 0.06191415 & 28.77619 \\
\hline rs3632063 & 2 & 8572345 & 5 & T & A & 937 & 3.1676181 & 0.58260243 & 29.56113 \\
\hline & P1df & Pc1df & eff \({ }^{\text {AB }}\) & & & ffBB & chi2.2df & P2df & \\
\hline rs6386070 & 0.004975124 & 0.720 & 1.121212 & & & Inf & 28.27535 & NA & \\
\hline rs7903146 & 0.004975124 & 0.6950 & 0.514963 & & . 146 & 6667 & 27.54275 & NA & \\
\hline rs3845221 & 0.004975124 & 0.5154 & 4.543326 & & & Inf & 29.56317 & NA & \\
\hline rs4015712 & 0.004975124 & 0.5602 & 2.080526 & & & Inf & 29.28263 & NA & \\
\hline rs4266194 & 0.004975124 & 0.3952 & 2.620075 & & & Inf & 30.87429 & NA & \\
\hline rs8284432 & 0.004975124 & 0.3352 & 2.233559 & & . 776 & 5957 & 31.62387 & NA & \\
\hline rs6933749 & 0.004975124 & 0.6102 & 2.252336 & & & Inf & 28.50992 & NA & \\
\hline rs2784788 & 0.004975124 & 0.5052 & 2.262911 & & & Inf & 29.70503 & NA & \\
\hline rs4804116 & 0.004975124 & 0.5600 & 0.000000 & & . 0000 & 0000 & 29.67762 & NA & \\
\hline rs3632063 & 0.004975124 & 0.5052 & 2.973396 & & & Inf & 29.56443 & NA & \\
\hline
\end{tabular}

Thus, there are no genome-wide empirically significant results. The 'top' 10
SNPs are
```

> snps0 <- rownames(ds)
> snps0

```
```

[1] "rs6386070" "rs7903146" "rs3845221" "rs4015712" "rs4266194" "rs8284432"

```
[7] "rs6933749" "rs2784788" "rs4804116" "rs3632063"
(note that if empirical P is 1 , the rank is assigned quite arbitrarily)

Answer (Ex. 5) - First step of QC
> qc1 <- check.marker (ge03d2, call=0.95, perid.call=0.95,p.level=0,ibs.exclude="both")
Excluding people/markers with extremely low call rate...
7589 markers and 950 people in total
0 people excluded because of call rate < 0.1
7 markers excluded because of call rate < 0.1
Passed: 7582 markers and 950 people
```

Running sex chromosome checks...
1 9 3 4 heterozygous X-linked male genotypes found
2 X-linked markers are likely to be autosomal (odds > 1000 )
10 male are likely to be female (odds > 1000 )
6 female are likely to be male (odds > 1000 )
0 people have intermediate X-chromosome inbreeding (0.5 > F > 0.5)
If these people/markers are removed, 8 heterozygous male genotypes are left
... these will be considered missing in analysis.
... Use Xfix() to fix these problems.
Passed: 7580 markers and 934 people

```
... \(8 \mathrm{X} / \mathrm{Y} / \mathrm{mtDNA}(800)\) impossible heterozygotes and female Ys set as missing

RUN 1
7580 markers and 934 people in total
73 (\(0.9630607 \%\)) markers excluded as having low (\(<0.267666 \%\)) minor allele frequency
75 (\(0.9894459 \%\)) markers excluded because of low (\(<95 \%\)) call rate
0 (\(0 \%\)) markers excluded because they are out of HWE (\(\mathrm{P}<0\))
4 (\(0.4282655 \%\)) people excluded because of low (\(<95 \%\)) call rate
Mean autosomal HET is 0.2558271 (s.e. 0.02102863)
4 (\(0.4282655 \%\)) people excluded because too high autosomal heterozygosity (FDR <1\%)
Excluded people had HET >= 0.4702949
Mean IBS is 0.7876685 (s.e. 0.01740851), as based on 2000 autosomal markers
8 (\(0.856531 \%\)) people excluded because of too high IBS (\(>=0.95\))
In total, 7432 (\(98.04749 \%\)) markers passed all criteria
In total, 918 (\(98.28694 \%\)) people passed all criteria
RUN 2
7432 markers and 918 people in total
42 (\(0.5651238 \%\)) markers excluded as having low (\(<0.2723312 \%\)) minor allele frequency
\(0(0 \%\)) markers excluded because of low (\(<95 \%\)) call rate
\(0(0 \%)\) markers excluded because they are out of HWE (\(\mathrm{P}<0\))
0 (\(0 \%\)) people excluded because of low (\(\langle 95 \%\)) call rate
Mean autosomal HET is 0.2562716 (s.e. 0.0151377)
0 people excluded because too high autosomal heterozygosity (FDR <1\%)
Mean IBS is 0.7855056 (s.e. 0.01634632), as based on 2000 autosomal markers
0 (\(0 \%\)) people excluded because of too high IBS (\(>=0.95\))
In total, 7390 (\(99.43488 \%\)) markers passed all criteria
In total, 918 (\(100 \%\)) people passed all criteria
RUN 3
7390 markers and 918 people in total
\(0(0 \%)\) markers excluded as having low (\(<0.2723312 \%\)) minor allele frequency
0 (\(0 \%\)) markers excluded because of low (\(\langle 95 \%\)) call rate
0 (\(0 \%\)) markers excluded because they are out of HWE (\(\mathrm{P}<0\))
0 (\(0 \%\)) people excluded because of low (\(<95 \%\)) call rate
Mean autosomal HET is 0.2562716 (s.e. 0.0151377)
0 people excluded because too high autosomal heterozygosity (FDR <1\%)
Mean IBS is 0.7862665 (s.e. 0.0161462), as based on 2000 autosomal markers
```

0 (0%) people excluded because of too high IBS (>=0.95)
In total, 7390 (100%) markers passed all criteria
In total, 918 (100%) people passed all criteria
> summary(qc1)
\$`Per-SNP fails statistics`
NoCall NoMAF NoHWE Redundant Xsnpfail
NoCall 82 0
NoMAF NA 115 0 0
NoHWE NA NA
Redundant
\$`Per-person fails statistics`
IDnoCall HetFail IBSFail isfemale ismale isXXY otherSexErr

| IDnoCall | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| HetFail | NA | 4 | 0 | 0 | 0 | 0 | 0 |
| IBSFail | NA | NA | 8 | 0 | 0 | 0 | 0 |
| isfemale | NA | NA | NA | 10 | 0 | 0 | 0 |
| ismale | NA | NA | NA | NA | 6 | 0 | 0 |
| isXXY | NA | NA | NA | NA | NA | 0 | 0 |
| otherSexErr | NA | NA | NA | NA | NA | NA | 0 |

```
> data1 <- ge03d2[qc1\$idok,qc1\$snpok]
> data1 <- Xfix(data1)
... \(7 \mathrm{X} / \mathrm{Y} / \mathrm{mtDNA}\left(\begin{array}{ll}7 & 0\end{array}\right)\) impossible heterozygotes and female Y set as missing
> qc2 <- check.marker (data1,call=0.95,perid.call=0.95,p.level=0)
Excluding people/markers with extremely low call rate...
7390 markers and 918 people in total
0 people excluded because of call rate < 0.1
0 markers excluded because of call rate < 0.1
Passed: 7390 markers and 918 people
Running sex chromosome checks...
0 heterozygous X-linked male genotypes found
0 X-linked markers are likely to be autosomal (odds > 1000)
0 male are likely to be female (odds > 1000)
0 female are likely to be male (odds > 1000)
0 people have intermediate X -chromosome inbreeding (\(0.5>\mathrm{F}>0.5\))
If these people/markers are removed, 0 heterozygous male genotypes are left
Passed: 7390 markers and 918 people
no \(\mathrm{X} / \mathrm{Y} / \mathrm{mtDNA}\)-errors to fix

RUN 1
7390 markers and 918 people in total
0 (\(0 \%\)) markers excluded as having low (\(<0.2723312 \%\)) minor allele frequency
\(0(0 \%\)) markers excluded because of low (\(<95 \%\)) call rate
0 (\(0 \%\)) markers excluded because they are out of HWE (\(\mathrm{P}<0\))
```

0 (0%) people excluded because of low (<95%) call rate
Mean autosomal HET is 0.2562716 (s.e. 0.0151377)
O people excluded because too high autosomal heterozygosity (FDR <1%)
Mean IBS is 0.786273 (s.e. 0.01654291), as based on 2000 autosomal markers
0 (0%) people excluded because of too high IBS (>=0.95)
In total, 7390 (100%) markers passed all criteria
In total, 918 (100%) people passed all criteria
> summary(qc2)
\$`Per-SNP fails statistics`
NoCall NoMAF NoHWE Redundant Xsnpfail
NoCall 0 0 0 0

| NoMAF NA | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |


| NoHWE NA NA | NA | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |


| Redundant | NA | NA | NA | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Xsnpfail NA NA NA NA 0
\$`Per-person fails statistics`
IDnoCall HetFail IBSFail isfemale ismale isXXY otherSexErr
IDnoCall
HetFail NA
IBSFail NA NA 0
isfemale NA NA NA 0
ismale NA NA NA NA 0
isXXY NA NA NA NA NA 0
otherSexErr NA NA NA NA NA NA 0

```

Answer (Ex. 6) - The list of genetic females who are coded as males is
```

> qc1\$isfemale
[1] "id3374" "id6263" "id6835" "id8410" "id8509" "id8519" "id8542" "id2701"
[9] "id6494" "id3100"

```

Answer (Ex. 7) - The list of genetic males who are coded as females is > qc1\$ismale
[1] "id193" "id8475" "id2461" "id5669" "id7245" "id8301"

Answer (Ex. 8) - The number of ' XXY ' people is 0

Answer (Ex. 9) - Eight 'sporadic' X-errors are left after removing people with likely sex code errors (seven in the data set after first step of QC)

Answer (Ex. 10) - The list of IDs failing IBS checks ('twin' DNAs) is > qc1\$ibsfail
[1] "id3368" "id9668" "id5437" "id956" "id386" "id660" "id2115" "id8370"

Answer (Ex. 11) - The second step of QC:
```

> data1.gkin <- ibs(data1[,autosomal(data1)],weight="freq")
> data1.dist <- as.dist(0.5-data1.gkin)
> data1.mds <- cmdscale(data1.dist)
> km <- kmeans(data1.mds,centers=2,nstart=1000)
> cl1 <- names(which(km$cluster==1))
> cl2 <- names(which(km$cluster==2))
> if (length(cl1)>length(cl2)) {x<-cl2;cl2<-cl1;cl1<-x}
> cl1

```
 [1] "id2097" "id2126" "id2878" "id3021" "id3176" "id4554" "id4756" "id7436"
 [9] "id7533" "id9396" "id9546" "id4021" "id2171" "id6954" "id2136" "id5056"
[17] "id1751" "id6626" "id2970" "id1300" "id8639" "id1729" "id9398" "id9904"
[25] "id858"
```

> data2 <- data1[cl2,]

```
> qc2 <- check.marker (data2,hweids=(phdata(data2) \$dm2==0),fdr=0.2)
Excluding people/markers with extremely low call rate...
7390 markers and 893 people in total
0 people excluded because of call rate < 0.1
0 markers excluded because of call rate < 0.1
Passed: 7390 markers and 893 people
Running sex chromosome checks...
0 heterozygous X -linked male genotypes found
0 X-linked markers are likely to be autosomal (odds > 1000)
0 male are likely to be female (odds > 1000)
0 female are likely to be male (odds > 1000)
0 people have intermediate X -chromosome inbreeding (\(0.5>\mathrm{F}>0.5\))
If these people/markers are removed, 0 heterozygous male genotypes are left
Passed: 7390 markers and 893 people
no \(\mathrm{X} / \mathrm{Y} / \mathrm{mtDNA}\)-errors to fix

RUN 1
7390 markers and 893 people in total
5 (\(0.067659 \%\)) markers excluded as having low (\(<0.2799552 \%\)) minor allele frequency
0 (\(0 \%\)) markers excluded because of low (\(<95 \%\)) call rate
\(0(0 \%)\) markers excluded because they are out of HWE (FDR <0.2)
\(0(0 \%)\) people excluded because of low (\(\langle 95 \%\)) call rate
Mean autosomal HET is 0.2565083 (s.e. 0.01505982)
0 people excluded because too high autosomal heterozygosity (FDR <1\%)
Mean IBS is 0.7915813 (s.e. 0.01139657), as based on 2000 autosomal markers
0 (\(0 \%\)) people excluded because of too high IBS (\(>=0.95\))
In total, 7385 (\(99.93234 \%\)) markers passed all criteria
In total, 893 (\(100 \%\)) people passed all criteria

RUN 2
7385 markers and 893 people in total
0 (0\%) markers excluded as having low (<0.2799552\%) minor allele frequency
0 (\(0 \%\)) markers excluded because of low (\(<95 \%\)) call rate
0 (\(0 \%\)) markers excluded because they are out of HWE (FDR <0.2)
0 (\(0 \%\)) people excluded because of low (\(\langle 95 \%\)) call rate
Mean autosomal HET is 0.2565083 (s.e. 0.01505982)
0 people excluded because too high autosomal heterozygosity (FDR <1\%)
Mean IBS is 0.7882376 (s.e. 0.01166547), as based on 2000 autosomal markers
0 (\(0 \%\)) people excluded because of too high IBS (\(>=0.95\))
In total, 7385 (\(100 \%\)) markers passed all criteria
In total, 893 (\(100 \%\)) people passed all criteria
> summary (qc2)
\$`er-SNP fails statistics` NoCall NoMAF NoHWE Redundant Xsnpfail
\begin{tabular}{lrrrrr}
NoCall & 0 & 0 & 0 & 0 & 0 \\
NoMAF & NA & 5 & 0 & 0 & 0 \\
NoHWE & NA & NA & 0 & 0 & 0 \\
Redundant & NA & NA & NA & 0 & 0 \\
Xsnpfail & NA & NA & NA & NA & 0
\end{tabular}
\$’Per-person fails statistics`
IDnoCall HetFail IBSFail isfemale ismale isXXY otherSexErr
\begin{tabular}{llllllll}
IDnoCall & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{tabular}
\begin{tabular}{llllllll}
HetFail & NA & 0 & 0 & 0 & 0 & 0 & 0
\end{tabular}
\begin{tabular}{llllllll}
IBSFail & \(N A\) & \(N A\) & 0 & 0 & 0 & 0 & 0
\end{tabular}
\begin{tabular}{llllllll}
isfemale NA & NA & NA & 0 & 0 & 0 & 0
\end{tabular}
\begin{tabular}{llllllll}
ismale NA & NA & NA & NA & 0 & 0 & 0
\end{tabular}
\begin{tabular}{llllllll}
isXXY NA NA NA NA & NA & NA & 0 &
\end{tabular}
otherSexErr NA NA NA NA NA
data2 <- data2[qc2\$idok,qc2\$snpok]
> data2 <- Xfix(data2)
no \(\mathrm{X} / \mathrm{Y} / \mathrm{mtDNA}\)-errors to fix
```


#### 

\#ge03d2.clean <- data2
\#save(ge03d2.clean,file="ge03d2.clean.RData")
> \#\#\#\#

```

Answer (Ex. 12) - The list of genetic outliers is
```

> cl1
[1] "id2097" "id2126" "id2878" "id3021" "id3176" "id4554" "id4756" "id7436"
[9] "id7533" "id9396" "id9546" "id4021" "id2171" "id6954" "id2136" "id5056"
[17] "id1751" "id6626" "id2970" "id1300" "id8639" "id1729" "id9398" "id9904"
[25] "id858"

```
Answer (Ex. 13) - :
> table(phdata(data2)$dm2)
 0 1
4 7 2 4 2 1
Answer (Ex. 14) - :
> nsnps(data2)
[1] 7385
Answer (Ex. 15) - No:
> descriptives.marker(data2)[2]
$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
 X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X
No
```



```
Answer (Ex. 16) - :
> qts <- qtscore(dm2,data2,trait="binomial")
> lambda(qts)
$estimate
[1] 1.137922
$se
[1] 0.001087627
$iz0
[1] 1.131274
$iz2
[1] 1
Answer (Ex. 17) - :
```

```
> res1 <- qtscore(dm2,data=data2,times=200,quiet=TRUE,trait="binomial")
```

> res1 <- qtscore(dm2,data=data2,times=200,quiet=TRUE,trait="binomial")
|
|
| |%
| |%
I
I
|=========================================================================== 1 100%
|=========================================================================== 1 100%
> ds1 <- descriptives.scan(res1)
> ds1 <- descriptives.scan(res1)
Summary for top }10\mathrm{ results, sorted by P1df
Summary for top }10\mathrm{ results, sorted by P1df
> ds1

```
> ds1
```

|  | Chromosome | Position | n Strand | A1 A2 | N | effB | se_effB | chi2.1df |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| rs7903146 | 1 | 1047389 | 9 + | A T | 887 | 0.4732487 | 0.09237813 | 26.24463 |
| rs289981 | 1 | 1043860 | 0 | T G | 882 | 1.6084203 | 0.35859445 | 20.11833 |
| rs70099 | 2 | 8857747 | 7 + | C A | 883 | 2.3164180 | 0.52491058 | 19.47436 |
| rs3436694 | 2 | 8921418 | 8 | C G | 885 | 2.0983499 | 0.47455324 | 19.55176 |
| rs7064741 | 1 | 1044233 | 3 | C G | 885 | 0.6175678 | 0.14988526 | 16.97663 |
| rs2975760 | 3 | 10518480 | 0 + | A T | 888 | 1.4799188 | 0.38810107 | 14.54073 |
| rs3074653 | 2 | 8915495 | 5 | G C | 885 | 1.6536317 | 0.44797502 | 13.62605 |
| rs5243830 | 1 | 1371499 | $9+$ | A G | 888 | 16.2973905 | 4.53947050 | 12.88919 |
| rs5743183 | 1 | 648911 | $1+$ | C T | 882 | 0.5025524 | 0.14066512 | 12.76409 |
| rs9386314 | 1 | 756075 | 5 | C A | 889 | 0.6716160 | 0.19058053 | 12.41895 |
|  | P1df | Pc1df | effAB |  | effBB | chi2.2df | P2df |  |
| rs7903146 | 0.004975124 | 0.0100 | 0.5218925 | 0.103 | 37251 | 26.80404 | 0.004975124 |  |
| rs289981 | 0.025000000 | 0.1151 | 1.3125000 | 2.306 | 66907 | 21.00192 | 0.060000000 |  |
| rs70099 | 0.040000000 | 0.1652 | 2.1524086 |  | Inf | 20.04047 | 0.110000000 |  |
| rs3436694 | 0.040000000 | 0.1601 | 1.9610224 |  | Inf | 20.49069 | 0.080000000 |  |
| rs7064741 | 0.165000000 | 0.4000 | 0.5769088 | 0.468 | 86275 | 17.83121 | 0.360000000 |  |
| rs2975760 | 0.460000000 | 0.7501 | 1.1013919 | 3.370 | 06932 | 22.84103 | 0.025000000 |  |
| rs3074653 | 0.630000000 | 0.8851 | 1.5340654 | 4.068 | 87285 | 14.31287 | 0.925000000 |  |
| rs5243830 | 0.740000000 | 0.945 | Inf |  | Inf | 13.73963 | 0.965000000 |  |
| rs5743183 | 0.750000000 | 0.9450 | 0.4646406 | 0.668 | 84303 | 13.97357 | 0.950000000 |  |
| rs9386314 | 0.825000000 | 0.9650 | 0.5847590 | 0.615 | 54026 | 14.99598 | 0.845000000 |  |

There are SNPs which are empirically genome-wide significant in the data. To get the list of 'top' 10 SNPs:

```
> snps1 <- rownames(ds1)
> snps1
```

```
[1] "rs7903146" "rs289981" "rs70099" "rs3436694" "rs7064741" "rs2975760"
[7] "rs3074653" "rs5243830" "rs5743183" "rs9386314"
```

Answer (Ex. 18) - There is little overlap between SNPs before and after QC:

```
> snps0
```

```
[1] "rs6386070" "rs7903146" "rs3845221" "rs4015712" "rs4266194" "rs8284432"
[7] "rs6933749" "rs2784788" "rs4804116" "rs3632063"
```


## > snps1

[1] "rs7903146" "rs289981" "rs70099" "rs3436694" "rs7064741" "rs2975760"
[7] "rs3074653" "rs5243830" "rs5743183" "rs9386314"

Answer (Ex. 19) - :
> data (ge03d2c)
> snps1
[1] "rs7903146" "rs289981" "rs70099" "rs3436694" "rs7064741" "rs2975760"
[7] "rs3074653" "rs5243830" "rs5743183" "rs9386314"

```
> confdat <- ge03d2c[,snps1]
```

> rep <- qtscore(dm2, confdat, times=10000, quiet=TRUE)

```
 |
 |
```

> descriptives.scan(rep)
Summary for top 10 results, sorted by P1df
Chromosome Position Strand A1 A2 N effB se_effB
$\begin{array}{llllll}\text { rs2975760 } & 310518480 & + & \text { A } 192 \quad 0.167599190 .05487999\end{array}$

rs289981 11043860 - T G 1930.135120640 .05646226
rs7064741 11044233 - C G 193 -0.13146201 0.05935313
rs3436694 28921418 - C G 1930.177178550 .08512525
$\begin{array}{lllllllll}\text { rs3074653 } & 2815495 & - & \text { G C } 190 & 0.15567151 & 0.07620495\end{array}$
rs5743183 $16648911+$ C T $191-0.098092640 .08440061$
rs9386314 11756075 - C A 193-0.05607552 0.06194938
rs70099 $28857747 \quad+$ C A 1920.044746650 .10180430
$\begin{array}{lllllll}\text { rs5243830 } & 1371499 & + & \text { A } 195 \quad 0.045275590 .17760398\end{array}$
chi2.1df P1df Pc1df effAB effBB chi2.2df P2df
$\begin{array}{llllllll}\text { rs2975760 } & 9.32643863 & 0.0166 & 0.6022 & 0.2363080345 & 0.24878575 & 10.905443 & 0.0197\end{array}$
rs7903146 7.90797784 $0.04030 .6875-0.2327637890-0.25359712 \quad 8.4433280 .0785$
$\begin{array}{llllllll}\text { rs289981 } & 5.72699574 & 0.1393 & 0.8177 & 0.0166666667 & 0.19727891 & 6.586622 & 0.2112\end{array}$
rs7064741 4.90583841 $0.19650 .8847-0.2232316677-0.06719368 \quad 8.5696690 .0743$
$\begin{array}{llllllll}\text { rs3436694 } & 4.33216994 & 0.2633 & 0.9318 & 0.1221340388 & 0.58641975 & 5.316940 & 0.4168\end{array}$
$\begin{array}{lllllllll}\text { rs3074653 } & 4.17303421 & 0.2900 & 0.9355 & 0.1088501292 & 0.59722222 & 5.524265 & 0.3778\end{array}$
rs5743183 1.35077106 $0.91880 .9984-0.1142919106-0.125786161 .4405860 .9984$
rs9386314 $0.819356200 .98420 .9998-0.0948499882 \quad 0.019607841 .7907600 .9935$
rs70099 $0.193191911 .00001 .0000 \quad 0.0002587992 \quad 0.565476191 .2924510 .9995$
$\begin{array}{llllllll}\text { rs5243830 } & 0.06498646 & 1.0000 & 1.0000 & -0.1921052632 & 0.55789474 & 1.860430 & 0.9904\end{array}$

Answer (Ex. 20) - Two-stage P-value is
> snps1
[1] "rs7903146" "rs289981" "rs70099" "rs3436694" "rs7064741" "rs2975760"
[7] "rs3074653" "rs5243830" "rs5743183" "rs9386314"
> finres <- matrix (NA,10,3)
> colnames(finres) <- c("Stage 1","Replication","Combined")
> rownames(finres) <- snps1
$>$ for ( $i$ in $1: 10$ ) \{
$+\quad$ finres[i,1] <- res1[which(snpnames(data2)==snps1[i]), "Pc1df"]
$+\quad$ finres[i,2] <- rep[which(snpnames(confdat)==snps1[i]),"P1df"]
$+\quad$ finres[i,3] <- finres[i,1]*finres[i,2]
$+\quad\}$
> finres
Stage 1 Replication Combined

| rs7903146 | 0.010 | 0.0403 | 0.0004030 |
| :--- | :--- | :--- | :--- |
| rs289981 | 0.115 | 0.1393 | 0.0160195 |
| rs70099 | 0.165 | 1.0000 | 0.1650000 |
| rs3436694 | 0.160 | 0.2633 | 0.0421280 |

```
\begin{tabular}{llll}
rs7064741 & 0.400 & 0.1965 & 0.0786000 \\
rs2975760 & 0.750 & 0.0166 & 0.0124500 \\
rs3074653 & 0.885 & 0.2900 & 0.2566500 \\
rs5243830 & 0.945 & 1.0000 & 0.9450000 \\
rs5743183 & 0.945 & 0.9188 & 0.8682660 \\
rs9386314 & 0.965 & 0.9842 & 0.9497530
\end{tabular}
> for (i in 1:10) {
+ if (finres[i,3] <= 0.05) {
+ print(c("--------",rownames(finres)[i],"-------"))
+
+ print(c(rownames(finres)[i],"stage 1:"))
+ ph <- phdata(data2)$dm2
+ gt <- as.numeric(data2[,rownames(finres)[i]])
+ print(summary(glm(ph~gt,family=binomial))$coef)
+
+ print(c(rownames(finres)[i],"stage 2:"))
+ ph <- phdata(confdat)$dm2
+ gt <- as.numeric(confdat[,rownames(finres)[i]])
+ print(summary(glm(ph~gt,family=binomial))$coef)
+
+ print(c(rownames(finres)[i],"Joint:"))
+ ph <- c(phdata(data2)$dm2,phdata(confdat)$dm2)
+ gt <- c(as.numeric(data2[,rownames(finres)[i]]),as.numeric(confdat[,row
+ print(summary(glm(ph~gt,family=binomial))$coef)
+ }
+ }
[1] "---------" "rs7903146" "--------"
[1] "rs7903146" "stage 1:"
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.08024472 0.07682467 1.044518 2.962460e-01
gt -0.74685964 0.14906771 -5.010204 5.437238e-07
[1] "rs7903146" "stage 2:"
 Estimate Std. Error z value Pr(> |z|)
(Intercept) 0.001895645 0.1686559 0.01123972 0.991032189
gt -0.902521348 0.3296467 -2.73784449 0.006184331
[1] "rs7903146" "Joint:"
 Estimate Std. Error z value Pr}(>|z|
(Intercept) 0.06652706 0.06990581 0.9516671 3.412659e-01
gt -0.77557677 0.13580221 -5.7110762 1.122640e-08
[1] "---------" "rs289981" "-------"
[1] "rs289981" "stage 1:"
 Estimate Std. Error z value Pr (> |z|)
(Intercept) -0.7895683 0.1686946 -4.680461 2.862312e-06
gt 0.4836336 0.1088004 4.445145 8.783281e-06
[1] "rs289981" "stage 2:"
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.0644645 0.383275 -2.777287 0.005481483
gt 0.5699411 0.241041 2.364499 0.018054487
[1] "rs289981" "Joint:"
```

```
 Estimate Std. Error z value Pr(> |z|)
(Intercept) -0.8342403 0.1542809 -5.407281 6.398868e-08
gt 0.4963232 0.0990676 5.009944 5.444577e-07
[1] "---------" "rs3436694" "-------"
[1] "rs3436694" "stage 1:"
 Estimate Std. Error z value Pr (> |z|)
(Intercept) -0.2592162 0.07519988 -3.447029 5.667876e-04
gt 0.7385083 0.16987721 4.347307 1.378194e-05
[1] "rs3436694" "stage 2:"
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.3683936 0.1589513-2.317651 0.02046831
gt 0.7304292 0.3606365 2.025389 0.04282744
[1] "rs3436694" "Joint:"
 Estimate Std. Error z value Pr(> |z|)
(Intercept) -0.2790299 0.06795526 -4.106083 4.024252e-05
gt 0.7391791 0.15373558 4.808120 1.523565e-06
[1] "---------" "rs2975760" "-------"
[1] "rs2975760" "stage 1:"
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.3171429 0.08729818 -3.632870 0.0002802862
gt 0.3944701 0.10419297 3.785957 0.0001531181
[1] "rs2975760" "stage 2:"
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.5969939 0.1928321 -3.095926 0.001961992
gt 0.6942268 0.2323045 2.988435 0.002804103
[1] "rs2975760" "Joint:"
 Estimate Std. Error z value Pr}(>|z|
(Intercept) -0.3659711 0.07942275 -4.607888 4.067798e-06
gt 0.4463331 0.09495765 4.700338 2.597310e-06
> replicatedsnps <- rownames(finres)[finres[,"Stage 1"]<=0.05 &
+ finres[,"Replication"]<=0.05 & finres[,"Combined"]<=0.05]
> replicatedsnps
[1] "rs7903146"
> sigsnps <- rownames(finres)[finres[,"Combined"]<=0.05]
> sigsnps
[1] "rs7903146" "rs289981" "rs3436694" "rs2975760"
```

At the first glance, 1 SNPs may be claimed as replicated because both first stage and replication $P$-values are $\leq 0.05$ and effects are consistent, and additionally 3 may be claimed as 'significant' because joint $p$-values are $\leq 0.05$ and the effects are consistent. Generally, a more thorough simulation experiment should be performed.

Answer (Ex. 21) - SNP "rs7903146" had empirical $p$-value $\leq 0.05$ at both stages, and very strong joint significance. It can be claimed as replicated. You can check if any of the SNPs you have identified as significant or replicated are the ones which were simulated to be associated with dm2 by using the command show.ncbi(c("snpname1", "snpname2", "snpname3")) where snpnameX
stands for the name of your identified SNP. The "true" SNPs can be found on NCBI and some are located in known T2D genes (just because we used these names to name the "significant" ones).

## Chapter 6

## GWA analysis in presence of stratification: theory

In genetic association studies, we look for association between a genetic polymorphism and the value of a trait of interest. The best scenario - the one we always hope for - is that the observed association results from causation, that is the polymorphism studied is functionally involved in the control of the trait. However, association has no direction, and making causal inference in epidemiology in general and in genetic epidemiology in particular is usually not possible based on statistical analysis only.

In fact, most associations observed in genetic studies are due to a confounder - an (unobserved) factor which is associated with both the genetic polymorphism and the trait analysed. Presence of such factor leads to induced, "secondary" correlation between the trait and the polymorphism; if we would have controlled for that factor in the association model, the relation between the polymorphism and the trait would have gone.

There are two major types of confounders leading to induced correlation in genetic association studies. One type is "good" confounding of association by the real, unobserved functional variant, which is, as a rule, not present on the SNP array, but is in linkage disequilibrium (LD) with typed SNP. Under this scenario, the functional variant is associated with the trait because of causative relation; at the same time it is associated with a typed polymorphism located nearby because of LD. This confounding induces secondary correlation between the typed polymorphism and the trait, making localistion of the true functional polymorphism (LD mapping) possible.

Other major type of confounding observed in genetic association studies is confounding by population (sub)structure. Let us consider a study in which subjects come from two distantly related populations, say Chinese and European. Due to genetic drift, these two populations will have very different frequencies at many loci throughout the genome. At the same time, these two populations are different phenotypically (prevalence of different disease, mean value of quantitative traita) due to accumulated genetic and cultural differences. Therefore any of these traits will show association with multiple genomic loci. While some of these associations may be genuine genetic associations in a sense that either the polymorphisms themselves, or the polymorphisms close by are causally
involved, most of these associations will be genetically false positives - noise associations generated by strong genetic and phenotypic divergence between the two populations.

The scenario described above is extreme and indeed it is hard to imagine a genetic asociation study in which two very distinct populations are so blintly mixed and analysed not taking this mixture into account. However, a more subtle scenario where several slighly genetically different populations are mixed in the same study is frequently the case and a matter of concern in GWA studies.

In this chapter, we will define what is genetic structure, and how it can be quantified (section 6.1); what are the effects of genetic structure on the standard association tests (section 6.2) and specific association tests which take possible genetic structure into account (section 6.3).

### 6.1 Genetic structure of populations

A major unit of genetic structure is a genetic population. Different definitions of genetic population are available, for example Wikipedia defines population (biol.) as "the collection of inter-breeding organisms of a particular species". The genetics of populations is "the study of the allele frequency distribution and change under the influence of ...evolutionary processes". In the framework of population genetics, the main characteristics of interest of a group of individuals are their genotypes, frequencies of alleles in this group, and the dynamics of these distributions in time. While the units of interest of population genetics are alleles, the units of evolutionary processes are acting upon are organisms. Therefore a definition of a genetic population should be based on the chance that different alleles, present in the individuals in question can mix together; if such chance is zero, we may consider such groups as different populations, each described by its own genotypic and allelic frequencies and their dynamic. Based on these considerations, a genetic population may be defined a in the following way:

Two individuals, $I_{1}$ and $I_{2}$, belong to the same population if (a) the probability that they would have an offspring in common is greater then zero and (b) this probability is much higher than the probability of $I_{1}$ and $I_{2}$ having an offspring in common with some individual $I_{3}$, which is said to belong to other genetic population.

Here, to have an offspring in common does not imply having a direct offspring, but rather a common descendant in a number of generations.

However, in gene discovery in general and GWA studies in particular we are usually not interested in future dinamics of alleles and genotypes distributions. What is the matter of concern in genetic association studies is potential common ancestry - that is that individuals may share common ancestors and thus share in common the alleles, which are exact copies of the same ancestral allele. Such alleles are called "identical-by-descent", or IBD for short. If the chance of IBD is high, this reflects high degree of genetic relationship. As a rule, relatives share many features, both environmental and genetic, which may lead to confounding.

Genetic relationship between a pair of individuals is quantified using the "coefficient of kinship", which measures that chance that gametes, sampled at random from these individuals, are IBD.

Thus for the purposes of gene-discovery we can define genetic population use retrospective terms and based on the concept of IBD:

Two individuals, $I_{1}$ and $I_{2}$, belong to the same genetic population if (a) their genetic relationship, measured with the coefficient of kinship, is greater then zero and (b) their kinship is much higher than kinship between them and some individual $I_{3}$, which is said to belong to other genetic population.

One can see that this definition is quantitative and rather flexible (if not to say arbitrary): what we call a "population" depends on the choice of the threshold for the "much-higher" probability. Actually, what you define as "the same" genetic population depends in large part on the scope aims of your study. In human genetics literature you may find references to a particular genetically isolated population, population of some country (e.g. "German population", "population of United Kingdom"), European, Caucasoid or even general human population. Defining a population is about deciding on some probability threshold.

In genetic association studies, it is frequently assumed that study participants are "unrelated" and "come from the same genetic population". Here, "unrelated" means, that while study participants come from the same population (so, there is non-zero kinship between them!), this kinship is so low that it has very little effect on the statistical testing procedures used to study association between genes and phenotypes.

In the following sections we will consider the effects of population structure on the istribution of genotypes in a study population. We will start with assumption of zero kinship between study participants, which would allow us to formulate Hary-Weinberg principle (section 6.1.1). In effect, there is no such thing as zero kinship between any two organisms, however, when kinship is very low, the effects of kinship on genotypic distribution are minimal, as we will see in section 6.1.2. The effects of substructure - that is when study sample consist of several genetic populations - onto genotypic distribution will be considered in section 6.1.3. Finally, we will generalize the obtained results for the case of arbitrary structures and will see what are the effects of kinship onto joint distribution of genotypes and phenotypes in section ??.

### 6.1.1 Hardy-Weinberg equilibrium

To describe genetic structure of populations we will use rather simplistic model approximating genetic processes in natural populations. Firstly, we will assume that the population under consideration has infinitely large size, which implies that we can work in terms of probabilities, and no random process take place. Secondly, we accept non-overlapping

$$
\text { generation } \Rightarrow \text { gametic pool } \Rightarrow \text { generation }
$$

model. This model assumes that a set of individuals contributes gametes to genetic pool, and dies out. The gametes are sampled randomly from this pool in pairs to form individuals of the second generation. The selection acts on individuals, while mutation occurs when the gametic pool is formed. The key point of this model is the abstract of gametic pool: if you use that, you do not need to consider all pair-wise mating between male and female individuals; you rather
consider some abstract infinitely large pool, where gametes are contributed to with the frequency proportional to that in previous generation. Interestingly, this rather artificial construct has a great potential to describe the phenomena we indeed observe in nature.

In this section, we will derive Hardy-Weinberg low (this analog of the Mendel's low for populations). The question to be answered is, if some alleles at some locus segregate according to Mendel's lows and aggregate totally at random, what would be genotypic distribution in a population?

Let us consider two alleles, wild type normal allele $(N)$ and a mutant $(D)$, segregating at some locus in the population and apply the "generation $\Rightarrow$ gametic pool $\Rightarrow$ generation" model. Let us denote the ferquency of the $D$ allele in the gametic pool as $q$, and the frequency of the other allele, $N$, as $p=1-q$. Gametes containing alleles $N$ and $D$ are sampled at random to form diploid individuals of the next generation. The probability to sample a " $N$ " gamete is $p$, and the probability that the second sampled gamete is also " $N$ " is also $p$. According to the rule, which states that joint probability of two independent events is a product of their probabilities, the probability to sample " $N$ " and " $N$ " is $p \cdot p=p^{2}$. In the same manner, the probability to sample " $D$ " and then " $D$ " is $q \cdot q=q^{2}$. The probability to sample first the mutant and then normal allele is $q \cdot p$, the same is the probability to sample " $D$ " first and " $N$ " second. In most situations, we do not (and can not) distinguish heterozygous genotypes $D N$ and $N D$ and refer to both of them as " $N D$ ". In this notation, frequency of $N D$ will be $q \cdot p+p \cdot q=2 \cdot p \cdot q$. Thus, we have computed the genotypic distribution for a population formed from a gametic pool in which the frequency of $D$ allele was $q$.

To obtain the next generation, the next gametic pool is generated. The frequency of $D$ in the nect gametic pool is $q^{2}+\frac{1}{2} \cdot 2 \cdot p \cdot q$. Here, $q^{2}$ is the probability that a gamete-contributing individual has genotype $D D ; 2 \cdot p \cdot q$ is the probability that a gamete-contributing individual is $N D$, and $\frac{1}{2}$ is the probability that $N D$ individual contributes $D$ allele (only half of the gametes contributed by individuals with $N D$ genotype are $D$ ); see Figure 6.1. Thus the freqeuncy of $D$ in the gametic pool is $q^{2}+\frac{1}{2} \cdot 2 \cdot p \cdot q=q \cdot(q+p)=q$ - exactly the same as it was in previous gametic pool.

Thus, if assumptions of random segregation and aggregation hold, the expected frequency of $N N, N D$ and $D D$ genotypes are stable over generations and can be related to the allelic frequencies using the follwoing relation

$$
\begin{array}{ll}
P(N N)=(1-q) \cdot(1-q) & =p^{2} \\
P(N D)=q \cdot(1-q)+(1-q) \cdot q & =2 \cdot p \cdot q  \tag{6.1}\\
P(D D)=q \cdot q & =q^{2}
\end{array}
$$

which is known as Hardy-Weinberg equlibrium (HWE) point.
There are many reasons, in which random segregation and aggregation, and, consequently, Hardy-Weinberg equilibrium, are violated. It is very important to realize that, especially if the study participants are believed to come from the same genetic population, most of the times when deviation from HWE is detected, this deviation is due to technical reasons, i.e. genotyping error. Therefore testing for HWE is a part of the genotypic quality control procedure in most studies. Only when the possibility of technical errors is eliminated, other possible explanations may be considered. In a case when deviation from HWE can


## Alleles

Figure 6.1: Genotypic and allelic frequency distribution in a population; $q=$ $P(D)=P(D D)+\frac{1}{2} \cdot P(D N)$.
not be explained by technical reasons, the most frequent explanation would be that the sample tested is composed of representatives of different genetic populations, or more subtle genetic structure. However, unless study participants represent a mixture of very distinct genetic populations - the chances of which coming unnoticed are low - the efffects of genetic structure on HWE are difficult to detect, at least for any single marker, as you will see in the next sections.

### 6.1.2 Inbreeding

Inbreeding is preferential breeding between (close) relatives. An extreme example of inbreeding is a selfing, a breeding system, observed in some plants. The inbreeding is not uncommon in animal and human populations. Here, the main reason for inbreeding are usually geographical (e.g. mice live in very small interbred colonies - dems - which are usually established by few mice and are quite separated from other dems) or cultural (e.g. noble families of Europe).

Clearly, such preferential breeding between relatives violates the assumption of random aggregation, underling Hardy-Weinberg principle. Relatives are likely to share the same alleles, inherited from common ancestors. Therefore their progeny has an increased chance of being autozygous - that is to inherit a copy of exactly the same ancestral allele from both parents. An autozygous genotype is always homozygous, therefore inbreeding should increase the frequency of homozygous, and decrease the frequency of heterozygous, genotypes.

Inbreeding is quantified by the coefficient of inbreeding, which is defined as the probability of autozygosity. This coefficient may characterize an individual, or a population in general, in which case this is expectation that a random individual from the population is autozygous at a random locus. The coefficient of inbreeding is closely related to the coefficient of kinship, defined earlier for a pair of individuals as the probability that two alleles sampled at random from these individuals, are IBD. It is easy to see that the coefficient of inbreeding for


Figure 6.2: Inbred family structure (A) and probability of individual " $G$ " being autozygous for the "Red" ancestral allele
a person is the same as the kinship between its parents.
Let us compute the inbreeding coefficient for the person $\mathbf{J}$ depicted at figure $6.2 \mathbf{J}$ is a child of $\mathbf{G}$ and $\mathbf{H}$, who are cousins. J could be autozygous at for example "red" allele of founder grand-grand-parent A, which could have been transmitted through the meioses $\mathbf{A} \Rightarrow \mathbf{D}, \mathbf{D} \Rightarrow \mathbf{G}$, and $\mathbf{G} \Rightarrow \mathbf{J}$, and also through the path $\mathbf{A} \Rightarrow \mathbf{E}, \mathbf{E} \Rightarrow \mathbf{H}$, and $\mathbf{H} \Rightarrow \mathbf{J}$ (Figure $6.2 \mathbf{B}$ ). What is the chance for $\mathbf{J}$ to be autozygous for the "red" allele? The probability that this particular founder allele is transmitted to $\mathbf{D}$ is $1 / 2$, the same is the probability that the allele is transmitted from $\mathbf{D}$ to $\mathbf{G}$, and the probability that the allele is transmitted from $\mathbf{G}$ to $\mathbf{J}$. Thus the probability that the "red" allele is transmitted from $\mathbf{A}$ to $\mathbf{J}$ is $1 / 2 \cdot 1 / 2 \cdot 1 / 2=1 / 2^{3}=1 / 8$. The same is the chance that that allele is transmitted from $\mathbf{A}$ to $\mathbf{E}$ to $\mathbf{H}$ to $\mathbf{J}$, therefore the probability that $\mathbf{J}$ would be autozygous for the red allele is $1 / 2^{3} \cdot 1 / 2^{3}=1 / 2^{6}=1 / 64$. However, we are interested in autozygosity for any founder allele; and there are four such alleles ("red", "green", "yellow" and "blue", figure 6.2 B). For any of these the probability of autozygosity is the same, thus the total probability of autozygosity for $\mathbf{J}$ is $4 \cdot 1 / 64=1 / 2^{4}=1 / 16$.

Now we shall estimate the expected genotypic probability distribution for a person characterized with some arbitrary coefficient of inbreeding, $F$ - or for a population in which average inbreeding is $F$. Consider a locus with two alleles, $A$ and $B$, with frequency of $B$ denoted as $q$, and frequency of $A$ as $p=1-q$. If the person is autozygous for some founder allele, the founder allele may be either $A$, leading to autozygous genotype $A A$, or the founder allele may be $B$, leading to genotype $B B$. The chance that the founder allele is $A$ is $p$, and the chance that the founder allele is $B$ is $q$. If the person is not autozygous, then the expected genotypic frequencies follow HWE. Thus, the probability of genotype $A A$ is $(1-F) \cdot p^{2}+F \cdot p$, where the first term corresponds to probability that the person is $A A$ given it is not inbred $\left(p^{2}\right)$, multiplied by the probability that


Figure 6.3: Genotypic probability distribution for a locus with $50 \%$ frequency of the $B$ allele; black bar, no inbreeding; red, $F=0.001$; green, $F=0.01$; blue, $F=0.05$
it is not inbred $(1-F)$, and the second term corresponds to probability that a person is $A A$ given it is inbred $(p)$, multiplied by the probability that the person is inbred $(F)$. This computations can be easily done for all genotypic classes leading to the expression for HWE under inbreeding.

$$
\begin{array}{ll}
P(A A)=(1-F) \cdot p^{2}+F \cdot p & =p^{2}+p \cdot q \cdot F \\
P(A B)=(1-F) \cdot 2 \cdot p \cdot q+F \cdot 0 & =2 \cdot p \cdot q \cdot(1-F)  \tag{6.2}\\
P(B B)=(1-f) \cdot q^{2}+F \cdot q & =q^{2}+p \cdot q \cdot F
\end{array}
$$

How much is inbreeding expected to modify genotypic distribution in human populations? The levels of inbreeding observed in human genetically isolated populations typically vary between 0.001 (low inbreeding) to 0.05 (relatively high), see Pardo et al. (2005); Rudan et al. (2003). The genotypic distribution for $q=0.5$ and different values of the inbreeding coefficient is shown at the figure 6.3 .

What is the power to detect deviation from HWE due to inbreeding? For that, we need to estimate the expectation of the $\chi^{2}$ statistics (the non-centrality parameter, NCP) used to test for HWE. The test for HWE is performed using
standard formula

$$
\begin{equation*}
T^{2}=\sum_{i} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}} \tag{6.3}
\end{equation*}
$$

where summation is performed over all classes (genotypes); $O_{i}$ is the count observed in $i$-th class, and $E_{i}$ is the count expected under the null hypothesis (HWE). Under the null hypothesis, this test statistic is distributed as $\chi^{2}$ with number of degrees of freedom equal to the number of genotypes minus the number of alleles.

Thus the expectation of this test statistic for some $q, F$, and $N$ (sample size) is

$$
\begin{align*}
E\left[T^{2}\right] & =\frac{\left(N\left(q^{2}+p q F\right)-N q^{2}\right)^{2}}{N q^{2}}+\frac{(N 2 p q(1-F)-N 2 p q)^{2}}{N 2 p q}+\frac{\left(N\left(p^{2}+p q F\right)-N p^{2}\right)^{2}}{N p^{2}} \\
& =\frac{(N p q F)^{2}}{N q^{2}}+\frac{(-2 N p q F)^{2}}{N 2 p q}+\frac{(N p q F)^{2}}{N p^{2}} \\
& =N p^{2} F^{2}+2 N p q F^{2}+N q^{2} F^{2}  \tag{6.4}\\
& =N F^{2}\left(p^{2}+2 p q+q^{2}\right) \\
& =N \cdot F^{2}
\end{align*}
$$

Interestingly, the non-centrality parameter does not depend on the allelic frequency. Given the non-centrality parameter, it is easy to compute the power to detect deviation from HWE for any given $F$. For example, to achieve the power of $>0.8$ at $\alpha=0.05$, for a test with one degree of freedom the noncentrality parameter should be $>7.85$. Thus, if $F=0.05$, to have $80 \%$ power, $N \cdot F^{2}>7.85$, that is the required sample size should be $N>\frac{7.85}{F^{2}}=\frac{7.85}{0.0025}=$ 3140 people.

Thus, even in populations with strong inbreeding, rather large sample sizes are required to detect the effects of inbreeding on HWE at a particular locus, even at relatively weak significance level of $5 \%$.

While the chance that deviation from HWE due to inbreeding will be statistically significant is relatively small, inbreeding may have clear effects on the results of HWE testing in GWA study. Basically, if testing is performed at a threshold corresponding to nominal significance $\alpha$, a proportion of markers which show significant deviation will be larger than $\alpha$. Clearly, how large this proportion will be depends on the inbreeding and on size of the study - expectation of $T^{2}$ is a function of both $N$ an $F$. A proportion of markers showing significant deviation form HWE at different values of inbreeding, sample size, and nominal significance threshold, is shown in table 6.1. While deviation of this proportion from nominal one is minimal at large $\alpha$ 's and small sample sizes and coefficients of inbreeding, it may be 10 -fold and even 100 -fold higher than the nominal level at reasonable values of $N$ and $F$ for smaller thresholds.

### 6.1.3 Mixture of genetic populations: Wahlund's effect

Consider the following artificial example. Imagine that recruitment of study participants occurs at a hospital, which serves two equally size villagec ( $V_{1}$ and $\left(V_{2}\right)$; however, the villages are very distinct because of cultural reasons, and most marriages occur within a village. Thus these two villages represent two genetically distinct populations. Let us consider a locus with two alleles, $A$ and

Table 6.1: Expected proportion of markers deviating from HWE in a sample of $N$ people coming from a population with average inbreeding $F$. Proportion of markers is shown for particular test statistic threshold, corresponding to nominal significance $\alpha$.

|  |  | $\alpha$ |  |  |
| :--- | :---: | :---: | :---: | :---: |
| $N$ | $F$ | 0.05 | $10^{-4}$ | $5 \cdot 10^{-8}$ |
| 1,000 | 0.001 | 0.0501 | $1.008 \cdot 10^{-4}$ | $5.077 \cdot 10^{-8}$ |
|  | 0.005 | 0.0529 | $1.205 \cdot 10^{-4}$ | $7.025 \cdot 10^{-8}$ |
|  | 0.010 | 0.0615 | $1.885 \cdot 10^{-4}$ | $14.503 \cdot 10^{-8}$ |
| 10,000 | 0.001 | 0.0511 | $1.081 \cdot 10^{-4}$ | $5.784 \cdot 10^{-8}$ |
|  | 0.005 | 0.0790 | $3.544 \cdot 10^{-4}$ | $36.991 \cdot 10^{-8}$ |
|  | 0.010 | 0.1701 | $19.231 \cdot 10^{-4}$ | $426.745 \cdot 10^{-8}$ |

Table 6.2: Genotypic proportions in a mixed population

| Village | \%Sample | $p(A)$ | $P(A A)$ | $P(A B)$ | $P(B B)$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{1}$ | 50 | 0.9 | 0.81 | 0.18 | 0.01 |  |
| $V_{2}$ | 50 | 0.2 | 0.04 | 0.32 | 0.64 |  |
|  |  |  |  | Observed |  |  |
| Pooled | 100 | 0.55 | 0.425 | 0.25 | 0.325 |  |
|  |  |  | Expected |  |  |  |
|  |  |  | 0.30 | 0.50 |  |  |
|  |  |  | 0.125 | Difference | 0.20 |  |
|  |  |  |  |  | 0.250 |  |
|  |  |  |  |  |  |  |

$B$. The frequency of $A$ is 0.9 in $V_{1}$ and it is 0.2 in $V_{2}$. In each population, marriages occur at random, and HWE holds for the locus. What genotypic distribution is expected in a sample ascertained in the hospital, which represents a 1:1 mixture of the two populations?

The expected gentypic proportions are presented in table 6.2. First, assuming that HWE holds for each of the populations, we can compute genotypic proportions within these (rows 1 and 2 of table 6.2). If our sample represents a 1:1 mixture of these populations, then the frequency of some genotype is also 1:1 mixture of the respective frequencies. For example, frequency of $A A$ genotype would be $\frac{0.81}{2}+\frac{0.04}{2}=0.425$, and so on. The frequency of the $A$ allele in pooled sample will be $0.425+\frac{0.25}{2}=0.55$. Based on this frequency we would expect genotypic frequency distribution of $0.3,0.5$ and 0.2 , for $A A, A B$, and $B B$, respectively. As you can see the observed distribution has much higher frequencies of homozygous genotypes - excess of homozygotes.

It is notable, that the differences between the observed homozygotes frequencies and these expected under HWE are both 0.125 , and, consequently, the observed heterozygosity is less than that expected by $0.125 \cdot 2=0.25$.

The phenomenon of deviation from HWE due to the fact that considered population consist of two sub-populations, is known as "Wahlund's effect", after the scientist who has first considered and quantified genotypic distribution under such mode WAHLUND 1928).

Such marked differences between observed and expected under HWE are very easily detected; for the above example, a sample of $\approx 35$ people is enough

Table 6.3: Genotypic proportions of PPARGenABEL-packagemma Pro12Ala genotype in a mixed population

| Ethnics | \%Sample | $p$ (Pro) | P(Pro/Pro) | P(Pro/Ala) | $P($ Ala/Ala $)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Caucasian | 50 | 0.85 | 0.7225 | 0.2550 | 0.0225 |
| Afro-American | 50 | 0.99 | 0.9801 | 0.0198 | 0.0.001 |
|  |  |  |  | Observed |  |
| Pooled | 100 | 0.92 | 0.8513 | 0.1374 | 0.0113 |
|  |  |  |  | Expected |  |
|  |  |  | 0.8464 | 0.1472 | 0.0064 |
|  |  |  |  | Difference |  |
|  |  |  | 0.0049 | -0.0098 | 0.0049 |

to reject the hypothesis of HWE (power $>80 \%$ at $\alpha=0.05$ ).
However, the differences we can see in real life are not so marked. For example, the common Pro allele at position 12 of the peroxisome proliferatoractivated receptor gamma is associated with increased risk for type 2 diabetes. The frequency of the Pro allele is about $85 \%$ in European populations and Caucasian-Americans, about $97 \%$ in Japan and $99 \%$ in African-American (see table 1 from RuIz-NARVÃĄEZ (2005)). Table 6.3 shows hypothetical observed and expected genotypic proportions in a sample composed of $50 \%$ Caucasians and $50 \%$ African-American.

You can see that observed distribution and the one expected under HWE are very similar; only a sample as large as 1,800 people would allow detection of the deviation from HWE (power $>80 \%$ at $\alpha=0.05$ ). The situation is similar for most genes observed in real life - while the frequencies may be (or may be not) very different for populations, which diverged long time ago, for relatively close populations expected frequency differences are small and large sample sizes are required to detect deviation from HWE due to Wahlund's effect at a particular fixed locus.

Let us summarize, what genotypic proportions are expected in a sample, which is a mixture of two populations. Let each population is in HWE, and the frequency of the $B$ allele is $q_{1}$ in population one and $q_{2}$ in population two. Let the proportion of individuals coming from population one is $m$ in the mixed population, and consequently the proportion of individuals from population two is $(1-m)$. The allelic frequencies, and genotypic distributions in the original and mixed populations are presented in tale 6.4 .

The frequency of the $B$ allele in the mixed population is just the weighted average of the allelic frequencies in the two populations, $\bar{q}=m \cdot q_{1}+(1-m) \cdot q_{2}$. Let us denote the frequency of the $A$ allele as $\bar{p}=1-\bar{q}$. It can be demonstrated that the genotypic frequency distribution in the mixed sample is the function of the frequency of allele $B$ in the sample, $\bar{q}$, and "disequilibrium" parameter $D$ :

$$
\begin{align*}
& P(A A)=\bar{p}^{2}+\bar{p} \cdot \bar{q} \cdot F_{s t} \\
& P(A B)=2 \cdot \bar{p} \cdot \bar{q} \cdot\left(1-F_{s t}\right)  \tag{6.5}\\
& P(B B)=\bar{q}^{2}+\bar{p} \cdot \bar{q} \cdot F_{s t}
\end{align*}
$$

where

$$
\begin{equation*}
F_{s t}=\frac{m \cdot(1-m) \cdot\left(q_{1}-q_{2}\right)^{2}}{\bar{p} \cdot \bar{q}} \tag{6.6}
\end{equation*}
$$

Table 6.4: Expected genotypic proportions in a mixed population; $F_{s t}$ is defined by equation 6.6

| Population | Prop. | $p(B)$ | $P(A A)$ | $P(A B)$ | $P(B B)$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $P_{1}$ | $m$ | $q_{1}$ | $p_{1}^{2}$ | $2 p_{1} q_{1}$ | $q_{1}^{2}$ |
| $P_{2}$ | $(1-m)$ | $q_{2}$ | $p_{2}^{2}$ | $2 p_{2} q_{2}$ | $q_{2}^{2}$ |
|  |  |  |  | Observed |  |
| Pooled | 1.0 | $\bar{q}=m q_{1}$ | $m p_{1}^{2}$ | $2 m p_{1} q_{1}$ | $m q_{1}^{2}$ |
|  |  | $+(1-m) q_{2} ;$ | $+(1-m) p_{2}^{2} ;$ | $+2(1-m) p_{2} q_{2} ;$ | $+(1-m) q_{2}^{2}$ |
|  |  |  |  | Expected |  |
|  |  |  | $\bar{p}^{2}$ | $2 \overline{p q}$ | $\bar{q}^{2}$ |
|  |  |  | $\overline{p q} F_{s t}$ | $-2 \overline{p q} F_{s t}$ | $\overline{p q} F_{s t}$ |

You can see that equation 6.5. expressing the genotypic frequencies distribution under Wahlund's effect, is remarkably similar (actually, is specifically re-written in a form similar) to the equation 6.2 , expressing the genotypic proportions under the effects of inbreeding. Again, the reason is that $F_{s t}$ (as well as $F$ of equation 6.2 is easily estimated from the data as the ratio between the observed and expected variances of the genotypic distributions. Then the expected non-centrality parameter for the test of HWE is simply $N \cdot F_{s t}^{2}$, where $N$ is the sample size. Therefore our results concerning the proportion of tests expected to pass a particular significance threshold when genome-wide data are analyzed (table 6.1) hold, with replacement of $F$ with $F_{s t}$.

We can compute that the values of $F_{s t}$, corresponding to the population mixtures presented in tables 6.2 and 6.3 are 0.49 and 0.067 , respectively, which gives us a shortcut to estimate the sample size required to detect deviation from HWE due to Wahlund's effect (at $\alpha=0.05$ and power $80 \%$ ): $N>7.85 / 0.49^{2} \approx$ 32 and $N>7.85 / 0.067^{2} \approx 1771$.

A typical value of $F_{s t}$ for European populations is about 0.002 (up to 0.023 NELIS et al. (2009)); very large sample sizes are required to detect deviation from HWE at any given locus at such small $F_{s t}$ 's. However, the effects onto the proportion of markers failing to pass HWE test in GWA may be visibly inflated (table 6.1).

### 6.2 Effects of population structure on standard tests for association

### 6.2.1 Standard tests for genetic association

Standard tests for association between genes and a binary trait are the test for allele frequency difference between cases and controls, and the Armitage's trend test for proportions (that the proportion of cases changes across genotypic groups). For quantitative traits, one of the standard tests is the score test for association, which is closely related - even equivalent - to the Armitage's trend test.

We will start with presenting the study data as $2 \times 3$ table, where the rows correspond to the case/control status and columns correspond to genotypic groups, and the cells contain counts of events (table 6.5). For example, $r_{0}$ is the number

Table 6.5: Counts of cases and controls with different genotypes

|  | Genotype |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Status | $A A$ | $A B$ | $B B$ | Total |
| Case | $r_{0}$ | $r_{1}$ | $r_{2}$ | $R$ |
| Control | $s_{0}$ | $s_{1}$ | $s_{2}$ | $S$ |
| Total | $n_{0}$ | $n_{1}$ | $n_{2}$ | $N$ |

Table 6.6: Counts of alleles in cases and controls

| Status | $A$ | $B$ | Total |
| :--- | :---: | :---: | :---: |
| Case | $2 \cdot r_{0}+r_{1}$ | $r_{1}+2 \cdot r_{2}$ | $2 \cdot R$ |
| Control | $2 \cdot s_{0}+s_{1}$ | $s_{1}+2 \cdot s_{2}$ | $2 \cdot S$ |
| Total | $2 \cdot n_{0}+n_{1}$ | $n_{1}+2 \cdot n_{2}$ | $2 \cdot N$ |

of cases with genotype $A A, s_{0}$ is the number of controls with genotype $A A$ and so on.

This table can be re-arranged in a $2 \times 2$ allelic table, presented in table 6.6 . Each cell of this table contains the counts of alleles present in cases and controls, e.g. total number of $A$ alleles in cases is $2 \cdot r_{0}$ (twice the number of cases who are homozygous for the $A$ allele) plus the number of $A$ alleles present in heterozygous cases ( $r_{1}$ ).

Based on these tables, we can test if the allelic frequency is different between the cases and controls, using standard $\chi^{2}$ test, formulated as

$$
\begin{equation*}
T^{2}=\sum_{i} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}} \tag{6.7}
\end{equation*}
$$

where summation is performed over all cells (defined by combination of genotype/allele and phenotype); $O_{i}$ is the count observed in $i$-th class, and $E_{i}$ is the count expected under the null hypothesis (equal frequencies in cases and controls). Under the null hypothesis, this test statistic is distributed as $\chi^{2}$ with number of degrees of freedom equal to the number of independent classes.

The null hypothesis assumes that the frequency of the $A$ allele is the same in both cases and controls, and is equal to the frequency for $A$ in the total sample: $\bar{p}=\frac{2 \cdot n_{0}+n_{1}}{2 \cdot N}$. Thus the expected count of $A$ in cases is $2 \cdot R \cdot \bar{p}$, and the expected count of $B$ alleles is $2 \cdot R \cdot(1-\bar{p})$. Similarly, for cases, the expected count of $A$ is $2 \cdot S \cdot \bar{p}$, and the expected count of $B$ is $2 \cdot S \cdot(1-\bar{p})$.

Now, for the table 6.6 we can re-write the allelic test as

$$
\begin{aligned}
T_{A}^{2}= & \frac{\left(\left(2 r_{0}+r_{1}\right)-2 R \bar{p}\right)^{2}}{2 R \bar{p}}+\frac{\left(\left(r_{1}+2 r_{2}\right)-2 R(1-\bar{p})\right)^{2}}{2 R(1-\bar{p})} \\
& +\frac{\left(\left(2 s_{0}+s_{1}\right)-2 S \bar{p}\right)^{2}}{2 S \bar{p}}+\frac{\left(\left(s_{1}+2 s_{2}\right)-2 S(1-\bar{p})\right)^{2}}{2 S(1-\bar{p})}
\end{aligned}
$$

With some algebra, it can be demonstarted that this expression simplifies to

$$
\begin{equation*}
T_{a}^{2}=\frac{2 N\left\{2 N\left(r_{1}+2 r_{2}\right)-2 R\left(n_{1}+2 n_{2}\right)\right\}^{2}}{(2 R) 2(N-R)\left\{2 N\left(n_{1}+2 n_{2}\right)-\left(n_{1}+2 n_{2}\right)^{2}\right\}} \tag{6.8}
\end{equation*}
$$

Under the null hypothesis that the frequency of alleles is the same in cases and controls (and, as you will see later, that HWE halds in total sample) the test statistic is distributed as $\chi^{2}$ with one degree of freedom.

### 6.2. EFFECTS OF POPULATION STRUCTURE ON STANDARD TESTS FOR ASSOCIATION151

An alternative, Armitage's trend test for proportions, can be used to test the null hypothesis. This test is performed using the $2 \times 3$ genotypic table (6.5). The null hypothesis assumes that the frequency of cases is the same in all genotypic groups; alternative is that the frequency is not the same, but are, however, not totally arbitrary. As it follows from the name of the test, a trend in proportions is assumed, that is the frequency of cases among people with heterozygous genotypes $A B$ should be exactly between the frequencies of cases in two homozygous classes. This hypothesis may be formalized using parameters beta $a_{0}$, the expected frequency of cases in the $A A$ group, and $\beta_{1}$, the increase in frequency of cases in the $A B$ group. The expected frequency of cases in the $A B$ group is then $\left(\beta_{0}+\beta_{1}\right)$; the frequency of cases in the $B B$ group is assumed to be ( $\beta_{0}+2 \cdot \beta_{1}$ ). Parameters $p_{0}$ and $p_{1}$ can be estimated using the maximum likelihood; $\hat{\beta}_{1}=\frac{\left(r_{1}+2 r_{2}\right)-\bar{p} R}{\left(n_{1}+4 n_{2}\right)-\bar{p} N}$, where $\bar{p}=\frac{2 n_{2}+n_{1}}{2 N}$ is the frequency of the $B$ allele in the total sample. Then, $\beta_{0}$ is estimated as $\hat{\beta}_{0}=\frac{R}{N}-\hat{\beta}_{1} \bar{p}$. Is can be shown that the chi-square test 6.7 based on these expectations takes the form

$$
\begin{equation*}
T_{t}^{2}=\frac{N\left\{N\left(r_{1}+2 r_{2}\right)-R\left(n_{1}+2 n_{2}\right)\right\}^{2}}{R(N-R)\left\{N\left(n_{1}+4 n_{2}\right)-\left(n_{1}+2 n_{2}\right)^{2}\right\}} \tag{6.9}
\end{equation*}
$$

It can be shown that $T_{t}^{2}=T_{a}^{2}$ if $n_{1}=2 \sqrt{n_{0} \cdot n_{2}}$, which is equivalent to the condition that HWE halds exactly, in which case the counts of heterozygotes should be $2 N p q$, with $p=\sqrt{n_{0} / N}$ and $q=\sqrt{n_{2} / N}$. When HWE holds for the total sample, the two tests are (at least assymptotically) equivalent. Thus the test $T_{a}^{2}$ is the test for association in presence of HWE; when HWE does not hold, even in absence of association, the values of $T_{a}^{2}$ are greater then the values of $T_{t}^{2}$ test, possibly leading to false positive conclusions about association in presence of deviations from HWE. Therefore the trend test $T_{t}^{2}$ is to be prefered when testing for genetic association SASIENI (1997).

For study of association between genotype and a quantitative traits, linear regression analysis is performed. Let us denote the vector of phenotypes as $y$, with particular values $y_{i}(i=1, \ldots, N)$. Let code the genotypes with a quantitative variable, which reflects the number of $B$ allels. Thus, we will code $A A$ as $0, A B$ as 1 , and $B B$ as 2 . Let us denote the vector of genotypes as $g$, with particular values $g_{i}(i=1, \ldots, N)$ taking the value of 0,1 or 2 . The linear regression model assumes that the expectation of the trait is

$$
E\left[y_{i}\right]=\mu+\beta_{g} \cdot g_{i}
$$

where $\mu$ is intercept and $\beta_{g}$ is the coefficient of regression of the genotype on the phenotype.

The estimate of $\beta_{g}$ is provided by a well-known expresion

$$
\begin{equation*}
\hat{\beta}=\frac{\operatorname{Cov}(y, g)}{\operatorname{Var}(g)}=\frac{\sum x_{i} g_{i} / N-\sum x_{i} \sum g_{i} / N^{2}}{\sum g_{i}^{2} / N-\left(\sum g_{i}\right)^{2} / N^{2}}=\frac{N \sum x_{i} g_{i}-\sum x_{i} \sum g_{i}}{N \sum g_{i}^{2}-\left(\sum g_{i}\right)^{2}} \tag{6.10}
\end{equation*}
$$

Under the null hypothesis, the variance of $\hat{\beta}$ is $\operatorname{Var}_{0}\left(\hat{\beta}_{g}\right)=\frac{\operatorname{Var}(y)}{N \cdot \operatorname{Var}(g)}$, and the score test statistic

$$
\begin{equation*}
T_{q}^{2}=\frac{\hat{\beta}_{g}^{2}}{\operatorname{Var}_{0}\left(\hat{\beta}_{g}\right)}=\frac{\operatorname{Cov}(y, g)^{2}}{\operatorname{Var}(g)^{2}} \cdot \frac{N \cdot \operatorname{Var}(g)}{\operatorname{Var}(y)}=N \frac{\operatorname{Cov}(y, g)^{2}}{\operatorname{Var}(y) \cdot \operatorname{Var}(g)} \tag{6.11}
\end{equation*}
$$

is distributed as $\chi^{2}$ with one degree of freedom. Here, $\operatorname{Var}_{0} \hat{\beta}_{g}$ denotes the variance under the null hypothesis. Denote the correlation between $y$ and $g$, $\frac{\operatorname{Cov}(y, g)}{\sqrt{\operatorname{Var}(y) \cdot \operatorname{Var}(g)}}$, as $r$. Then $T_{q}^{2}=N \cdot r^{2}$.

It is worth to note that Armitage's trend test can be expressed as a linear regression test. In the table 6.5 Let us code the genotypic groups based on the number of $B$ allels. Thus, we will code $A A$ as $0, A B$ as 1 , and $B B$ as 2 . Let us also code the cases with " 1 " and controls with "0". Let $y$ denote the vector of phenotypes and $g$ the vector of genotypes coded in this way. Then, if we perform linear regression of the case-control status onto the number of $B$ alleles in the genotype, the estimate of the regression coefficient is (following 6.10)

$$
\hat{\beta}=\frac{\sum x_{i} g_{i}-\sum x_{i} \sum g_{i} / N}{\sum g_{i}^{2}-\left(\sum g_{i}\right)^{2} / N}=\frac{\left(r_{1}+2 r_{2}\right)-\bar{p} R}{\left(n_{1}+4 n_{2}\right)-\bar{p} N}
$$

Thus, the expected proportions in the Armitage's trend test are provided by solution of linear regression equation, in which regression of case-control status, coded as " 0 " and " 1 " is performed onto the number of $B$ alleles. It can be further demonstrated that the trend test statistics 6.9 can be expressed as $T_{t}^{2}=N \cdot r^{2}$, where $r^{2}$ is squared coefficient of correlation between $y$ and $g$.

In the next two sections we will consider the effects of genetic structure on the standard tests for association described above. The extensive treatment of the problem is mainly due to the seminal works of Devlin, Roeder, Bacanu, and colleagues $\overline{B A C A N U}$ et al. (2000, 2002); Devlin and Roeder (1999); Devlin et al. (2001); here, some of their results are repeated.

The genetic structure of the sudy population will be characterized by the kinship matrix - a square matrix, which, for all pairs of individuals in question, provides their pair-wise kinship coefficients (defined at page 140). The kinship coefficient between persons $i$ and $j$ will be defined as $f_{i j}$.

### 6.2.2 Effects of genetic structure on standard tests

As it was demonstrated above, the Armitage's trend test for association can be expressed as $T_{a}^{2}=\frac{\hat{\beta}^{2}}{\operatorname{Var}(\hat{\beta})}$. Genetic structure affects both numerator and denominator of this expression. Indeed, if measurments are dependent, the varaiance of the estimate is likely to be under-estimated if such dependence is not accounted for, leading to the inflation of the tests statistic. Secondly, even in absence of association, the estimate of the effect may be biased, again, leading to increased value of the test statistic.

Let us consider following artificial example. Let study cases are closely related individuals - sibs $1^{1}$ - coming from one family, and study contols are sibs from other family. In essence, we compare the squared frequency difference between the two groups to the variance of this difference. If groups are formed by independent individuals, we can detect arbitrary small frequency differences by increasing the sample size, and consequently, decreasing the variance of the frequency estimate. This definitely is not the case when our study sample consist of a large sibship - whatever is the sibship size, only four alleles may be present in the parents, and the precision of the estimate of the allele frequency in the general population is limited - as if we had two people at maximum. If we do not

[^7]take this consideration into account, we are likely to over-estimate the precision of the frequency estimate; the denominator of the test statistic becomes small, and the statistic becomes large. Secondly, the parents of the "case" and "control" sibships have a high chance to be genotypically different, just by chance; and any genotypic configuration leading to the different number of $B$ alleles will be reflected in diffence in frequencies between sibships, given the sibships are large. Assuming HWE, the chance that two parental couples will have different number of $B$ alleles is one minus the chance that they will have the same number of $B$ alleles:
\[

$$
\begin{aligned}
P\left(\# B_{1} \neq \# B_{2}\right) & =1-\left(P\left(\# B_{1}=\# B_{2}=0\right)+P\left(\# B_{1}=\# B_{2}=1\right)+\ldots+P\left(\# B_{1}=\# B_{2}=4\right)\right) \\
& =1-\left(P\left(\# B_{1}=0\right) P\left(\# B_{2}=0\right)+\ldots+P\left(\# B_{1}=4\right) P\left(\# B_{2}=4\right)\right) \\
& =1-\left(q^{8}+16 p^{2} q^{6}+36 p^{4} q^{4}+16 p^{6} q^{2}+p^{8}\right)
\end{aligned}
$$
\]

which, for a common allele with frequency of 0.2 translates to the probability 0.64 .

Let us quantify these two sources of bias. Following DEVLIN et al. (2001) let us assume that the number of cases and the number of controls is the same, $N$. Let us denote the vector of genotypes, coded as 0,1 , and 2 of cases as $X$, with $X_{i}(i=1, \ldots, N)$ being the genotype of the $i$-th case, and the vector of genotypes of controls as $Y$ (with $Y_{j}, j=1, \ldots, N$ being the genotype of $j$-th control). The trend and the allelic tests statistic are proportional to the square of $T=\sum X_{i}-\sum Y_{j}$. The variance of this statistic, in general form, is

$$
\begin{align*}
\operatorname{Var}(T)= & \sum_{i=1}^{N} \operatorname{Var}\left(X_{i}\right)+\sum_{i=1}^{N} \operatorname{Var}\left(Y_{i}\right)  \tag{6.12}\\
& +2 \sum_{i<j} \operatorname{Cov}\left(X_{i}, X_{j}\right)+2 \sum_{i<j} \operatorname{Cov}\left(Y_{i}, Y_{j}\right) \\
& -2 \sum_{i} \sum_{j} \operatorname{Cov}\left(X_{i}, Y_{j}\right)
\end{align*}
$$

Let us consider a sitatuation in which cases come from one popualtion, and controls from the other population; each of the populations is in HWE and the difference between the populations is characterized with $F_{s t}$ (see equation 6.6). Under this model, $\operatorname{Var}\left(X_{i}\right)=\operatorname{Var}\left(Y_{i}\right)=2 p q\left(1+F_{s t}\right)$, and the covariance between any pair of genotypes from the same population is $4 p q F_{s t}$. Then

$$
\begin{align*}
\operatorname{Var}(T)= & 2 p q\left(1+F_{s t}\right) \cdot N+2 p q\left(1+F_{s t}\right) \cdot N \\
& +2 \cdot 2 p q F_{s t} \cdot N(N-1) / 2+2 \cdot 2 p q F_{s t} \cdot N(N-1) / 2+0 \\
= & 4 p q N \cdot\left(1+F_{s t}+2 F_{s t}(N-1)\right) \approx 4 p q N\left(1+2 N F_{s t}\right) \tag{6.13}
\end{align*}
$$

here, $4 p q N$ corresponds to the binomial variance of $T$ in absence of genetic structure, while $F_{s t}+2 \cdot F_{s t} \cdot(N-1)$ reflects the inflation of the variance. As the second term is the function of the sample size, large inflation may be achieved even with small vaules of $F_{s t}$. Note that here the sample size is $2 N$, as we assumed $N$ cases and $N$ controls.

Above we have considered an example in which we know the $F_{s t}$ between the population of cases and the population of controls. In a practical study, a number of cases and controls is usually sampled from each genetically different population. Let the proportion of individuals sampled from population $c$ among cases is $a_{c}$ and the proportion of individuals coming from that population among controls is $u_{c}$. Then, it can be shown that

$$
\begin{equation*}
\operatorname{Var}(T) \approx 4 p q N\left(1+2 \cdot N \cdot F_{s t} \cdot \sum_{c}\left(a_{c}-u_{c}\right)^{2}\right) \tag{6.14}
\end{equation*}
$$

As it follows from this equation, the variance of the estimated frequency difference depends on the composition of the sample. Maximal inflation is achieved when the cases and controls are sampled from different populations, while if $\sum_{c}\left(a_{c}-u_{c}\right)^{2}=0-$ which is achieved by sampling equal number of cases and controls from each sub-population - the variance inflation is minimal.

These results canbe generalized to arbitrary relations between cases and controls. Let us denote kinship between cases $i$ and $j$ as $f_{i j}^{X}$, kinship between controls as $f_{i j}^{Y}$, and the kinship between a case and a control as $f_{i j}^{X Y}$. Then DEVLIN et al. (2001)

$$
\begin{align*}
\operatorname{Var}(T)=4 p q N \cdot\left(\begin{array}{ll}
1 & +F_{s t}+\frac{2}{N} \sum_{i<j} f_{i j}^{X} \\
& +\frac{2}{N} \sum_{i<j} f_{i j}^{Y}-\frac{2}{N} \sum_{i} \sum_{j} f_{i j}^{X Y}
\end{array}\right) \tag{6.15}
\end{align*}
$$

This equation demonstrates that the variance is inflated not only in a case when cases and controls come from genetically distinct populations, but that also "criptic relations" among either cases (some $f_{i j}^{X}>0$ ) or controls (some $f_{i j}^{Y}>0$ ) may lead to increased variance of the test. Because summation (e.g. $\left.\sum_{i<j} f_{i j}^{X}\right)$ is performed overl all pairs of cases/controls, cryptic relations may have a strong impact onto inflation of the variance.

Generally, the variance of the $T$ can be expressed as $\operatorname{Var}(T)=4 N p q\left(1+F_{s t}+\right.$ $D\left(f^{X}, f^{Y}, f^{X Y}\right)$ ). Here, $4 N p q$ corresponds to the binomial variance assuming HWE and independence between cases and controls, the second term $-F_{s t}$ accounts for increase in variance due to deviation from HWE, and the last, which is a function of kinship $-D\left(f^{X}, f^{Y}, f^{X Y}\right)$ - accounts for dependencies bewteen cases and controls. The test $\frac{T^{2}}{4 N p q\left(1+F_{s t}+D\left(f^{X}, f^{Y}, f^{X Y}\right)\right)}$ is distributed as $\chi^{2}$ with one degree fo freedom.

The allelic and Armitage's trend statistics can be expressed as $T_{a}^{2}=\frac{T^{2}}{4 N p q}$ and $T_{t}^{2}=\frac{T^{2}}{4 N p q \cdot\left(1+F_{s t}\right)}$. What is their distribution when there is relatedness / stratification bewteen cases and controls? Clearly, both of them are distributed as $\tau^{2} \cdot \chi^{2}$, where $\tau^{2}>1$ is the variance inflatiopn factor. It easy to show that it is equal to $\tau^{2}=1+F_{s t}+D\left(f^{X}, f^{Y}, f^{X Y}\right)$ for the allelic and $\tau^{2}=$ $\frac{1+F_{s t}+D\left(f^{X}, f^{Y}, f^{X Y}\right)}{1+F_{s t}}$ for the trend test.

In above, we have accounted for the over-dispersion of the test statistic due to possible relatedness between the cases and controls, and demonstrated that the allelic and the trend test are inflated by some constant $\tau^{2}$, which reflects the inflation of the variance, $\operatorname{Var}(T)=\sigma^{2} \cdot \tau^{2}$, where $\sigma^{2}$ is the variance estimated under the assumption of independence. However, in the beginning of this section we have discussed another source of the infaltion of the test statistic - the bias in frequencies between cases and controls due to confounding. Let cases and controls are sampled from different populations, whose difference is characterized by $F_{s t}$, and let for some marker the allele frequency difference - which occures entirely due to genetic structure of the sampels - between casese and controls is $d$. The test statistic $T$ is then distributed as Normal with mean $N d$ and variance computed in previous section, $\sigma^{2} \cdot \tau^{2}, N\left(N d, \sigma^{2} \tau^{2}\right)$. To address the issue of bias, we need to figure out the distribution of the mean $-2 N d$. In general, the expected frequency difference is zero - indeed, if we consider a large number of subpopulations, or a large number of markers, if allelic frequencies are determined by random effects, the deviation is likely to occure in any direction, resultin in zero on average. The variance of the $d$ is
$2 p q F_{s t}$, thus the variance of $2 N d$ is $(2 N)^{2} 2 p q F_{s t}{ }^{2}$ Thus finally, $T$ is expected to be distributed as $N\left(0, \sigma^{2} \cdot \tau^{2}+8 p q F_{s t} N^{2}\right)$. If we consider the variance of allelic test, $\sigma^{2}=4 p q N$, then $T \sim N\left(0, \sigma^{2}\left(\tau^{2}+2 F_{s t} N\right)\right)$, and, denoting $2 F_{s t} N$ as $\nu^{2}$, $T \sim N\left(0, \sigma^{2}\left(\tau^{2}+\nu^{2}\right)\right)$. Similar expression may be obtained for the Armitage's trend test.

Thus, in presence of genetic structure both allelic and the trend test are distributed as $\left(\tau^{2}+\nu^{2}\right) \cdot \chi^{2}$. Note that while $\sigma^{2}$ is a function of allelic frequency, the inflation factors $\tau^{2}$ and $\nu^{2}$ depend on the differentiation between the populations in question, as measured by $F_{s t}$, sample size, $N$, and the composition of the case-control sample $\left(a_{c}, u_{c}\right)$, but does not depend on the allele frequency.

As it was mentioned earlier, the Armitage's trend test can be re-formulated as a regression-based score test, in which genotypes are coded as 0,1 , and 2 , and phenotypes as 0 and 1 . Therefore all above arguments apply to the analysis of quantitative traits as well. The test statistic $T_{q}^{2}=\frac{\hat{\beta}_{g}^{2}}{\operatorname{Var}\left(\hat{\beta}_{g}\right)}$ in which $\hat{\beta}$ and $\operatorname{Var}(\hat{\beta})$ are estimated using independence assumption is inflated because of overdispersion $(\operatorname{Var}(\hat{\beta})$ is under-estimated if the relatedness is not accounted for), and also $\hat{\beta}_{g}$ may be biased, because different genetic populations may well be characterized by different mean value of the trait (e.g. because of environmental influences). It can be shown that also for quantitative traits $T_{q}^{2}$ is distributed as $\left(\tau^{2}+\nu^{2}\right) \cdot \chi^{2}$, where $\tau^{2}$ is inflation due to over-dispersion, and $\nu^{2}$ is the inflation because of bias.

### 6.2.3 Genomic control

From previous section it follows that in presence of genetic structure the standard association statistics may be inflated and the distribution is described as $\left(\tau^{2}+\nu^{2}\right) \cdot \chi^{2}$. Let us denote $\left(\tau^{2}+\nu^{2}\right)$ as $\lambda$ for short. $\lambda$ depends on the genetic structure of the sample, as characterized by pairwise kinship, and sample size, $N$. For binary trait analysis, it also depends on the composition of the case-control sample, as expressed by the proportio of cases/conrols coming from particular population, $c\left(a_{c}, u_{c}\right)$. For quantitative trait, it depends of neritability of the trait, and environmentally detemined differences co-occuring with the difference in kinship. However, $\lambda$ does not depend on the allele frequency. Therefore, for any particular study sample, if $F_{s t}$ is constant over the genome, $\lambda$ is also a constant.

Therefore $\lambda$ can be estimated from the genomic data, using "null" loci - a set of random markers, which are believed not to be associated with the trait. This estimate can then be used to correct the values of the test statistic at the tested loci - a procedure, known as "genomic control". The test statistics computed from these loci thus estimates the distrbution of the test statistic under the null hypothesis of no association. Let us consider $M$ "null" markers, and denote the test statistic obtained from $i$-th marker as $T_{i}^{2}$. Given genetic structure determines inflation $\lambda, T^{2} \sim \lambda \cdot \chi_{1}^{2}$. The mean of a random variable coming from $\chi_{1}^{2}$ is equal to 1 ; if a random variable comes from $\lambda \cdot \chi_{1}^{2}$, the mean would be $\lambda$. Thus we can estimate $\lambda$ as the mean of the obtained "null" tests. In practice, it is recommended to use the ratio between the observed median

[^8]and the one expected for $\chi_{1}^{2}$ :
\[

$$
\begin{equation*}
\hat{\lambda}=\frac{\operatorname{Median}\left(T_{i}^{2}\right)}{0.4549} \tag{6.16}
\end{equation*}
$$

\]

For the tested markers, the corrected value of the test statistic is obtained by simple division of the original test statistic value on $\hat{\lambda}, T_{\text {corrected }}^{2}=T_{\text {original }}^{2} / \lambda$. Note that this procedure is correct only if the same number of study participants was typed for any marker, as you will see later.

As you can see, the genomic control procedure is computationally extremely simple - one needs to compute the test statistic using a simple test (e.g. score test), compute the median to estimate $\lambda$, and divide the original test statistics values onto $\hat{\lambda}$.

How to choose "null loci" is a GWA study? In a genome, we expect that a small proportion of markers is truly associated with the trait. Therefore in practice, all loci are used to estimate $\lambda$. Of cause, if very strong (or multiple weak) true associations are present, true association will increase the average value of the test, and genomic control correction will be conservative. To relax this, it has been suggestedSladek et al. (2007) to use, say, $95 \%$ of the least significant associations for estimation of the inflation factor; however, the question of selection of cut-off is not obvious, and all markers are used in practice in most studies.

We have observed that the inflation factor $\lambda$ is a function of sample size, $N$ - the bigger is the sample size, the larger is inflation. If this is the case, how can we compare inflations between different GWA studies? A good idea is to use a standardized inflation, say, inflation per 1,000 subjects. For a quantitative trait analysis, inflation factor can be expressed as $\lambda \approx(1+N * D($ sample $))$, where $N * D$ (sample) is a term, which grows linear with sample size, at some rate determined by sample characteristics.

Therefore a standarsized inflation factor can be etimated as

$$
\hat{\lambda}_{1000}=1+\frac{\hat{\lambda}-1}{N} \cdot 1000
$$

where $N$ is the sample size and $\hat{\lambda}$ is the estimate from the total sample.
What about a case-control sample? For such samples, a standardized $\lambda$ is computed for a fixed number of cases and controls, say 1000; we will denote such standardized inflation as $\lambda_{1000,1000}$ to distinguish it from the one computed for a quantitative traits. If we denote the number of cases as $N_{a}$ and the number of controls as $N_{u}$, then

$$
\hat{\lambda}_{1000,1000}=1+\frac{500 \cdot(\hat{\lambda}-1) \cdot\left(N_{a}+N_{u}\right)}{N_{a} \cdot N_{u}}
$$

Clearly, we have assumed that in our GWA study the sample size was equal for all studied markers; this fact allows for very simple estimation of $\hat{\lambda}$ (equation 6.16) and correction of the test statistic. It may happen, however, that the number of participants typed for different marker loci is different; for example, this may happen when all study participans were typed for SNP panel one, and then a part of the study was additionally typed at a different panel. In such
situation, expectation of a $T_{q}^{2}$ test for a quantitative trait can be expressed as

$$
E\left[T_{q}^{2}\right]=1+\left(\lambda_{1000}-1\right) \cdot \frac{N}{1000}
$$

It is straightforward to obtain an estimate of $\lambda_{1000}$ by performing linear regression of the observed test statistic values onto the sample size used; note that the intercept should be fixed to 1 in this procedure. Other, more effective procedures may be thought of.

For binary traits, if sample is composed from $N_{a}$ cases and $N_{u}$ controls, the expression for the expected value of the test statistic is similar to that obtained for quantitative traits, however, geometric mean of the number of cases and controls are used Freedman et al. (2004):

$$
E\left[T_{t}^{2}\right]=1+\left(\lambda_{1000,1000}-1\right) \cdot \frac{\frac{1}{1000}+\frac{1}{1000}}{\frac{1}{N_{a}}+\frac{1}{N_{u}}}
$$

This relation can be used to estimate $\lambda_{1000,1000}$.
We have considered the genomic control procedure for the tests assuming additive effects of the locus onto phenotype. Under this model, inflation of the tests $(\lambda)$ does not depend on allelic frequency, which allows a straightforward estimation of $\lambda$ and further correction of the tests. Does the same apply to other genetic models?

In figure 6.4 the results for additive, dominant, recessive, and over-dominant model tests are presented. Simulated study consisted of 1000 cases and 1000 controls; the differentiation between the case and control populations was assumed $F_{s t}=0.002$. Armitage's trend test was used in analysis. One can see that when a common polymorphism is studies $(0.05<q<0.95)$, the additive model test (green line) does not depend on the frequency of the $B$. The range of allele frequencies in which the additive model does not depend on these depends of the values of $F_{s t}$ and the sample size: the larger differentiation, and the smaller the sample size, the narrower is the range.

However, other one degree of freedom tests (recessive, red; dominant, blue; over-dominant, cyan) do depend on the allele frequency very much across all the range of allelic frequencies (figure 6.4. see ZHENG et al. (2005) for details).

Thus, it is important to remember that the genomic control was developed for, and works with additive genetic models; even in this framework, behaviour of $\lambda$ depends on allelic frequencies when theses are too low or too high - thus application of genome-wide derived inflation factor to such marker loci may be incorrect for loci with low minor allele frequency. What is somewaht sustaining statistically is the fact that such correction will be conservative, and not liberal - but the same may be worrysome biologically (e.g. missed true positives). For other types of model, lambda can, at least in theory, be estimated taking into account the allelic frequency of the locus in question. However, these methods are not implemented yet in packages for genome-wide association analyses.

Other important thing to remember about genomic control is that it assumes uniorm $F_{s t}$ across the genome. This may not be the case for some (e.g. selected) genomic regions. Such regions may still generate very high test statistic, even after appropritate genomic control correction CAMPBELL et al. (2005); basically, the frequency distribution at such loci may vary from population to population much more then the average across the genome. A number of methods


Figure 6.4: Mean $T_{t}^{2}$ test statistic as frequency of the $B$ allele, q. Models considered: additive, green; recessive, red; dominant, blue; over-dominant, cyan.
taking genetic structure of study population into account directly (structured association, EIGENSTRAT, reviewed later), can deal with such situations.

Finally, what levels of genomic control inflation parameter are acceptable in GWA studies? As the question is of how much the total test statistic is affected, non-standardized inflation may be used to address the question. Despite of lack of clear guidance, the general practice in the field is to consider the values of $\hat{\lambda}<1.01$ as small, $\hat{\lambda}<1.05$ as moderate and still acceptable. If $\hat{\lambda}>1.1$, this suggest strong influence of genetic structure or other design factors on the test statistic. While GC statistically correct method, such analysis lacks power; good practice is to consider use of other methods, which take the structure of the sample into account in diect manner.

### 6.3 Analysis of structured populations

A study populaion may be structured in at least two ways. Firstly, while study participants may be "independent" in that kinship between them is expected to be very low (e.g. random sample from a large outbred population), they may belong to rather different genetic populations. An extreme example of such study is a study aiming to combine the data from a sample obtained by random ascertainment from the population of Bejing and a sample from Amsterdam. While in any of the samples people are only remotedly related ("independent"), the two samples in question are characterized by high genetic differences; also the environmental influences may be very different for the two populations. The distribution of the trait under the study may be essentially different between the two populations: not only the mean values, but also variances.

On the other hand, consider a family-based sample from genetically isolated population. Here, environmental influences are more or less uniform for all study participants; the distribution of the trait may be assumed to be governed by the same set of rules for all study participants. However, they are characterized by high and variable kinship between each other.

These two flavours of stratification may be expressed in terms of kinship. When we talk about different "populations", we assume very low kinship and high genetic differentiation between the members of these; when we talk about "relatedness", we assume high kinship and small degree of differentiation. This is illustrated at figure 6.5. Roughly speaking, when we expect that study participants share common ancestors few (1-4) generation ago, the kinship between study participants is high, and the study can be classified as a family-based one (Study 1 of figure 6.5). When common ancestors between study participants is expected say $>5$ generations ago, the kinship between study participants is low, and such study may be classified as a population-based sample of "independent" people (Studies 2 and 3 of figure 6.5. Now consider two groups of study participants (samples 2 and 3 ). Any person from group 2 is expected to share a common ancestor with a person from the same study group with much higher probability than with a person form group 3; thus these represent two genetic population (see page 141 for the retrospective definition of genetic population). It shouldbe kept in mind that if kinship is very low (expected common ancestors dozns of generations ago), this would translate in high degree of genetic differentiation. Moreover, this reflects a long history of isolation, which usually means geographic sepration, and accumulation of cultural and other environ-


Figure 6.5: Three samples from two populations. 1: Family-based sample; 2,3: random sample of "independent" people
mentsl differences between the populations, which may be crucial in association studies.

Of cause, a particular study is usually characterized by some mixture of populations and some relatednes between study participants. We will, however, first consider the two extreme scenarios - analysis of samples of "independent" subjects from different populations, and analysis of a family-based study.

### 6.3.1 Structured association

If study populayion consist of a mixture of several distinct genetic populayions, and, within each sub-population, the study participants are remotedly related, structured asoiation analysis may be the method of choice. In such analysis, effect and its variance are estimated within each strata separately, and then these estimates are pooled to generate global statistics. The strata can be known from design (e.g. place of birth or ethnicity of parents) or estimated from GWA data. By doing this, we allow for arbitrary trait distribution, characterized by stratum-specific mean and variance, in each stratum. Clearly, this may be crucial when different populations characterized by different environments are included in analysis.

Combining the evidence across strata may be done using a number of methods, e.g. Cochran-Mantel-Haenszel test for binary outcomes. One of the most simple ways to combine the evidences coming from multiple strata - or studies - is to use fixed effects inverse variance meta-analysis.

In essence, this method is equivalent to combining likelihoods coming from separate studies, using quadratic approximation. Denote coefficients of regression estimated in $N$ studies/strata as $\beta_{i}$, and associated squared standard errors
of the estimates as $s_{i}^{2}$ where $i \in 1,2, \ldots, N$. Note that the regression coefficient should be reported on the same scale, e.g. centimeters, meters, or using observations reported on the standard normal scale. Define weights for individual studies as

$$
w_{i}=\frac{1}{s_{i}^{2}}
$$

Then the pooled estimate of the regression coefficient is

$$
\beta=\frac{\sum_{i=1}^{N} w_{i} \beta_{i}}{\sum_{i=1}^{N} w_{i}}
$$

As you can see, the weights have straightforward interpretation: the bigger the weight of the study (meaning the small is the standard error in the study), the larger is the contribution from this study onto the pooled estimate.

The standard error of the pooled estimate is computed as

$$
s^{2}=\frac{1}{\sum_{i=1}^{N} w_{i}}
$$

and the $\chi^{2}$-test for association is computed in standard manner as

$$
T^{2}=\frac{\beta^{2}}{s^{2}}=\frac{\left(\sum_{i=1}^{N} w_{i} \beta_{i}\right)^{2}}{\sum_{i=1}^{N} w_{i}}
$$

or, alternatively, the Z-test is

$$
Z=\frac{\beta}{s}=\frac{\sum_{i=1}^{N} w_{i} \beta_{i}}{\sqrt{\sum_{i=1}^{N} w_{i}}}
$$

When binary traits are studied, and results are expressed as Odds Ratios with $P$-values, it is also possible to apply inverse variance method. For this, you need to transform your Odds Ratios using natural logarithm, and, on this scale, estimate the standard error. Generic inverse variance pooling may be applied to the data transformed this way; the final results are back-transformed onto Odds Ratio scale using exponentiation.

In meta-analysis procedure, it is assumed that study populations are composed of genetically homogenous "unrelated" individuals. Each study is first analysed seprately, and genomic control should either show no inflation of the test statistic, or a small one, which should be corrected with GC prior to combinaning of strata/studies. If some of the stata demonstrate large residual inflation, this may suggest further sub-structure present in that strata - it should be dealt with using further sub-division and structure association, or methods described further in this chapter, prior to attempting the pooling of results.

The meta-analytic methodology to perform structured association analysis outlined above has advantage of simplicity. However, it assumes goodness of quadratic approximation of the likelihood function, which is achieved if numbers are large. If numbers are not large (e.g. rare polymorphisms), a more complicated strategy can be used. A regression model, allowing for study-specific mean, effects of nuisance parameters, and residual variances, but unique (across the studies) effect of interest may be formulated. Analysis of such model is equivalent to the above-described meta-analysis procedure, under large numbers assumption.

### 6.3.2 Mixed models based approach

In this section we will consider the methods used to analyse samples in which close family relations may be persent; theses may be family-based samples from outbred populations, or random samples from genetically siaolted populations, where, due to limited population size, relatives are likely to be present by chance.

The mixed model based ideology stems from the classical animal breeding and human heritability analysis methodology, dating back to works of Fisher FISHER (1918). He proposed a model in which a very large number of Mendeian genes contribute small effects to the phenotype (infenitisimal model). We may express this model as

$$
\begin{equation*}
y_{i}=\mu+G_{i}+e_{i} \tag{6.17}
\end{equation*}
$$

- the value of the trait of $i$-th person is sum of grand population mean, contribution from multiple additively acting genes of small effect $\left(G_{i}\right)$, and residual error $\left(e_{i}\right)$.

Under this assumption, the distribution of the trait in a pedigree is described by a multivariate normal distribution with number of dimensions equal to the number of phenotyped people, with the expectation of the trait value for some individual $i$ equal to

$$
E\left[y_{i}\right]=\mu
$$

where $\mu$ is grand population mean (intercept). The variance-covariance matrix is defined through its elements $V_{i j}$ - covariance between the phenotypes of person $i$ and person $j$ :

$$
V_{i j}= \begin{cases}\sigma_{e}^{2}+\sigma_{G}^{2} & \text { if } i=j  \tag{6.18}\\ 2 \cdot f_{i j} \cdot \sigma_{G}^{2} & \text { if } i \neq j\end{cases}
$$

where $\sigma_{G}^{2}$ is variance due genes, $f_{i j}$ is kinship between persons $i$ and $j$, and $\sigma_{e}^{2}$ is the residual variance. The proportion of variance explainable by the additive genetic effects,

$$
h^{2}=\frac{\sigma_{G}^{2}}{\sigma_{G}^{2}+\sigma_{e}^{2}}
$$

is termed (narrow-sense) "heritability".
Fixed effects of some factor, e.g. SNP, may be included into the model by modifying the expression for the expectation, e.g.

$$
E\left[y_{i}\right]=\mu+\beta_{g} \cdot g
$$

leading to so-called "measured genotypes" mode Boerwinkle et al. (1986).
In essence, this is a linear mixed effects model - the one containing both fixed (e.g. SNP) and random (polygenic) effects. A large body of literature is dedicated to this class of models, and finding the solution for such regression represents no great methodological challenge. Applicability of this model to GWA analysis was first proposed by Yu and colleagues YU et al. (2006). Two problems occure with application of this model to GWA analysis: firstly, if standard Maximum Likelihood (or Restricted Maximum Lileihood) approach is used to estimate this model, the computational time is excessive Aulchenko et al. (2007a); secondly, the pedigree - and thus the kinship matrix - may be not known for study participant.

Let us first consider exisiting solutions to the first problem. High computational complexity occures if both random and fixed effects part of the model
are estimated simulatneously, and this procedure is repeated for every SNP analysed. However, we may assume that the effects of SNP are liklely to be small. Thus, inclusion of the SNP into the model is not likely to change the estimates of the components of variance. Therefore a two-step procedure was suggested Aulchenko and Struchalin (submitted); Chen and Abecasis (2007): firstly, the mixed model containing all terms but these involving SNPs, is estimated (this includes estimation of the components of variance, and possibly the nuisance fixed effects); secondly, these estimates are then used to compute a test for association for every SNP in analysis. For details on this test, see Chen and Abecasis (2007) for original formulation, and Aulchenko and Struchalin (submitted) for extension to multiple variables and interaction effects tested in step two. The model is implemented in MACH and ProbABEL software packages.

Another method, bearing close resemblance to the method described above, is GRAMMAR - Genome-wide Rapid Analysis using Mixed Models and Regression Aulchenko et al. (2007a). Here, in step one, not only the mixed model is estimated, but also the environmental residuals,

$$
\hat{e}_{i}=y_{i}-\left(\hat{\mu}+\hat{G}_{i}\right)
$$

are estimated. These are free of correlations, and can be used as the new "trait" in further analysis. This procedue allows for very fast GWA analysis in step 2 (for large sample sizes, much faster then above-described two-step approach), also it has a great flexibility as the environmental residuals can be analysed using a large variaty of methods. At the same time, the GRAMMAR test for association is conservative, and the estimates of the effects obtained in step 2 are downward biased Aulchenko et al. (2007a). While conservativity of the test may be dealt with using "reverse genomic control' Amin et al. (2007), the issue of bias in effect estimates has no solution yet. The GRAMMAR model is implemented in GenABEL software packageAulchenko et al. (2007b).

Strictly speaking, above described two-step tests are correct if the distributions of covariates in the first and the second parts of the model are independent conditional on the estimated phenotypic variance-covariance matrix. This assumption is most likely to be true when the covariates included in the base model are environmental ones, and thus are not expected to exhibit conditional correlation with SNPs. However, when endogenous risk factors, such as e.g. body mass index, are included as the covariates in the base model, some SNPs are expected to exhibit covariance with this covariate. In such situation the two-step test is not strictly correct, but given relatively weak SNP-phenotype correlations normally observed in GWAS should normally keep good statistical properties in most situations. The properties of the test under such conditions are still awaiting their description.

The methodology described here applies to study of association of quantitative traits. For binary traits, no formal practical GWA solution is available yet. The best current strategy to analyze binary traits in samples of relatives may be to treat the binary outcome as if it was quantitative. As you have seen with Armitage's trend test, which is equaivalent to the score test for a quantitative variable when oucome is coded with "0" and " 1 " (page 152), this approach leads to correct inferences about significance.

### 6.3.3 Estimation of kinship matrix from genomic data

Another problem with application of mixed models to analysis of GWA data is that pedigree is required to estimate the kinship matrix. The expectation of kinship can be estimated from pedigree data using standard methods, for example the kinship for two outbred sibs is $1 / 4$, for grandchild-grandparent is $1 / 8$, etc. For an outbred person, the kinship coefficient is $1 / 2-$ that is two gametes sampled from this person at random are IBD only if the same gamete is sampled. However, in many situations, pedigree information may be absent, incomplete, or not reliable. Moreover, the estimates obtained using pedigree data reflect the expectation of kinship, while the true realization of kinship may vary around this expectation. In presence of genomic data it may therefore be desirable to estimate the kinship coefficient from these, and not from pedigree. It can be demonstrated that unbiased and positive semi-definite estimator of the kinship matrix Astle and Balding (in press) can be obtained by computing the kinship coefficients between individuals $i$ and $j$ with

$$
\begin{equation*}
\hat{f}_{i j}=\frac{1}{L} \sum_{l=1}^{L} \frac{\left(g_{l, i}-p_{l}\right)\left(g_{l, j}-p_{l}\right)}{p_{l}\left(1-p_{l}\right)} \tag{6.19}
\end{equation*}
$$

where $L$ is the number of loci, $p_{l}$ is the allelic frequency at $l$-th locus and $g_{l, j}$ is the genotype of $j$-th person at the $l$-th locus, coded as $0,1 / 2$, and 1 , corresponding to the homozygous, heterozygous, and other type of homozygous genotype Amin et al. (2007); Astle and Balding (in press); Price et al. (2006) The frequency is computed for the allele which, when homozygous, corresponds to the genotype coded as " 1 '.

Inetrestingly, use of the kinship matrix instead of pedigree kinship (when available) may lead to higher power, especially when "dense" pedigres and traits with high heritability are considered (YSA, unpublished data). This is likely to happen because genomic-based kinship is likely to reflect true genetic relations better than (possibly not completely correct) pedigree expectations.

### 6.3.4 EIGENSTRAT and related methods

EIGENSTRAT PRICE et al. (2006) method combines the ideas underlying structured association and the genomic kinship matrix. Basically, it allows for structured association, with strata and more subtle structure identified through the use of genomic data.

The genomic kinship matrix is computed as described earlier (equation 6.19). This matrix reflects genetic similarities between study participants. A reverse metric, distance matrix, is computed as $0.5-f$. Classical multi-dimentional scaling (CMDS) is applied to identify a number (say, $k$ ) of first principal components (PCs) of variation of the distance matrix. The idea behind CMDS is mapping of the all pair-wise distances defined by the original matrix to some $k$-dimentional space. Each study participant is presented as a dot in this space, and these dots are constructed in such way, that the distance between these is maximally close to the distances observed in the original distance matrix. Thus, if two genetically distinct populations are present in a sample, the first principal axe of variation $(k=1)$ will identify these. Generally, of $n$ distinct populations are present, these can be identified by $k=n-1$ first axes.


Figure 6.6: The European genetic structure (based on 273,464 SNPs). Three levels of structure as revealed by PC analysis are shown: A) inter-continental; B) intra-continental; and C) inside a single country (Estonia), where median values of the PC1\&2 are shown. D) European map illustrating the origin of sample and population size. CEU - Utah residents with ancestry from Northern and Western Europe, CHB - Han Chinese from Beijing, JPT - Japanese from Tokyo, and YRI - Yoruba from Ibadan, Nigeria. (reproduced from Nelis et al. (2009)) NEED PERMISSION FROM PLoS ONE!

To demonstrate this principle, results of CMDS of the genomic distance matrix for the HapMap participants, and a number of people from Europe, are presented at figure 6.6. On panel A, the results of CMDS of the distance matrix to to the space of the first two PCs are present. Inter-continental differences are obvious - there are three distinct clusters, corresponding to Yoruba (yellowbrown), Asian (green and dark brown), and European (blue and red) study participant. You can see that mapping to the first two principal components perfectly distinguishes these three populations. The same methodology can be used to distinguish between more subtly divided populations - at panel $\mathbf{B}$ of figure 6.6 the mapping of European populations is present. The panel $\mathbf{C}$ presents even further detalisation of genetic distances - to the level of single country.

Note that configuration of European cluster in panel $\mathbf{A}$ is not exactly the same as in panel B. This happens because the distance matrix, computed based on formula 6.19, depends on allelic frequencies, as estimated in the total sample. Clearly, these are different, when all continents or Europeans only are used. Consequtive analysis of sub-samples allows distinguishing more and more subtle differences between populations.

Interestingly, the genetic distances co-incide very well with geographic distances, i.e. the populations close geographically are also close genetically. Thus, most isolation between human populations is explained by geographic distance.

How these principal components may be incorporated in association analysis? Different populations may have diferent mean values (or prevalences) of the trait under the study, which, coupled with genetic differences, leads to confounding and false positives in association study. A simple method would be to try to account for these differences in the means by incorporating the principal components as covariates into association analysis Sladek et al. (2007). Another, related method would be to perform linear adjustment of both the phenotype and the genotype onto PCs (i.e. compute the residuals from linear regression of genotypes/phenotypes onto PCs). Then simple score test for association ( $T_{q}^{2}$, equation 6.11 can be used to analyze association. This comprises the original EIGENSTRAT methodology suggested by Price and colleagues Price et al. (2006).

A practically interesting question is how many PCs to include into analysis? By default, EIGENSTRAT uses 10 PCs , but this is rather arbitrary number. In general, "significant" PCs should be included into analysis. Patterson and colleagues Patterson et al. (2006) suggested including the leading PCs, which significantly explain progressively more genetic variation. Alternatively, it was argued that PCs significantly associated with the phenotype should be includedNOVEMBRE and STEPHENS (2008), as inclusion of other PCs is not only unnecessary, but may also reduce power.

Note that methods described here allow for differences in means between the populations, but not for the difference in variances. It would be interesting to address the question what effects violation of this assumption may have on association studies, and develop extended methods allowing for difference in variances. This would first probably require a study of inter-populatinal variances.

### 6.3.5 Summary: what method to use?

What methods should be used for analysis of particular study? An simplified overview is provided at figure 6.7 .

Basically, if study participants come from the same genetic population, are characterozed by low degree of kinship, and confounding, as measured with genomic control (GC) inflation parameter $\lambda$ is small, GC is enough to correct for residual bias.

If study participants come from substantially different populations, and, for each population, above conditions hold, structured association may be used.

If study participants are characterized by high degree of kinship, mixedmodel based methods should be used.

EIGENSTRAT and PC-based adjustment methods should be used in somewhat intermediate situation when differentiation between the populations and kinship between study participants is not too high: while substantial population differentiation may mean differences in variances, which EIGENSTRAT/PCBA does not account for, it is also known that these methods do not perform very well in pedigrees (YSA, Najaf Amin, unpublished data).

Clearly, a particular study may have its own specifics and should be considered separately. As difference between outlined scenarios is quantitative rather


Figure 6.7: Applicability of different methods for association analysis.
than qualitative, there is no single recipe for analysis when genetic structure is present in a study sample.

### 6.4 Links

Here are some useful links to software which can be used for analysis in structured populations:

EIGENSTRAT: http://genepath.med.harvard.edu/~reich/EIGENSTRAT.htm
GenABEL: http://mga.bionet.nsc.ru/~yurii/ABEL/
MACH: http://www.sph.umich.edu/csg/abecasis/mach/
PLINK: http://pngu.mgh.harvard.edu/~purcell/plink/

## Chapter 7

## GWA in presence of genetic stratification: practice

Both ethnic admixture and presence of close relationships represents examples of confounding in association analysis. However, the methods to correct for stratification as resulting from mixture of subjects coming from different genetic populations, and methods to correct for family relations may be slightly different, and will be described separately in the next sections.

### 7.1 Analysis with ethnic admixture

In previous section we detected genetic stratification by analysis of genomic kinship matrix and excluded genetic outliers from our further analysis. When there are only a few such outliers, exclusion them from analysis is a good option. However, in large studies cases and controls are usually selected across a number of locations and genetic populations, and stratification is expected by design. In such case, analysis of association should account for this stratification.

Let us do structured association analysis using the data1 data derived in previous section.

If you are not running $R$ yet, start $R$ and load GenABEL-package library by typing

```
> library(GenABEL)
```

and load the 'data1' workspace generated in section 5 ('Genome-wide association analysis ').

```
> load("data1.RData")
> ls()
[1] "cl1" "data1" "data1.gkin" "data2.qt"
```

First, let us check how much test statistic inflation is there if we ignore stratification.

```
> data1.qt <- qtscore(dm2,data1)
> lambda(data1.qt)
```

```
$estimate
[1] 1.051744
$se
[1] 0.000756613
$iz0
[1] 1.015643
```

\$iz2
[1] 1
We now will consider several ways to account for stratification, namely, strucutured association analysis, method of Price et al. (EIGENSTRAT), a similar method based on adjusting for the principal components of variation of genomic kinship matrix, and use of a mixed model.

One of the ways to do that is to perform structured association analysis. In such analysis, effect and its variance are estimated within each strata separately, and then these estimates are pooled to generate global statistics. The strata can be known from design (e.g. place of birth or ethnicity of parents) or estimated from GWA data.

To do structured association analysis we need to define a variable which will tell what population the study subjects belong to. In previous section, we stored the names of 'outlier' subjects in variable cl1:

```
> cl1
```

[1] "id2097" "id6954" "id2136" "id858"
We can use function \%in\% to find out what names of subjects are in cl1:

```
> pop <- as.numeric(idnames(data1) %in% cl1)
```

Let us check how the 'population' is distributed among the cases and controls:

```
> table(pop,phdata(data1)$dm2)
pop 0}
 04777
 1 0 4
```

As we have seen before, one of the clusters contains only the cases.
Now, structured association may be done with qtscore function by specifying strata argument:

```
> data1.sa <- qtscore(dm2,data=data1,strata=pop)
> lambda(data1.sa)
$estimate
[1] 1.03431
```

\$se


Figure 7.1: Comparison of the original results, results of analysis excluding outliers, and structured association analysis.
[1] 0.0007059588

## \$iz0

[1] 1.006671

## \$iz2

[1] 1
We can compare the original results, results of analysis excluding outliers, and structured association analysis by

```
> par(mfcol=c(3,1))
> plot(data1.qt,ylim=c(1,6))
> plot(data2.qt,ylim=c(1,6))
> plot(data1.sa,ylim=c(1,6))
> par(mfcol=c(1,1))
```

The resulting plot is presented at figure 7.1. In this case, there is little difference, because all people belonging to the smaller sub-population are cases.

Other way to adjust for genetic (sub)structure is to apply the method of Price et al. (EIGENSTRAT), which make use of principal components of the genomic kinship matrix to adjust both phenotypes and genotypes for possible stratification. In GenABEL-package, such analysis is done using egscore function.

## 172CHAPTER 7. GWA IN PRESENCE OF GENETIC STRATIFICATION: PRACTICE

```
> data1.eg <- egscore(dm2,data=data1,kin=data1.gkin)
> lambda(data1.eg)
$estimate
[1] 1.102747
$se
[1] 0.001043038
```

The analysis plot may be added to the previous one by

```
> par(mfcol=c (3,1))
> plot(data1.eg,ylim=c(1,6))
```

Now let us apply adjustment for the stratification by use of the principal components of genetic variation. For that we first need to extract the principal components of genetic variation by constructing the distance matrix

```
> dst <- as.dist(0.5-data1.gkin)
```

and performing the classical multidimensional scaling

```
> pcs <- cmdscale(dst,k=10)
> pcs[1:5,]
```

|  | $[, 1]$ | $[, 2]$ | $[, 3]$ | $[, 4]$ | $[, 5]$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| id199 | 0.030289769 | 0.057952824 | 0.10342206 | -0.020496319 | -0.02678162 |
| id300 | 0.031798583 | 0.004789923 | 0.02947431 | 0.033227508 | 0.05977593 |
| id403 | 0.060654557 | 0.079249013 | -0.06111279 | -0.081417523 | 0.03294180 |
| id415 | -0.004913697 | -0.030714900 | 0.07807686 | 0.017468144 | 0.03078079 |
| id666 | -0.012639670 | 0.016176179 | -0.08784632 | -0.002322116 | 0.02957059 |
|  | $[, 6]$ | $[, 7]$ | $[, 8]$ | $[, 9]$ | $[, 10]$ |
| id199 | 0.08021104 | 0.01144582 | -0.020228061 | -0.001507913 | -0.060483058 |
| id300 | 0.03702791 | 0.02887831 | 0.005142389 | -0.005340720 | 0.094991803 |
| id403 | -0.01481834 | -0.01259170 | 0.040037267 | -0.048689378 | 0.007304146 |
| id415 | -0.02472941 | 0.07900292 | 0.075300986 | 0.028609310 | 0.021747288 |
| id666 | -0.04742543 | -0.11594090 | 0.106539735 | 0.026380262 | -0.022472669 |

Now we can use these PCs for adjustment:

```
> data1.pca <- qtscore(dm2~ pcs[,1]+pcs[,2]+pcs[,3],data1)
> lambda(data1.pca)
$estimate
[1] 1.004946
$se
[1] 0.0007356663
$iz0
[1] 1
$iz2
[1] 1
```

```
> plot(data1.pca,ylim=c(1,6))
```

Finally, let us use the full genomic kinship matrix for the adjustemnt for pupulational structure. First, let us estimate the polygenic model with

```
> h2a <- polygenic(dm2,data1,kin=data1.gkin)
```

The resulting 'heritability' estimate is

```
> h2a$esth2
```

[1] 0.3840789
Now we can perform mixed model approximation analysis using mmscore function

```
> data1.mm <- mmscore(h2a,data1)
> lambda(data1.mm)
$estimate
[1] 1
$se
[1] NA
> plot(data1.mm,ylim=c(1,6))
> par(mfcol=c(1,1))
```

The resulting plot is presented at figure 7.2
Again, the difference between three analysis methods is marginal because there are no highly differentiated SNPs in the data set, and one sub-population is presented by cases only. Still, the signals at chromosome one and three slightly improved, while these at two and X went down.

Load and analyse the data set presented in file stratified.RData. GWA data presented in this file concern a study containing data from several populations. All these populations originate from the same base population some generations ago. Some of these populations mantained large size and some were small. There was little ( $2.5 \%$ ) migration between populations.

Two traits ('quat' and 'bint') ara available for analysis. Investigate relations between phenotypes and covariates. Perform association analysis. Answer the questions
Ex. 1 - What covariates are significantly associated with the traits?
Ex. 2 - How many SNPs and IDs are presented in the data set?
Ex. 3 - How many SNPs and IDs pass the quality control (use SNP and ID call rate of 0.98)?

Ex. 4 - Is there evidence for stratification coming from the distribution of GW test for HWE (what is $\lambda$ ?)

Ex. 5 - Is there evidence that the test statistics for trait quat is inflated (what is $\lambda$ ?)


Figure 7.2: Comparison of method of Price et al., principal components adjustment and mixed modelling.

Ex. 6 - Is there evidence that the test statistics for trait bint is inflated (what is $\lambda$ ?)

Ex. 7 - How many genetically distinct populations are present in the data set? How many people belong to each population?

Ex. 8 - Is the case/control and quantitative trait disbalance between populations?

Ex. 9 - For the quantitative trait, what method corrects best for stratification (in terms of minimal residual inflation)?

Ex. 10 - What is the strongest SNP associated with trait quat? What model (method and covariates used) gives best results? Is the finding GW-significant?

Ex. 11 - What is the strongest SNP associated with trait bint? What model (method and covariates used) gives best results? Is the finding GW-significant?

### 7.2 Analysis of family data

In this section we will consider analysis of quantitative traits in a family-based cohort, where participants were not selected for the value of the trait under analysis. Such data may be generated in any study selecting participants based
on kinship (e.g. collections of sibships, nuclear or extended families); also any study in a genetically isolated population is likely to end up with a large proportion of relatively closely related individuals, even if ascertainment was random with the respect to kinship.

In pedigree-based association analysis the pedigree works as a confounder exactly in the same manner as ethnic origin may work in a population-based study. Any genetic polymorphism is inherited through genealogy, and therefore genotypes are more similar between close relatives. In the same manner, any other heritable trait will be also more similar between relatives, and therefore certain degree of association is expected between any genetic marker and any heritable trait in a family-based sample. If additive 1 d.f. test for association is considered, the effect of confounding by pedigree can be shown to inflate the resulting null distribution of presumably $\chi_{1}^{2}$ test statistics by a certain constant $\lambda$.

As you remember, this is exactly what happens when simple test for association is applied to a population-based data with ethnic admixture. In a population-based study with strong admixture (both in terms of the proportion and ethnic "distance"), some genomic regions may have been differentially selected in different populations. In such situation, use of genomic control does not prevent false-positive association between a trait and these regions, and other methods, such as EIGENSTRAT or Structured Association, are to be used.

For pedigree-based data coming from (relatively) genetically homogeneous population it can be shown that $\lambda$ is a function of trait's heritability and pedigree structure, expressed as kinship matrix. Thus, genomic control is a simple and valid method to study association in genetically homogeneous families. However, this method reduces (or summarises if you prefer) all the abundant information about heritability and relationship into a single parameter $\lambda$, therefore it is not the most powerful method.

In quantitative genetics, a mixed polygenic model of inheritance may be considered as "industrial standard" - this model has sound theoretical bases and is proven by time to describe well inheritance of complex quantitative traits. This model describes the vector of observed quantitative traits as

$$
\begin{equation*}
Y=\mu+G+e \tag{7.1}
\end{equation*}
$$

where $\mu$ is the intercept, $G$ is contribution from polygene, and $e$ is random residual.

It is assumed that for each individual its "personal" random residual $e_{i}$ is distributed as Normal with mean zero and variance $\sigma_{e}^{2}$. As these residuals are independent between pedigree members, the joint distribution of residuals in the pedigree can be modelled using multivariate normal distribution with variance-covariance matrix proportional to the identity matrix $I$ (this is a matrix with diagonal elements equal to 1 , and off-diagonal elements equal to zero): $e \sim M V N\left(0, I \sigma_{e}^{2}\right)$.

The polygenic component $G$ describes the contribution from multiple independently segregating genes all having a small additive effect onto the trait (infinitesimal model). For a person for whom parents are not known, it is assumed that $G_{i}$ is distributed as Normal with mean zero and variance $\sigma_{G}^{2}$. Assuming model of infinitely large number of genes, it can be shown that given polygenic values for parents, the distribution of polygene in offspring follows Normal distribution with mean $\left(G_{m}+G_{f}\right) / 2$ and variance $\sigma_{G}^{2} / 2$, where $G_{m}$ is maternal
and $G_{f}$ is paternal polygenic values. From this, it can be shown that jointly the distribution of polygenic component in a pedigree can be described as multivariate normal with variance-covariance matrix proportional to the relationship $\operatorname{matrix} \Phi: G \sim M V N\left(0, \Phi \sigma_{G}^{2}\right)$.

Thus the log-likelihood for this model can be written as a function of three parameters:

$$
\begin{align*}
L\left(\mu, \sigma_{G}^{2}, \sigma_{e}^{2}\right)= & -\frac{1}{2} \cdot \log _{e}\left|\left(\Phi \cdot \sigma_{G}^{2}+I \cdot \sigma_{e}^{2}\right)\right| \\
& +(Y-\mu)^{T} \cdot\left(\Phi \cdot \sigma_{G}^{2}+I \cdot \sigma_{e}^{2}\right)^{-1} \cdot(Y-\mu) \tag{7.2}
\end{align*}
$$

where $\mu$ is intercept, $\sigma_{G}^{2}$ is the proportion of variance explained by the polygenic component, and $\sigma_{e}^{2}$ is the residual variance.

Covariates such as sex, age, or a genetic marker studied for association can be easily included into the model:

$$
Y=\mu+\sum_{j} \beta_{j} \cdot C_{j}+G+e
$$

Here, $C_{j}$ is the vector containing $j$-th covariate and beta ${ }_{j}$ is the coefficient of regression of $Y$ onto that covariate.

This mixed morel leads to likleihood

$$
\begin{align*}
L\left(\mu, \sigma_{G}^{2}, \sigma_{e}^{2}, \beta_{1}, \beta_{2}, \ldots\right)= & -\frac{1}{2} \cdot \log _{e}\left|\left(\Phi \cdot \sigma_{G}^{2}+I \cdot \sigma_{e}^{2}\right)\right| \\
& +\left(Y-\left(\mu+\sum_{j} \beta_{j} \cdot C_{j}\right)\right)^{T} \cdot\left(\Phi \cdot \sigma_{G}^{2}+I \cdot \sigma_{e}^{2}\right)^{-1} \\
& \cdot\left(Y-\left(\mu+\sum_{j} \beta_{j} \cdot C_{j}\right)\right) \tag{7.3}
\end{align*}
$$

This general formulation can be easily adopted to test genetic association; for example, an effect of a SNP can be incorporated into regression model

$$
Y=\mu+\beta_{g} \cdot g+G+e
$$

where $g$ is the vector containing genotypic values. In this mode, you can specify a variety of 1 d.f. models by different coding of the vector $g$. For example, if you consider an "AG" polymorphism and want to estimate and test additive effect of the allele "G", you should code "AA" as 0 (zero), "AG" as 1 and "GG" as 2. Under this coding, the $\beta_{g}$ will estimate additive contribution from the " G " allele. If you are willing to consider dominant model for G , you should code "AA" and "AG" as 0 and "GG" as 1. Recessive and over-dominant models can be specified in a similar manner. If, however, you want to estimate general 2 d.f. model, the specification should be different:

$$
Y=\mu+\beta_{a} \cdot g+\beta_{d} \cdot I_{g=2}+G+e
$$

where $g$ is coded as 0,1 or 2 , exactly the same as in the additive model, and $I_{g=2}$ is the binary indicator which takes value of one when $g$ is equal to 2 and zero otherwise. In this model, $\beta_{a}$ will estimate the additive and $\beta_{d}$ - the dominance
effect. There may be other, alternative coding(s) allowing for essentially the same model, for example

$$
Y=\mu+\beta_{1} \cdot I_{g=1}+\beta_{2} \cdot I_{g=2}+G+e
$$

would estimate trait's deviation in these with $g=1\left(\beta_{1}\right)$ and these with $g=2$ $\left(\beta_{2}\right)$ from the reference $(g=0)$.

The classical way to estimate mixed polygenic model and test for significance is Maximum Likelihood (ML) or Restricted ML (REML) using equation (7.3). However, when large pedigrees are analysed, ML/REML solution may take prohibitively long time, i.e. from minutes to hours for single SNP analysis, making study of hundreds of thousand of SNPs impossible. Therefore fast approximate tests were developed for the purposes of GWA association analysis in samples of relatives.

Here we will cover two of fast approximations available, FAmily-based Score Test for Association (FASTA, Chen \& Abecasis, 2007) and Genome-wide Rapid Analysis using Mixed Models And Score test (GRAMMAS, Amin et al, 2007). Both tests are based on the classical polygenic mixed model and are performed in two steps.

First, polygenic model as specified by equation $\sqrt{7.1}$ and likelihood $(7.2$ is estimated using available data.

Secondly, the maximum likelihood estimates (MLEs) of the intercept, $\hat{\mu}$, proportion of variance explained by the polygenic component, $\hat{\sigma}_{G}^{2}$, and residual variance, $\hat{\sigma}_{e}^{2}$, are used to compute the FASTA test statistics

$$
T_{F}^{2}=\frac{\left((g-E[g])^{T} \cdot\left(\Phi \cdot \hat{\sigma}_{G}^{2}+I \cdot \hat{\sigma}_{e}^{2}\right)^{-1} \cdot(Y-\hat{\mu})\right)^{2}}{(g-E[g])^{T} \cdot\left(\Phi \cdot \hat{\sigma}_{G}^{2}+I \cdot \hat{\sigma}_{e}^{2}\right)^{-1} \cdot(g-E[g])}
$$

It can be shown that $T_{F}^{2}$ follows $\chi_{1}^{2}$ when pedigree structure is $100 \%$ complete and $100 \%$ correct. As this is never actually the case, application of GC to correct for residual inflation is recommended.

FASTA test results in unbiased estimates of the SNP effect and correct $P-$ values. Please keep in mind that this is correct - as for any score test - only when alternative is reasonably close to the null, i.e. when the SNP explains small proportion of trait's variance. Disadvantages of this test are that is can be relatively slow when thousands of study subjects are analysed, and that permutation procedures can not be applied to estimate genome-wide significance, because the data structure is not exchangeable.

Other test, GRAMMAS, also exploits MLEs from the polygenic model (7.1). However, these are used to first compute the vector of environmental residuals $\hat{e}$, using standard equation

$$
\hat{e}=\hat{\sigma}_{e}^{2} \cdot\left(\Phi \cdot \hat{\sigma}_{G}^{2}+I \cdot \hat{\sigma}_{e}^{2}\right)^{-1} \cdot(Y-\hat{\mu})
$$

These residuals, in turn, are used to run simple score test:

$$
T_{G}^{2}=\frac{\left.\left((g-E[g])^{T} \cdot \hat{e}\right)\right)^{2}}{(g-E[g])^{T} \cdot(g-E[g])}
$$

This test is conservative, but GC can be used to correct for the deflation of the test statistics.

The fact that environmental residuals $\hat{e}$ are not dependent on pedigree structure leads to a nice property of the GRAMMAS test: the data structure becomes exchangeable and permutations may be used to estimate genome-wide significance. When used in combination with GC, $P$ - values derived from GRAMMAS test are correct; however, there is a downward bias in estimates of SNP effects.

When using FASTA or GRAMMAS test, it is recommended to estimate genomic kinship matrix from available genome-wide data, and use it in analysis instead of pedigree kinship. This solution firstly does not rely on the completeness and quality of pedigree; secondly, genomic kinship is more likely to give a better estimate of a true covariance between individual genomes, while pedigree kinship provides one with expectation. Therefore use of genomic kinship is expected to lead to better estimates of polygenic model, and thus better power to detect association in GWA analysis. This being said, we generally advocate use of genomic, and not pedigree kinship. Of cause, you can only implement this solution when you have GWA data; in a candidate gene study you will have to rely on the pedigree structure to estimate kinship matrix.

### 7.3 Example GWA analysis using family-based data

In this section, we will explore small data set ( 150 people, 5827 SNPs). Let us load and explore it:

```
> load("RData/erfsmall.RData")
> ls()
[1] "erfs" "pkins"
> class(erfs)
[1] "gwaa.data"
attr(,"package")
[1] "GenABEL"
> class(pkins)
[1] "matrix"
```

You can see that there a two objects, erfs and pkins, presented in the data. The class of the first object is standard GenABEL-package's gwaa.data-class; this is the object containing GWA data. The other object contains kinship matrix, as estimated from pedigree data.

You can check the number of people and SNPs in the data set with

```
> nids(erfs)
```

[1] 150

```
> nsnps(erfs)
```

[1] 5827

### 7.3. EXAMPLE GWA ANALYSIS USING FAMILY-BASED DATA

As usual, it is advisable to check the distribution of SNPs by chromosome:

```
> table(chromosome(erfs))
```

| 1 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 2 | 20 | 21 | 22 | 23 | 3 | 4 | 5 | 6 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 484 | 251 | 224 | 285 | 188 | 210 | 206 | 189 | 159 | 170 | 149 | 481 | 130 | 100 | 132 | 26 | 403 | 300 | 320 | 397 |
| 7 | 8 | 9 | X |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 286 | 253 | 206 | 278 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

(here, 23 stays for pseudo-autosomal region of the X chromosome); you can see that markers are evenly spread over the chromosomes.

Summary marker statistics can be generated by

```
> descriptives.marker(gtdata(erfs))
$`Minor allele frequency distribution`
 X<=0.01 0.01<X<=0.05 0.05<X<=0.1 0.1<X<=0.2 X>0.2
\begin{tabular}{lrrrrr}
No & 17.000 & 26.000 & 75.000 & 437.000 & 5272.000 \\
Prop & 0.003 & 0.004 & 0.013 & 0.075 & 0.905
\end{tabular}
$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
 X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X
No
$`Distribution of proportion of successful genotypes (per person)`
 X<=0.9 0.9<X<=0.95 0.95<X<=0.98 0.98<X<=0.99 X>0.99
\begin{tabular}{llllll}
No & 0 & 1.000 & 2.000 & 12.00 & 135.0
\end{tabular}
\begin{tabular}{lllll}
Prop 0 & 0.007 & 0.013 & 0.08 & 0.9
\end{tabular}
$`Distribution of proportion of successful genotypes (per SNP)`
 X<=0.9 0.9<X<=0.95 0.95<X<=0.98 0.98<X<=0.99 X>0.99
No }\begin{array}{lllll}{77.000 33.000 214.000 208.000 5295.000}
Prop 0.013 0.006 0.037
$`Mean heterozygosity for a SNP`
[1] 0.4402752
$`Standard deviation of the mean heterozygosity for a SNP`
[1] 0.08287253
$`Mean heterozygosity for a person`
[1] 0.4354001
$`Standard deviation of mean heterozygosity for a person`
[1] 0.01305448
You can see that the quality of genotypic data is quite reasonable: call rate is generally high, both per-person and per SNP, and there is little deviation from Hardy-Weinberg equilibrium.
Let us explore pedigree kinship matrix. First, let us just look how this matrix looks like by displaying few elements from the upper-left corner:
```

```
> pkins[1:5,1:5]
 id1 id2 id3 id4 id5
id1 5.00000e-01 8.56146e-05 1.01984e-04 2.33397e-04 8.56146e-05
id2 8.56146e-05 5.00000e-01 3.96513e-03 2.56896e-05 2.51269e-01
id3 1.01984e-04 3.96513e-03 5.00000e-01 1.21593e-05 3.96513e-03
id4 2.33397e-04 2.56896e-05 1.21593e-05 5.00000e-01 2.56896e-05
id5 8.56146e-05 2.51269e-01 3.96513e-03 2.56896e-05 5.00000e-01
```

By definition, pedigree kinship should take values between 0 and 0.5 (plus some small amount from inbreeding); kinship between (non-inbred) sibs or an offspring and the parent is $1 / 4$. You can see that in the upper-left corner there is one inbred sib-pair (or parent-offspring pair; "id2" and "id5"). You can also see that this matrix is symmetric around the diagonal.

Let us summarise the distribution of kinship coefficients; in doing this we want to generate the summary for every off-diagonal element only once. Function lower.tri can be used to get the "lower triangle" sub-matrix elements:

```
> summary(pkins[lower.tri(pkins)])
```

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.00000000 .00049990 .00285000 .00628100 .00537800 .2633000

As you can see, average relationship corresponds to that expected between second cousins $(1 / 64=0.015625)$ and third cousins $(1 / 256=0.00390625)$.

We can also draw a histogram of the distribution of the kinship coefficients (shown at figure 7.4 A ):

```
> hist(pkins[lower.tri(pkins)])
```

and see that most elations are indeed remote.
Let us estimate genomic kinship matrix using autosomal data with the command ibs, and look up the elements in the upper-left corner:

```
> gkins <- ibs(erfs[,autosomal(erfs)],weight="freq")
> gkins[1:5,1:5]
 id1 id2 id3 id4 id5
id1 0.513083834 5.439000e+03 5.446000e+03 5441.00000000 5440.0000000
id2 -0.012569446 4.931959e-01 5.524000e+03 5524.00000000 5521.0000000
id3 0.001516184 -8.551323e-03 5.044065e-01 5529.00000000 5528.0000000
id4 0.010459422 -1.471218e-02 -3.467894e-03 0.50739823 5523.0000000
id5 -0.007957596 2.561484e-01 -8.925127e-03 -0.02205665 0.4943105
```

Here, the estimated kinship is shown below the diagonal, and the number of informative SNP pairs used for estimation is shown above the diagonal.

You can see that "genomic kinship" coefficients may take values lower than zero, which is consequence of the fact that in effect "genomic kinship" is simply covariance between the vectors of individual genotypes. This quantity, though it provides an unbiased estimate of kinship, can be lower than zero.
> summary(gkins[lower.tri(gkins)])


Figure 7.3: Population structure of 'strdat1' data

```
Min. 1st Qu. Median Mean 3rd Qu. Max.
\(\begin{array}{llllll}-0.038980-0.011930-0.005826 & -0.003362 & 0.000481 & 0.268000\end{array}\)
```

here, the average is quite close to that obtained with pedigree kinship.
We can also draw a histogram of the distribution of "genomic kinship" coefficients (shown at figure 7.4 B ):

```
> hist(gkins[lower.tri(gkins)])
```

and can easily graphically present relations between genomic and pedigree kinship with

```
> plot(pkins[lower.tri(pkins)],gkins[lower.tri(gkins)])
```

(shown at figure 7.5), and estimate correlation between the two with

```
> cor(pkins[lower.tri(pkins)],gkins[lower.tri(gkins)])
```

[1] 0.9161499

From the graph, you can clearly see that, though there is a very strong correlation between genomic and pedigree kinships, these are not identical.

In real data, you may find that there are some points where pedigree data clearly suggest relation different from that suggested by genomic data. Which one to believe? Generally, pedigrees are more prone to errors than genotypic

## 182CHAPTER 7. GWA IN PRESENCE OF GENETIC STRATIFICATION: PRACTICE

Histogram of pkins[lower.tri(pkins)]


Histogram of gkins[lower.tri(gkins)]


Figure 7.4: Distribution of the pedigree (upper histogram) and genomic (lower histogram) kinship coefficients for erfs data set.
data. In the data containing close relatives it is better to rely on "genomic kinship".

Let us first analyse the data using plain GC method:

```
> qts <- qtscore(qtbas,data=erfs)
```

You can check the estimate of the inflation factor $\lambda$ with

```
lambda(qts)$est
```

[1] 1.125012
This is relatively high value, suggesting presence of close relatives in data and high heritability of the trait.

The top 10 hits from GWA analysis can be displayed with

```
> descriptives.scan(qts,sort="Pc1df")
Summary for top 10 results, sorted by Pc1df
 Chromosome Position Strand A1 A2 N effB se_effB chi2.1df
rs1781670 13 2694164735 u 1 2 150 0.5236543 0.1348423 15.08125
rs1872087 17 3329938025 u 1 2 150 -0.4958918 0.1329806 13.90584
rs1043883 8 1745120471 u
rs377859 10 2173644540 u 1 2 2 150 -0.5901680 0.1625124 13.18797
```


here, nominal $P$ - values after genomic control are given in column named "Pc1df".

We can estimate genome-wide empirical significance by using the same function with times argument, which tells the number of permutations:

```
> qts.e <- qtscore(qtbas,data=erfs,times=200,quiet=TRUE)
 |
 | 0%
 |
 |=== 100%
```

> descriptives.scan(qts.e,sort="Pc1df")

Summary for top 10 results, sorted by Pc1df
Chromosome Position Strand A1 A2 N effB se_effB

| rs1781670 | 13 | 2694164735 | u | 150 | 0.52365430 | 0.1348423 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{llllllllll}\text { rs1872087 } & 17 & 3329938025 & \text { u } & 1 & 2 & 150 & -0.49589178 & 0.1329806\end{array}$
$\begin{array}{lllllllll}\text { rs1043883 u } & 81745120471 & 128 & 0.51322939 & 0.1403802\end{array}$
$\begin{array}{lllllllll}\text { rs377859 u } & 102173644540 & 150 & -0.59016796 & 0.1625124\end{array}$
$\begin{array}{lllllllll}\text { rs1861659 } & 16 & 3171591122 & \text { u } & 1 & 2 & 150 & 0.52702662 & 0.1478622\end{array}$
$\begin{array}{lllllllll}\text { rs1672299 u } & 122602365489 & 150 & -0.51492394 & 0.1469410\end{array}$
$\begin{array}{lllllllll}\text { rs2017143 } & 1 & 2252811 & \text { u } & 1 & 2 & 150 & 0.04200869 & 0.1338613\end{array}$
$\begin{array}{lllllllll}\text { rs2840531 } & 1 & 2318570 & \text { u } & 150 & -0.35176535 & 0.2002343\end{array}$
$\begin{array}{llllllllll}\text { rs2477703 u } & 1 & 2458154 & \text { u } & 150 & -0.14676181 & 0.1519094\end{array}$
$\begin{array}{lllllllllllllllllllll}\text { rs734999 u } & 1 & 2545378 & 150 & -0.06866109 & 0.1511277\end{array}$
chi2.1df P1df Pc1df effAB effBB chi2.2df P2df
$\begin{array}{lllllllll}\text { rs1781670 } & 15.08124536 & 0.320 & 0.615 & 0.6906708 & 1.03176686 & 15.8436112 & 0.720\end{array}$
rs1872087 13.90584450 0.535 0.835-0.5500476 -0.98398504 13.9886838 0.970
rs1043883 13.36630002 $0.6300 .915 \quad 0.3204631 \quad 1.1004272314 .19845360 .945$
rs377859 $13.187971570 .6750 .920-0.5794118-1.1877539713 .19252940 .990$
$\begin{array}{lllllllll}\text { rs1861659 } & 12.70429594 & 0.800 & 0.955 & 0.3450954 & 1.11403056 & 13.7935817 & 0.980\end{array}$
rs1672299 12.28005767 0.860 0.970 $-0.6530651-0.9961549212 .87154451 .000$

## 184CHAPTER 7. GWA IN PRESENCE OF GENETIC STRATIFICATION: PRACTICE

| rs2017143 | 0.09848463 | 1.000 | 1.000 | 0.2555726 | 0.01458913 | 1.5429109 | 1.000 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| rs2840531 | 3.08623677 | 1.000 | 1.000 | -0.3889020 | -0.36730336 | 3.2760351 | 1.000 |
| rs2477703 | 0.93337596 | 1.000 | 1.000 | -0.1681636 | -0.27086570 | 0.9548231 | 1.000 |
| $\operatorname{rs} 734999$ | 0.20641122 | 1.000 | 1.000 | 0.2250806 | -0.15311474 | 2.4631830 | 1.000 |

(argument "quiet" supress warning messages; this is used for the purposes of this tutorial, normally you do not need to specify this option)

As you can see, in this analysis nothing comes even close to genome-wide significance, as indicated by genome-wide corrected $P$-values (column "Pc1df") all $\gg 0.05$.

Let us estimate polygenic model with

```
> h2 <- polygenic(qtbas,kin=gkins,data=erfs)
```

The results of estimation are contained in "h2an" element of the resulting analysis object:

```
> h2$h2an
$minimum
[1] 200.9972
$estimate
[1] 0.03850405 0.77968841 1.54153952
$gradient
[1] -1.705303e-07 -5.684342e-08 1.651780e-07
$code
[1] 1
$iterations
[1] 12
```

In the "estimate" list, the MLEs shown correspond to intercept $\hat{\mu}$, heritability $\hat{h}^{2}=\hat{\sigma}_{G}^{2} /\left(\hat{\sigma}_{G}^{2}+\hat{\sigma}_{e}^{2}\right)$, and total variance $\hat{\sigma}_{T}^{2}=\hat{\sigma}_{G}^{2}+\hat{\sigma}_{e}^{2}$. You can see that heritability of the trait is indeed high - almost $80 \%$.

Under these conditions (hight heritability, presence of close relatives) we may expect that FASTA and GRAMMAS analysis exploiting heritability model and relationship matrix in exact manner may have better power compared to simple GC.

Let us run FASTA test using estimated polygenic model, as specified by h2 object:

```
> mms <- mmscore(h2,data=erfs)
```

There is little residual inflation left when we use "genomic kinship" matrix:

```
> lambda(mms)$est
```

[1] 1
And the significance of "top" hit becomes an order of magnitude better compared to plain GC:

```
> descriptives.scan(mms,sort="Pc1df")
Summary for top 10 results, sorted by Pc1df
\begin{tabular}{lrrrrrrrrr}
& Chromosome & Position & Strand A1 & A2 & N & effB & se_effB & chi2.1df \\
rs1781670 & 13 & 2694164735 & u & 1 & 2 & 150 & 0.5280481 & 0.1444019 & 13.372139 \\
rs1953817 & 6 & 1403824983 & u & 1 & 2 & 150 & -0.5141566 & 0.1543596 & 11.094902 \\
rs11062 & 17 & 3262519467 & u & 1 & 2 & 150 & 0.5409064 & 0.1624135 & 11.091753 \\
rs774033 & 12 & 2531521679 & u & 1 & 2 & 150 & -0.4852698 & 0.1457531 & 11.084874 \\
rs1043883 & 8 & 1745120471 & u & 1 & 2 & 128 & 0.4873708 & 0.1515702 & 10.339302 \\
rs1672299 & 12 & 2602365489 & u & 1 & 2 & 150 & -0.4829157 & 0.1519733 & 10.097360 \\
rs2384933 & 16 & 3139192007 & u & 1 & 2 & 150 & -0.5466347 & 0.1723503 & 10.059355 \\
rs1370139 & 6 & 1381958118 & u & 1 & 2 & 149 & 0.6704706 & 0.2116017 & 10.039709 \\
rs1054889 & 2 & 324154337 & u & 1 & 2 & 150 & 0.4765958 & 0.1509593 & 9.967379 \\
rs896986 & 2 & 336951524 & u & 1 & 2 & 150 & -0.4735895 & 0.1513640 & 9.789461
\end{tabular}
```

rs1781670 0.0002553899 0.0002553899 NA NA 0 NA
rs1953817 0.00086565360 .0008656536 NA NA 0 NA
rs11062 0.0008671249 0.0008671249 NA NA 0 NA
$\begin{array}{lllllll}\text { rs774033 } & 0.0008703475 & 0.0008703475 & \text { NA NA } & \text { NA }\end{array}$
rs1043883 0.00130227250 .0013022725 NA NA 0
rs1672299 0.0014848188 0.0014848188 NA NA 0 NA
rs2384933 0.00151576320 .0015157632 NA NA 0 NA
rs1370139 0.0015320140 0.0015320140 NA NA O NA
rs1054889 0.0015933812 0.0015933812 NA NA $0 \quad$ NA
rs896986 0.00175514930 .0017551493 NA NA 0

If you compare these results to that obtained with simple GC, you can also see that the ranks of top hits have changed quite a bit; unbiased estimated of genetic effects were obtained.

However, we can not estimate genome-wide significance with FASTA, because the data structure is not exchangeble.

Using GRAMMAS method, you can estimate nominal $P$ - values by

```
> grs <- qtscore(h2$pgres,data=erfs, clam=FALSE)
> lambda(grs)$est
```

[1] 0.7864778
In the above analysis, note that the estimated "inflation" factor $\lambda$ is less than one, i.e. now it is the GRAMMAS deflation factor. In order to obtain non-concervative test statistics, we had to say to qtscore that deflation is OK (parameter clam=FALSE).

We can see "top" nominal corrected $P$-values with

```
> descriptives.scan(grs,sort="Pc1df")
```

Summary for top 10 results, sorted by Pc1df

|  | Chromosome | Position | Strand A1 | A2 | N | effB | se_effB |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| rs1781670 | 13 | 2694164735 | u | 1 | 2 | 150 | 0.10543625 | 0.03316109 |
| rs1953817 | 6 | 1403824983 | u | 1 | 2 | 150 | -0.11570443 | 0.03763454 |
| rs774033 | 12 | 2531521679 | u | 1 | 2 | 150 | -0.10777281 | 0.03530344 |
| rs11062 | 17 | 3262519467 | u | 1 | 2 | 150 | 0.11723795 | 0.03886279 |

186CHAPTER 7. GWA IN PRESENCE OF GENETIC STRATIFICATION: PRACTICE


By comparing this output to that from FASTA test, you can see that $P$ values are quite close, but the effects are underestimated with GRAMMAS, as expected.

However, the streangths of GRAMMAS test is not only its speed, but also possiblity to estimate genome-wide significance. This can be done by

```
> grs.e <- qtscore(h2$pgres,data=erfs,times=200,clam=FALSE,quiet=TRUE)
 |
 | 0%
 I
 |=== | 100%
> descriptives.scan(grs.e,sort="Pc1df")
Summary for top 10 results, sorted by Pc1df
 Chromosome Position Strand A1 A2 N effB se_effB
rs1781670 13 2694164735 u 1 2 150 0.105436247 0.03316109
rs1953817 6 1403824983 u 1 2 150 -0.115704428 0.03763454
rs774033 12 2531521679 u 1 2 150 -0.107772807 0.03530344
rs11062 17 3262519467 u 1 2 150 0.117237955 0.03886279
rs2017143 1 v 2252811 u 1 2 150 0.021216303 0.03291983
```

| rs2840531 | 1 | 2318570 | u 122 | $150-0.06596$ | 4640.0492 | 261 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| rs2477703 | 1 | 2458154 | u 12 | $150-0.023468$ | 3220.0373 | 833 |
| rs734999 | 1 | 2545378 | u 112 | $150-0.00302$ | 1750.037 | 607 |
| rs2377041 | 1 | 2736485 | u 12 | $150-0.03132$ | 3280.0358 | 912 |
| rs2606418 | 1 | 2894007 | u 12 | 1490.020279 | 99250.0464 | 836 |
|  | chi2.1df | P1df Pc1df | effAB | - effBB | chi2.2d | df |
| rs1781670 | 10.109330932 | 10.755 | 0.10640049 | 9 0.21078277 | 10.1097511 | 1 |
| rs1953817 | 9.452063423 | 10.890 | -0.12909511 | $1-0.21880586$ | 9.5861099 | 1 |
| rs774033 | 9.319322221 | 10.895 | -0.12787712 | -0.21495609 | 9.4929330 | 1 |
| rs11062 | 9.100567777 | 10.930 | 0.08864787 | 70.28207116 | 9.8068293 | 1 |
| rs2017143 | 0.415359553 | 11.000 | 0.04950544 | $4 \quad 0.03323599$ | 0.8344174 | 1 |
| rs2840531 | 1.794640121 | 11.000 | -0.07118473 | -0.08469889 | 1.8565797 | 1 |
| rs2477703 | 0.394629221 | 11.000 | -0.03408208 | -0.03569994 | 0.4818462 | 1 |
| rs734999 | 0.006629711 | 11.000 | 0.07664482 | -0.01033574 | 2.7516882 | 1 |
| rs2377041 | 0.762923755 | 11.000 | 0.01703264 | $4-0.06729208$ | 1.8276324 | 1 |
| rs2606418 | 0.190548238 | 11.000 | 0.01082376 | $6 \quad 0.10421017$ | 0.3710141 | 1 |

As you can see, now the "top" hit starts approaching genome-wide significance (genome-wide $P$-value $\sim 10 \%$ ), showing the power of kinship-based methods under high heritability model.

Finally, let us plot $-\log _{10}$ nominal $P$-values from different methods across the genome. Let black dots correspond to GC, green to GRAMMAS and red to FASTA (figure 7.6):

```
> plot(mms,df="Pc1df")
> add.plot(grs,df="Pc1df",col=c("lightgreen","lightblue"),cex=1.2)
> add.plot(qts)
```

You can see that there is a great degree of correlation between the FASTA and GRAMMAS $P$-values, while plain GC really stands apart.

### 7.4 Exercise: analysis of family data

Exercise 1 Repeat heritability estimation, FASTA and GRAMMAS analysis of previous section using pediree kinship (pkins object). Discuss the results.

In the next section, you will explore a small ( 695 people) subset of people from ERF, a family-based study with participants coming from a genetically isolated population and sampled based on kinship (all living descendants of 22 couples living in the area in mid-XIX ${ }^{t h}$ century). The study participants were genotyped using Illumina 6K "linkage" array. QC was already performed. Your trait of interest is "qtbas".

Explore the data set and answer the questions:
Exercise 2 Describe the trait "qt". Can you detect significant outliers at visual inspection? Is trait distributed normally? What are significant covariates?

Exercise 3 Explore relations between genomic and pedigree kinship (these are provided in data as gkin and pkin data objects, respectively). What are your conclusions? Which matrix would you use later on?


Figure 7.5: $\quad$ Scatter-plot relating pedigree and genomic kinships for erfs data set.

Exercise 4 What is the heritability of the trait (take care: polygenic analysis may rung for a long while)? Based on heritability analysis, how would you rank different methods of GWA analysis for this trait (and why)?

Exercise 5 Do GWA analysis using simple score test with genomic control. Estimate genome-wide significance. What are your conclusions?

Run GWA analysis using the "best" method and model as you have decided in previous exercises. Estimate genome-wide significance. What are your conclusions? Did they change compared to simple analysis?

Exercise 6 Repeat the last "best" analysis using pedigree kinship. How your results change?

Exercise 7 If you have any time left - repeat analysis using "qt" trait. This one is much more fun, but also more laborous to analyse.

### 7.5 Answers to exercises

Answer (Ex. 1) - Basically, all covariates are significantly associated with the traits:

```
> summary(lm(quat~sex+age+age2,data=phdata(strdat)))
```

Call:
lm(formula = quat ~ sex + age + age2, data = phdata(strdat))
Residuals:
Min 1Q Median 3Q Max
-5.1188-1.0260-0.0389 1.0221 5.5506
Coefficients:

|  | Estimate | Std. Error t value | $\operatorname{Pr}(>\|\mathrm{t}\|)$ |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 0.3312562 | 1.4595518 | 0.227 | 0.821 |  |
| sex | 0.9190870 | 0.1399336 | 6.568 | $1.29 \mathrm{e}-10$ | $* * *$ |
| age | 0.1465840 | 0.0588066 | 2.493 | 0.013 | $*$ |
| age2 | -0.0024764 | 0.0005839 | -4.241 | $2.65 \mathrm{e}-05$ | $* * *$ |

```

```

Residual standard error: 1.559 on 496 degrees of freedom
Multiple R-squared: 0.33, Adjusted R-squared: 0.326
F-statistic: 81.44 on 3 and 496 DF, p-value: < 2.2e-16
> summary(glm(bint~sex+age+age2,data=phdata(strdat),family=binomial))
Call:
glm(formula = bint ~ sex + age + age2, family = binomial, data = phdata(strdat))
Deviance Residuals:

| Min | $1 Q$ | Median | 3Q | Max |
| ---: | ---: | ---: | ---: | ---: |
| -1.4500 | -1.0139 | -0.5967 | 1.1013 | 2.2229 |

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.280565 2.361455 -2.660 0.007823 **
sex 0.809689 0.198527 4.078 4.53e-05 ***
age 0.305322 0.099277 3.075 0.002102 **
age2 -0.003825 0.001033 -3.702 0.000214 ***

```

```

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 673.01 on 499 degrees of freedom
Residual deviance: 605.06 on 496 degrees of freedom
AIC: 613.06
Number of Fisher Scoring iterations: 4

```

Answer (Ex. 2) - How many SNPs and IDs are presented in the data set?
```

> nsnps(strdat)

```
[1] 10000

\section*{190CHAPTER 7. GWA IN PRESENCE OF GENETIC STRATIFICATION: PRACTICE}
```

> nids(strdat)

```
[1] 500

Answer (Ex. 3) - Let us perform the QC:
> qc <- check.marker(strdat,call=0.98,perid.call=0.98,p.level=0)
Excluding people/markers with extremely low call rate...
10000 markers and 500 people in total
0 people excluded because of call rate < 0.1
0 markers excluded because of call rate < 0.1
Passed: 10000 markers and 500 people
RUN 1
10000 markers and 500 people in total
\(30(0.3 \%)\) markers excluded as having low (\(<0.5 \%\)) minor allele frequency
0 (\(0 \%\)) markers excluded because of low (\(\langle 98 \%\)) call rate
0 (\(0 \%\)) markers excluded because they are out of HWE (\(\mathrm{P}<0\))
0 (\(0 \%\)) people excluded because of low (\(<98 \%\)) call rate
Mean autosomal HET is 0.2035464 (s.e. 0.004215707)
0 people excluded because too high autosomal heterozygosity (FDR <1\%)
Mean IBS is 0.8329035 (s.e. 0.005662507), as based on 2000 autosomal markers
0 (\(0 \%\)) people excluded because of too high IBS (>=0.95)
In total, 9970 (99.7\%) markers passed all criteria
In total, 500 (\(100 \%\)) people passed all criteria
RUN 2
9970 markers and 500 people in total
0 (\(0 \%\)) markers excluded as having low (\(<0.5 \%\)) minor allele frequency
0 (\(0 \%\)) markers excluded because of low (\(\langle 98 \%\)) call rate
\(0(0 \%)\) markers excluded because they are out of HWE (\(\mathrm{P}<0\))
\(0(0 \%)\) people excluded because of low (\(\langle 98 \%\)) call rate
Mean autosomal HET is 0.2035464 (s.e. 0.004215707)
0 people excluded because too high autosomal heterozygosity (FDR <1\%)
Mean IBS is 0.8260564 (s.e. 0.005725677), as based on 2000 autosomal markers
0 (\(0 \%\)) people excluded because of too high IBS (\(>=0.95\))
In total, 9970 (\(100 \%\)) markers passed all criteria
In total, 500 (\(100 \%\)) people passed all criteria
> strdat1 <- strdat[qc\$idok,qc\$snpok]
The number of IDs and SNPs passing are
> nsnps(strdat1)
[1] 9970
> nids(strdat1)
[1] 500

Answer (Ex. 4) - Not really:
> descriptives.marker(strdat1) [2]
```

\$`Cumulative distr. of number of SNPs out of HWE, at different alpha`
X<=1e-04 X<=0.001 X<=0.01 X<=0.05 all X

| No | 1 | 6.000 | 73.000 | 378.000 | 9970 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Prop | 0 | 0.001 | 0.007 | 0.038 | 1 |

```

Answer (Ex. 5) - Yes:
```

> qts.q <- qtscore(quat~sex+age+age2,strdat1)
> lambda(qts.q)
\$estimate
[1] 1.633427
\$se
[1] 0.0003823764
\$iz0
[1] 1.557426
\$iz2
[1] 1.282158

```
Answer (Ex. 6) - Yes:
> qts.b <- qtscore(bint~sex+age+age2,strdat1)
> lambda (qts.b)
\$estimate
[1] 2.093596
\$se
[1] 0.000838563
\$iz0
[1] 1.947389
\$iz2
[1] 1.448017

Answer (Ex. 7) - Two genetically distinct populations are present in the data set. These can be visualised with
```

> gkin <- ibs(strdat1,w="freq")
> dst <- as.dist(0.5-gkin)
> pcs <- cmdscale(dst,k=10)
> plot(pcs[,1:2])

```
(graph presented in figure 7.3)
The populations can be dustinguished with
\(>p o p<-1 *(p c s[, 1]>0)\)

Figure 7.6: Comparison of FASTA (red), GRAMMAS (green), and plain GC (black).
and the number of people belonging to each can be computed with
```

> table(pop)
pop
0 1
242 258

```

Answer (Ex. 8) - Yes, there is significant case/control disbalance: > descriptives.trait(strdat1, by=pop)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & No(by.v & r=0) & Mean & SD & No(by . var=1) & Mean & SD & Ptt & Pkw \\
\hline id & & 242 & NA & NA & 258 & NA & NA & NA & NA \\
\hline sex & & 242 & 0.537 & 0.500 & 258 & 0.527 & 0.500 & 0.822 & 0.822 \\
\hline age & & 242 & 50.946 & 9.042 & 258 & 49.762 & 9.897 & 0.163 & 0.138 \\
\hline age2 & & 242 & 2676.962 & 917.847 & 258 & 2573.786 & 991.693 & 0.228 & 0.138 \\
\hline quat & & 242 & 2.321 & 1.751 & 258 & 1.119 & 1.851 & 0.000 & 0.000 \\
\hline bint & & 242 & 0.657 & 0.476 & 258 & 0.159 & 0.366 & 0.000 & 0.000 \\
\hline \multicolumn{10}{|c|}{Pexact} \\
\hline id & NA & & & & & & & & \\
\hline sex & 0.858 & & & & & & & & \\
\hline age & NA & & & & & & & & \\
\hline age2 & NA & & & & & & & & \\
\hline
\end{tabular}
```

quat NA
bint 0.000

```

Answer (Ex. 9) - MMSCORE corrects best for stratification in terms of minimal residual inflation:
```

> sa <- qtscore(quat~sex+age+age2,strdat1,strat=pop)
> lambda(sa)$est
[1] 1.019565
> es <- egscore(quat~sex+age+age2,strdat1,kin=gkin)
> lambda(es)$est
[1] 1.043936
> pcs <- cmdscale(as.dist(0.5-gkin),k=10)
> pc <- qtscore(quat~sex+age+age2+pcs[,1]+pcs[,2]+pcs[,3],strdat1,strat=pop)
> lambda(pc)$est
[1] 1.025369
> h2an <- polygenic(quat~sex+age+age2,data=strdat1,kin=gkin)
> h2an$h2an
\$minimum
[1] 932.8796

```

\section*{\$estimate}
```

[1] $1.705618046 \quad 0.002208056 \quad 0.111974053-0.002151578 \quad 0.802834082$
[6] 2.188456701
\$gradient
$\begin{array}{lrlrlr}\text { [1] } & 0.4789395 & -211.1951665 & 11.5282676 & 29345.2788171 & 13.2616026 \\ \text { [6] } & -88.1323144 & & & \end{array}$
\$code
[1] 4
\$iterations
[1] 100
> mm <- mmscore(h2an,strdat1)
> lambda (mm)\$est
[1] 1.115282

```

Answer (Ex. 10) - The best results are achieved with mmscore:
```

> summary(mm)
Summary for top }10\mathrm{ results, sorted by P1df
Chromosome Position Strand A1 A2 N effB se_effB chi2.1df
snp13598 1 8326962 + 1 2 500 -0.7531795 0.1581588 22.67830
snp358367 19 263284193 + 1 2 500 1.1021752 0.2387578 21.31014

```

194CHAPTER 7. GWA IN PRESENCE OF GENETIC STRATIFICATION: PRACTICE
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline snp314412 & 17231431537 & + 1 & 2500 & -0.9551964 & 0.2396511 & 15.88643 \\
\hline snp162350 & 9118783325 & + 1 & 2500 & 1.6538365 & 0.4348730 & 14.46306 \\
\hline snp155145 & 8111959587 & + 1 & 2500 & -1.4398364 & 0.3905136 & 13.59421 \\
\hline snp293669 & 16216390949 & + 1 & 2500 & 2.0797905 & 0.5647042 & 13.56429 \\
\hline snp102095 & 674672442 & + 1 & 2500 & 0.5992210 & 0.1683224 & 12.67331 \\
\hline snp123032 & 789813084 & + 1 & 2500 & 0.4761745 & 0.1341130 & 12.60639 \\
\hline snp289207 & 15211238602 & 1 & 2500 & -1.0830522 & 0.3110327 & 12.12514 \\
\hline snp340440 & 18249874969 & + 1 & 2500 & -0.3672634 & 0.1061263 & 11.97593 \\
\hline & P1df Pc1df & effab & effBB & chi2.2df & 2df & \\
\hline snp13598 & 1.915188e-06 6.503017e-06 & NA & NA & 0 & NA & \\
\hline snp358367 & \(3.906601 \mathrm{e}-061.235654 \mathrm{e}-05\) & NA & NA & 0 & NA & \\
\hline snp314412 & \(6.725914 \mathrm{e}-051.605451 \mathrm{e}-04\) & NA & NA & 0 & NA & \\
\hline snp162350 & \(1.429350 \mathrm{e}-043.168479 \mathrm{e}-04\) & NA & NA & 0 & NA & \\
\hline snp155145 & \(2.268844 \mathrm{e}-044.807141 \mathrm{e}-04\) & NA & NA & 0 & NA & \\
\hline snp293669 & \(2.305293 \mathrm{e}-044.876771 \mathrm{e}-04\) & NA & NA & 0 & NA & \\
\hline snp102095 & \(3.709122 \mathrm{e}-047.490879 \mathrm{e}-04\) & NA & NA & 0 & NA & \\
\hline snp123032 & \(3.844301 \mathrm{e}-047.736873 \mathrm{e}-04\) & NA & NA & 0 & NA & \\
\hline snp289207 & 4.974669e-04 9.763913e-04 & NA & NA & 0 & NA & \\
\hline snp340440 & \(5.389224 \mathrm{e}-041.049564 \mathrm{e}-03\) & NA & NA & 0 & NA & \\
\hline
\end{tabular}

\section*{Chapter 8}

\section*{Imperfect knowledge about genotypes}

This chapter is mostly copy-pasted from ProbABEL-package manual - user is encouraged to check it directly for the latest version.

\subsection*{8.1 Motivation}

Many statistical and experimental techniques, such as imputations and highthroughput sequencing, generate data which are informative for genome-wide association analysis and are probabilistic in the nature.

When we work with directly genotyped markers using such techniques as SNP or microsatellite typing, we would normally know the genotype of a particular person at a particular locus with very high degree of confidence, and, in case of biallelic marker, can state whether genotype is \(A A, A B\) or \(B B\).

On the contrary, when dealing with imputed or high-throughput sequencing data, for many of the genomic loci we are quite uncertain about the genotypic status of the person. Instead of dealing with known genotypes we work with a probability distribution that is based on observed information, and we have estimates that true underlying genotype is either \(A A, A B\) or \(B B\). The degree of confidence about the real status is measured with the probability distribution \(\{P(A A), P(A B), P(B B)\}\).

Several techniques may be applied to analyse such data. The most simplistic approach would be to pick up the genotype with highest probability, i.e. \(\max _{g}[P(g=A A), P(g=A B), P(g=B B)]\) and then analyse the data as if directly typed markers were used. The disadvantage of this approach is that it does not take into account the probability distribution - i.e. the uncertainty about the true genotypic status. Such analysis is statistically wrong: the estimates of association parameters (regression coefficients, odds or hazard ratios, etc.) are biased, and the bias becomes more pronounced with greater probability distribution uncertainty (entropy).

One of the solutions that generate unbiased estimates of association parameters and takes the probability distribution into account is achieved by performing association analysis by means of regression of the outcome of interest onto estimated genotypic probabilities.

The ProbABEL-package package was designed to perform such regression in a fast, memory-efficient and consequently genome-wide feasible manner. Currently, ProbABEL-package implements linear, logistic regression, and Cox proportional hazards models. The corresponding analysis programs are called palinear, palogist, and pacoxph.

\subsection*{8.2 Input files}

ProbABEL-package takes three files as input: a file containing SNP information (e.g. the MLINFO file of MACH), a file with genome- or chromosome-wide predictor information (e.g. the MLDOSE or MLPROB file of MACH), and a file containing the phenotype of interest and covariates.

Optionally, the map information can be supplied (e.g. the "legend" files of HapMap).

The dose/probability file may be supplied in filevector format in which case ProbABEL-package will operate much faster, and in low-RAM mode (approx. \(\approx 128 \mathrm{MB})\). See the R libraries GenABEL-package and DatABEL-package on how to convert MACH and IMPUTE files to filevector format (functions: mach2databel() and impute2databel(), respectively).

\subsection*{8.2.1 SNP information file}

In the simplest scenario, the SNP information file is an MLINFO file generated by MACH. This must be a space or tab-delimited file containing SNP name, coding for allele 1 and 2 (e.g. A, T, G or C), frequency of allele 1, minor allele frequency and two quality metrics ("Quality", the average maximum posterior probability and "Rsq", the proportion of variance decrease after imputations).

Actually, for ProbABEL-package, it does not matter what is written in this file - this information is just brought forward to the output. However, it is critical that the number of columns is seven and the number of lines in the file is equal to the number of SNPs in the corresponding DOSE file (plus one for the header line).

The example of SNP information file content follows here (also to be found in ProbABEL/examples/test.mlinfo)
```

SNP Al1 Al2 Freq1 MAF Quality Rsq
rs7247199 G A 0.5847 0.4150 0.9299 0.8666
rs8102643 C T 0.5847 0.4150 0.9308 0.8685
rs8102615 T A 0.5006 0.4702 0.9375 0.8932
rs8105536 G A 0.5783 0.4213 0.9353 0.8832
rs2312724 T C 0.9122 0.0877 0.9841 0.9232

```

Note that header line is present in the file. The file describes five SNPs.

\subsection*{8.2.2 Genomic predictor file}

Again, in the simplest scenario this is an MLDOSE or MLPROB file generated by MACH. Such file starts with two special columns plus, for each of the SNPs under consideration, a column containing the estimated allele 1 dose (MLDOSE). In an MLPROB file, two columns for each SNP correspond to posterior
probability that person has two \(\left(P_{A_{1} A_{1}}\right)\) or one \(\left(P_{A_{1} A_{2}}\right)\) copies of allele 1 . The first "special" column is made of the sequential id, followed by an arrow followed by study ID (the one specified in the MACH input files). The second column contains the method keyword (e.g. "MLDOSE").

An example of the few first lines of an MLDOSE file for five SNPs described in SNP information file follows here (also to be found in the file ProbABEL/examples/test.mldose)
```

1->id636728 MLDOSE 0.974 0.974 0.968 0.971 2
2->id890314 MLDOSE 0.947 0.947 0.113 0.944 1.094
3->id102874 MLDOSE 1.005 1.004 NaN 1.002 2
4->id200949 MLDOSE 1.968 1.969 1.973 1.977 2
5->id336491 MLDOSE 1.007 1.006 1.001 1.004 2
6->id988766 MLDOSE 1.006 1.006 1 1.003 2
7->id21999 MLDOSE 1.968 1.969 1.973 1.977 2
8->id433893 MLDOSE 1.006 1.006 1.001 1.004 2
9->id688932 MLDOSE 1.006 1.006 1.001 1.004 2
10->id394203 MLDOSE 1.967 1.968 1.972 1.976 1.999
11->id995678 MLDOSE 1.014 1.014 1.006 1.009 2

```

The order of SNPs in the SNP information file and DOSE-file must be the same. This should be the case if you just used MACH outputs.

Therefore, by all means, the number of columns in the genomic predictor file must be the same as the number of lines in the SNP information file plus one.

The dose/probability file may be supplied in filevector format (.fvi and .fvd files) in which case ProbABEL will operate much faster, and in low-RAM mode (approx. 128 MB). On the command line simply specify the .fvi file as argument for the -dose option (cf. section 8.3 for more information on the options accepted by ProbABEL). See the R libraries GenABEL and DatABEL on how to convert MACH and IMPUTE files to filevector format (functions: mach2databel() and impute2databel(), respectively).

\subsection*{8.2.3 Phenotypic file}

The phenotypic data file contains phenotypic data, but also specifies the analysis model. There is a header line, specifying the variable names. The first column should contain personal study IDs. It is assumed that both the total number and the order of these IDs are exactly the same as in the genomic predictor (MLDOSE) file described in previous section. This is not difficult to arrange using e.g. R; an example is given in the ProbABEL/examples directory.

Missing data should be coded with ' \(\mathbf{N A}\) ', ' \(\mathbf{N}\) ' or ' NaN ' codes. Any other coding will be converted to some number which will be used in analysis! E.g. coding missing as '-999.9' will result in an analysis which will consider -999.9 as indeed a true measurements of the trait/covariates.

In the case of linear or logistic regression (programs palinear and palogist, respectively), the second column specifies the trait under analysis, while the third, fourth, etc. provide information on covariates to be included into analysis. An example few lines of phenotypic information file designed for linear regression analysis follow here (also to be found in ProbABEL/examples/height.txt)
```

id636728 174.429795159687 0 56.5664877162697
id890314 168.176943059097 0 74.8311971509938
id102874 178.612190619767 1 45.2478051768211
id200949 171.770230117638 0 46.7362651142108
id336491 185.941629656499 1 61.2743318817997
id988766 173.159286450017 1 43.9794924518567
id21999 167.478282481124 0 64.842094190157
id433893 168.33178468379 1 49.2526444099125
id688932 171.691587811178 0 50.3954417563357
id394203 173.491495887183 1 71.6498502881161

```

Note again that the order of IDs is the same between the MLDOSE file and the phenotypic data file. The model specified by this file is height \(\sim \mu+\) sex + age, where \(\mu\) is the intercept.

Clearly, you can for example include sex \(\times\) age interaction terms by specifying another column having a product of sex and age here.

For logistic regression, it is assumed that in the second column cases are coded as " 1 " and controls as " 0 ". An couple of example lines of a phenotypic information file designed for logistic regression analysis follow here (also to be found in ProbABEL/examples/logist_data.txt)
```

id chd sex age othercov
id636728 0 0 56.5664877162697 -0.616649220436139
id890314 0 0 74.8311971509938 0.695315865158652
id102874 1 1 45.2478051768211 -0.919192364890525
id200949 0 0 46.7362651142108 -0.623212536893650
id336491 0 1 61.2743318817997 -0.0835744351009496
id988766 0 1 43.9794924518567 -0.360419162609288
id21999 1 0 64.842094190157 -0.180940346913155
id433893 0 1 49.2526444099125 0.126374731789777
id688932 0 0 50.3954417563357 1.06437576032067
id394203 1 1 71.6498502881161 -1.18226498491599

```

You can see that in the first 10 people, there are three cases, as indicated by "chd" equal to one. The model specified by this file is chd \(\sim \mu+\operatorname{sex}+\) age + othercov.

In case of the Cox proportional hazards model, the composition of the phenotypic input file is a bit different. In the second column and third column, you need to specify the outcome in terms of follow-up time (column two) and event (column three, "1" if an event occurred and zero if censored). Columns starting from four (inclusive) specify covariates to be included into the analysis. An example few lines of a phenotypic information file designed for the Cox proportional hazards model analysis follow here (also to be found in ProbABEL/examples/coxph_data.txt)
```

id fupt_chd chd sex age othercov
id636728 3.187930645 0 0 56.56648772 -0.61664922
id890314 2.099691952 0 0 74.83119715 0.695315865
id102874 9.133488079 1 1 45.24780518 -0.919192365
id200949 7.525406804 0 0 46.73626511 -0.623212537
id336491 6.798229522 0 1 61.27433188 -0.083574435

```
```

id988766 6.149545358 0 1 43.97949245 -0.360419163
id21999 1.013546103 1 0 64.84209419 -0.180940347
id433893 1.282853098 0 1 49.25264441 0.126374732
id688932 8.340206657 0 0 50.39544176 1.06437576
id394203 3.392345681 1 1 71.64985029 -1.182264985

```

You can see that for the first ten people, the event occurs for three of them, while for the other seven there is no event during the follow-up time, as indicated by the "chd" column. Follow-up time is specified in the preceding column. The covariates included into the model are age (presumably at baseline), sex and "othercov"; thus the model, in terms of R/survival is Surv(fuptime_chd, chd) \(\sim\) sex + age + othercov.

\subsection*{8.2.4 Optional map file}

If you would like map information (e.g. base pair position) to be included in your outputs, you can supply a map file. These follow HapMap "legend" file format. For example, for the five SNPs we considered the map-file may look like (example can be found in ProbABEL/examples/test.map)
```

rs position 0 1
rs7247199 204938 A G
rs8102643 207859 C T
rs8102615 211970 A T
rs8105536 212033 A G
rs2312724 217034 C T

```

The order of the SNPs in the map file should follow that in the SNP information file. Only information from the second column - the SNP location - is actually used to generate the output.

\subsection*{8.3 Running an analysis}

To run linear regression, you should use the program called palinear; for logistic analysis use palogist, and for the Cox proportional hazards model use pacoxph (all are found in the ProbABEL/bin/ directory after you have compiled the program).

There are in total 11 command line options you can specify to the ProbABEL-package analysis functions palinear or palogist. If you run either program without any argument, you will get a short explanation to command line options:
```

user@server:~\$ palogist
Usage: ../bin/palogist options
Options:
--pheno : phenotype file name
--info : information (e.g. MLINFO) file name
--dose : predictor (e.g. MLDOSE/MLPROB) file name
--map : [optional] map file name

```
```

--nids : [optional] number of people to analyse
--chrom : [optional] chromosome (to be passed to output)
--out : [optional] output file name (default is regression.out.txt)
--skipd : [optional] how many columns to skip in predictor
(dose/prob) file (default 2)
--ntraits : [optional] how many traits are analysed (default 1)
--ngpreds : [optional] how many predictor columns per marker
(default 1 = MLDOSE; else use 2 for MLPROB)
--separat : [optional] character to separate fields (default is space)
--score : use score test
--no-head : do not report header line
--allcov : report estimates for all covariates (large outputs!)
--interaction : which covariate to use for interaction with SNP
(default is no ineraction, 0)
--mmscore : score test for association between a trait and genetic
polymorphism, in samples of related individuals
--robust : report robust (aka sandwich, aka Hubert-White) standard
errors
--help : print help

```

\subsection*{8.3.1 Basic analysis options}

However, for a simple run only three options are mandatory, which specify the necessary files needed to run the regression analysis.

These options are -dose (or -d), specifying the genomic predictor/MLDOSE file described in sub-section 8.2 .2 -pheno (or -p), specifying the phenotypic data file described in sub-section 8.2.3 and -info (or -i), specifying the SNP information file described in sub-section 8.2.1

If you change to the ProbABEL/examples directory you can run an analysis of height by running
```

user@server:~/ProbABEL/examples/\$ ../bin/palinear -p height.txt
-d test.mldose -i test.mlinfo

```

Output from the analysis will be directed to the regression.out.csv file.
The analysis of a binary trait (e.g. chd) can be run with
```

user@server:~/ProbABEL/examples/\$ ../bin/palogist -p logist_data.txt
-d test.mldose -i test.mlinfo

```

To run a Cox proportional hazards model, try
```

user@server:~/ProbABEL/examples/\$ ../bin/pacoxph -p coxph_data.txt
-d test.mldose -i test.mlinfo

```

Please have a look at the shell script files example_qt.sh, example_bt.sh and example_all.sh to have a better overview of the analysis options.

To run an analysis with MLPROB files, you need specify the MLPROB file with the -d option and also specify that there are two genetic predictors per SNP, e.g. you can run linear model with
```

user@server:~/ProbABEL/examples/\$ ../bin/palinear -p height.txt
-d test.mlprob -i test.mlinfo
--ngpreds=2

```

\subsection*{8.3.2 Advanced analysis options}

The option -interaction allows you to include interaction between SNPs and any covariate. If for example your model is
\[
\text { trait } \sim \text { sex }+ \text { age }+ \text { SNP }
\]
running the program with the option -interaction=2 will model
\[
\text { trait } \sim \text { sex }+ \text { age }+\mathrm{SNP}+\text { age } \times \mathrm{SNP}
\]

The option -robust allows you to compute so-called "robust" (a.k.a. "sandwich", a.k.a. Hubert-White) standard errors (cf. section 8.7"Methodology" for details).

With the option -mmscore a score test for association between a trait and genetic polymorphisms in samples of related individuals is performed. A file with the inverse of the variance-covarince matrix goes as input parameter with that option, e.g. -mmscore <filename>. The file has to contain the first column with id names exactly like in phenotype file, BUT OMITTING people with no measured phenotype. The rest is a matrix. The phenotype file in case of using the -mmscore argument may contain any amount of covariates (this is different from previous versions). The first column contains id names, the second the trait. The others are covariates.

An example of how a polygenic object estimated by GenABEL-package can be used with ProbABEL is provided in ProbABEL/examples/mmscore. R

Though technically -mmscore allows for inclusion of multiple covariates, these should be kept to minimum as this is a score test. We suggest that any covariates explaining an essential proportion of variance should be fit as part of GenABEL-package's polygenic procedure.

\subsection*{8.3.3 Running multiple analyses at once: probabel.pl}

The Perl script bin/probabel.pl_example represents a handy wraper for ProbABEL-package functions. To start using it the configuration file bin/probabel_config.cfg_example needs to be edited. The configuration file consists of five columns. Each column except the first is a pattern for files produced by MACH (imputation software). The column named "cohort" is an identifying name of a population ("ERGO" in this example), the column "mlinfo_path" is the full path to mlinfo files, including a pattern where the chromosome number has been replaced by _._chr_._. The columns "mldose_path", "mlprobe_path" and "legend_path" are paths and patterns for "mldose", "mlprob" and "legend" files, respectively. These also need to include the pattern for the chromosome as used in the column for the "mlinfo" files. Probably you also have to change the variable \$config in the script to point to the full path of the configuration file and the variable @anprog to point full path to the ProbABEL-package scripts.

\subsection*{8.4 Output file format}

Let us consider what comes out of the linear regression analysis described in the previous section. After the analysis has run, in the output file you will find something like
```

name A1 A2 Freq1 MAF Quality Rsq n Mean_predictor_allele chrom
+> position beta_SNP_add sebeta_SNP_add chi2_SNP
rs7247199 G A 0.5847 0.415 0.9299 0.8666 182 0.564439 19
+> 204938 -0.218693 0.734966 0.0905063
rs8102643 C T 0.5847 0.415 0.9308 0.8685 182 0.564412 19
+> 207859 -0.218352 0.734214 0.0904094

```

Here, only the first three lines of output have been shown. Note that lines starting with +> are actually the ones continuing the previous line - they have just been wrapped so we can see these long lines.

The header provides a short description of what can be found in a specific column. The first column provides the SNP name and next six are descriptions which were taken directly from the SNP information file. Therefore, these describe allele frequencies and the quality in your total imputations, not necessarily in the data under analysis.

In contrast, starting with the next column, named \(n\), the output concerns the data analysed. Column \(8(\mathrm{n})\) tells the number of subjects for whom complete phenotypic information was available. At this point, unless you have complete measurements on all subjects, you should feel alarmed if the number here is exactly the number of people in the file - this may indicate you did not code missing values according to ProbABEL-package format ('NA', 'NaN', or 'N').

The next column, nine ("Mean_predictor_allele"), gives the estimated frequency of the predictor allele (A1) in subjects with complete phenotypic data.

If the -chrom option was used, in the next column you will find the value specified by this option. If -map option was used, in the subsequent column you will find map location taken from the map-file. The subsequent columns provide coefficients of regression of the phenotype onto genotype, corresponding standard errors, and Wald \(\chi^{2}\) test value.

\subsection*{8.5 Preparing input files}

In the ProbABEL/bin directory you can find the prepare_data.R file - an \(R\) script that arranges phenotypic data in right format. Please read this script for details.

\subsection*{8.6 Memory use and performance}

Maximum likelihood regression is implemented in ProbABEL-package. With 6,000 people and 2.5 millions SNPs, a genome-wide scan is completed in less that an hour for a linear model with 1-2 covariates and overnight for logistic regression or the Cox proportional hazards model (figures for a PC bought back in 2007).

Memory may be an issue with ProbABEL-package if you use MACH text dose/probability files, e.g. for large chromosomes, such as chromosome one consumed up to 5 GB of RAM with 6,000 people.

We suggest that dose/probability file is to be supplied in filevector format in which case ProbABEL-package will operate about 2-3 times faster, and in low-RAM mode (approx. 128 MB). See the R libraries GenABEL-package and

DatABEL-package on how to convert MACH and IMPUTE files to filevector format (functions: mach2databel() and impute2databel(), respectively).

When '-mmscore' option is used, the analysis may take quite some time.

\subsection*{8.7 Methodology}

\subsection*{8.7.1 Analysis of population-based data}

\section*{Linear regression assuming normal distribution}

Standard linear regression theory is used to estimate coefficients of regression and their standard errors. We assume a linear model with expectation
\[
\begin{equation*}
E[\mathbf{Y}]=\mathbf{X} \boldsymbol{\beta} \tag{8.1}
\end{equation*}
\]
and variance-covariance matrix
\[
\mathbf{V}=\sigma^{2} \mathbf{I}
\]
where \(\mathbf{Y}\) is the vector of phenotypes of interest, \(\mathbf{X}\) is the design matrix, \(\boldsymbol{\beta}\) is the vector of regression parameters, \(\sigma^{2}\) is the variance and \(\mathbf{I}\) is the identity matrix.

The maximum likelihood estimates (MLEs) for the regression parameters are given by
\[
\begin{equation*}
\hat{\beta}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y} \tag{8.2}
\end{equation*}
\]
and the MLE of the residual variance is
\[
\begin{equation*}
\hat{\sigma}^{2}=\frac{(\mathbf{Y}-\mathbf{X} \hat{\beta})^{T}(\mathbf{Y}-\mathbf{X} \hat{\beta})}{N-r_{X}} \tag{8.3}
\end{equation*}
\]
where \(N\) is the number of observations and \(r_{X}\) is the rank of \(\mathbf{X}\) (i.e. the number of columns of the design matrix).

The variance-covariance matrix for the parameter estimates under alternative hypothesis can be computed as
\[
\begin{equation*}
\operatorname{var}_{\hat{\beta}}=\hat{\sigma}^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \tag{8.4}
\end{equation*}
\]

For the \(j\)-the element \(\hat{\beta}(j)\) of the vector of estimates the standard error under the alternative hypothesis is given by the square root of the corresponding diagonal element of the above matrix, \(\operatorname{var}_{\hat{\beta}}(j j)\), and the Wald test can be computed with
\[
T^{2}(j)=\frac{\hat{\beta}(j)^{2}}{\operatorname{var}_{\hat{\beta}}(j j)},
\]
which asymptotically follows the \(\chi^{2}\) distribution with one degree of freedom under the null hypothesis.

When testing significance for more than one parameter simultaneously, several alternatives are available. Let us first partition the vector of parameters into two components, \(\beta=\left(\beta_{g}, \beta_{x}\right)\), and our interest is testing the parameters contained in \(\beta_{g}\) (SNP effects), while \(\beta_{x}\) (e.g. effects of sex, age, etc.) are considered nuisance parameters. Let us define the vector of the parameters of interest which are fixed to certain values under the null hypothesis as \(\beta_{g, 0}\).

Firstly, the likelihood ratio test can be obtained with
\[
L R T=2\left(\log \operatorname{Lik}\left(\hat{\beta}_{g}, \hat{\beta}_{x}\right)-\log \operatorname{Lik}\left(\beta_{g, 0}, \hat{\beta}_{x}\right)\right)
\]
which under the null hypothesis is asymptotically distributed as \(\chi^{2}\) with the number of degrees of freedom equal to the number of parameters specified by \(\beta_{g}\). Assuming the normal distribution, the log-likelihood of a model specified by the vector of parameters \(\beta\) and residual variance \(\sigma^{2}\) can be computed as
\[
\log \operatorname{Lik}\left(\beta, \sigma^{2}\right)=-\frac{1}{2}\left(N \cdot \log _{e} \sigma^{2}+(\mathbf{Y}-\beta \mathbf{X})^{T}\left(\mathbf{I} / \sigma^{2}\right)(\mathbf{Y}-\beta \mathbf{X})\right)
\]

Secondly, the Wald test can be used; for that the inverse variance-covariance matrix of \(\hat{\beta}_{g}\) should be computed as
\[
\operatorname{var}_{\hat{\beta}_{g}}^{-1}=\operatorname{var}_{\hat{\beta}}^{-1}(g, g)-\operatorname{var}_{\hat{\beta}}^{-1}(g, x)\left(\operatorname{var}_{\hat{\beta}}^{-1}(x, x)\right)^{-1} \operatorname{var}_{\hat{\beta}}^{-1}(x, g),
\]
where \(\operatorname{var}_{\hat{\beta}}^{-1}(a, b)\) correspond to sub-matrices of the inverse of the variancecovariance matrix of \(\hat{\beta}\), involving either only parameters of interest \((g, g)\), nuisance parameters \((x, x)\) or combination of these \((x, g),(g, x)\).

The Wald test statistics is then computed as
\[
W^{2}=\left(\hat{\beta}_{g}-\beta_{g, 0}\right)^{T} \operatorname{var}_{\hat{\beta}_{g}}^{-1}\left(\hat{\beta}_{g}-\beta_{g, 0}\right),
\]
which asymptotically follows the \(\chi^{2}\) distribution with the number of degrees of freedom equal to the number of parameters specified by \(\beta_{g}\). The Wald test generally is computationally easier than the LRT, because it avoids estimation of the model specified by the parameter's vector \(\left(\beta_{g, 0}, \hat{\beta}_{x}\right)\).

Lastly, similar to the Wald test, the score test can be performed by use of \(\operatorname{var}_{\left(\beta_{g, 0}, \hat{\beta}_{x}\right)}\) instead of \(\operatorname{var}_{\hat{\beta}}\).

\section*{Logistic regression}

For logistic regression, the procedure to obtain parameters estimates, their variance-covariance matrix, and tests are similar to these outlined above with several modifications.

The expectation of the binary trait is defined as the expected probability of the event as defined by the logistic function
\[
E[\mathbf{Y}]=\pi=\frac{1}{1+e^{-(\mathbf{X} \beta)}}
\]

The estimates of the parameters are obtained not in one step, as is the case of the linear model, but using an iterative procedure (iteratively re-weighted least squares). This procedure is not described here for the sake of brevity.

The log-likelihood of the data is computed using the binomial probability formula:
\[
\log \operatorname{Lik}(\beta)=\mathbf{Y}^{T} \log _{e} \pi+(\mathbf{1}-\mathbf{Y})^{T} \log _{e}(\mathbf{1}-\pi)
\]
where \(\log _{e} \pi\) is a vector obtained by taking the natural logarithm of every value contained in the vector \(\pi\).

\section*{Robust variance-covariance matrix of parameter estimates}

For a linear model, these are computed using formula
\[
\mathbf{v a r}_{r}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{T} \mathbf{R X}\right)\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}
\]
where \(\mathbf{R}\) is a diagonal matrix containing squares of residuals of \(\mathbf{Y}\). The same formula may be used for "standard" analysis, in which case the elements of the \(\mathbf{R}\) matrix are constant, namely mean residual sum of squares (the estimate of \(\sigma^{2}\)).

Similar to that, the robust matrix is computed for logistic regression with
\[
\boldsymbol{v a r}_{r}=\left(\mathbf{X}^{T} \mathbf{W} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{T} \mathbf{R X}\right)\left(\mathbf{X}^{T} \mathbf{W} \mathbf{X}\right)^{-1}
\]
where \(\mathbf{1}\) is the vector of ones and \(\mathbf{W}\) is the diagonal matrix of "weights" used in logistic regression.

\section*{Cox proportional hazards model}

The implementation of the Cox proportional hazard model used in ProbABEL-package is entirely based on the code of R library survival developed by Thomas Lumley (function coxfit2), and is therefore not described here.

Many thanks to Thomas for making his code available under GNU GPL!

\subsection*{8.7.2 Analysis of pedigree data}

The framework for analysis of pedigree data follows the two-step logic developed in the works of Aulchenko et al. (2007) and Chen and Abecasis (2007). General analysis model is a linear mixed model which defines the expectation of the trait as
\[
E[\mathbf{Y}]=\mathbf{X} \beta
\]
identical to that defined for linear model (cf. section 8.1). To account for correlations between the phenotypes of relatives which may be induced by family relations the variance-covariance matrix is defined to be proportional to the linear combination of the identity matrix \(\mathbf{I}\) and the relationship matrix \(\boldsymbol{\Phi}\) :
\[
\mathbf{V}_{\sigma^{2}, h^{2}}=\sigma^{2}\left(2 h^{2} \boldsymbol{\Phi}+\left(1-h^{2}\right) \mathbf{I}\right)
\]
where \(h^{2}\) is the heritability of the trait. The relationship matrix \(\boldsymbol{\Phi}\) is twice the matrix containing the coefficients of kinship between all pairs of individuals under consideration; its estimation is discussed in a separate section '8.7.2, 8.7.2).

Estimation of a model defined in such a way is possible by numerical maximization of the likelihood function, however, the estimation of this model for large pedigrees is laborious, and is not computationally feasible for hundreds of thousands to millions of SNPs to be tested in the context of GWAS, as we have demonstrated previously (Aulchenko et al., 2007).

\section*{Two-step score test for association}

A two-step score test approach is therefore used to decrease the computational burden. Let us first re-define the expectation of the trait by splitting the design matrix in two parts, the "base" part \(\mathbf{X}_{x}\), which includes all terms not changing across all SNP models fit in GWAS (e.g. effects of sex, age, etc.), and the part including SNP information, \(\mathbf{X}_{\mathbf{g}}\) :
\[
E[\mathbf{Y}]=\mathbf{X}_{x} \beta_{x}+\mathbf{X}_{g} \beta_{g} .
\]

Note that the latter design matrix may include not only the main SNP effect, but e.g. SNP by environment interaction terms.

At the first step, a linear mixed model not including SNP effects
\[
E[\mathbf{Y}]=\mathbf{X}_{x} \beta_{x}
\]
is fitted. The maximum likelihood estimates (MLEs) of the model parameters (regression coefficients for the fixed effects \(\hat{\beta}_{x}\), the residual variance \(\hat{\sigma}_{x}^{2}\) and the heritability \(\hat{h}_{x}^{2}\)) can be obtained by numerical maximization of the likelihood function
\[
\log \operatorname{Lik}\left(\beta_{x}, h^{2}, \sigma^{2}\right)=-\frac{1}{2}\left(\log _{e}\left|\mathbf{V}_{\sigma^{2}, h^{2}}\right|+\left(\mathbf{Y}-\beta_{x} \mathbf{X}_{x}\right)^{T} \mathbf{V}_{\sigma^{2}, h^{2}}^{-1}\left(\mathbf{Y}-\beta_{x} \mathbf{X}_{x}\right)\right)
\]
where \(\mathbf{V}_{\sigma^{2}, h^{2}}^{-1}\) is the inverse and \(\left|\mathbf{V}_{\sigma^{2}, h^{2}}\right|\) is the determinant of the variancecovariance matrix.

At the second step, the unbiased estimates of the fixed effects of the terms involving SNP are obtained with
\[
\hat{\beta}_{g}=\left(\mathbf{X}_{g}^{T} \mathbf{V}_{\hat{\sigma}^{2}, \hat{h}^{2}}^{-1} \mathbf{X}_{g}\right)^{-1} \mathbf{X}_{g}^{T} \mathbf{V}_{\hat{\sigma}^{2}, \hat{h}^{2}}^{-1} \mathbf{R}_{\hat{\beta}_{x}}
\]
where \(\mathbf{V}_{\hat{\sigma}^{2}, \hat{h}^{2}}^{-1}\) is the variance-covariance matrix at the point of the MLE estimates of \(\hat{h}_{x}^{2}\) and \(\hat{\sigma}_{x}^{2}\) and \(\mathbf{R}_{\hat{\beta}_{x}}=\mathbf{Y}-\hat{\beta}_{x} \mathbf{X}_{x}\) is the vector of residuals obtained from the base regression model. Under the null model, the inverse variance-covariance matrix of the parameter's estimates is defined as
\[
\operatorname{var}_{\hat{\beta}_{g}}=\hat{\sigma}_{x}^{2}\left(\mathbf{X}_{g}^{T} \mathbf{V}_{\hat{\sigma}^{2}, \hat{h}^{2}}^{-1} \mathbf{X}_{g}\right)^{-1}
\]

Thus the score test for joint significance of the terms involving SNP can be obtained with
\[
T^{2}=\left(\hat{\beta}_{g}-\beta_{g, 0}\right)^{T} \operatorname{var}_{\hat{\beta}_{g}}^{-1}\left(\hat{\beta}_{g}-\beta_{g, 0}\right)
\]
where \(\beta_{g, 0}\) are the values of parameters fixed under the null model. This test statistics under the null hypothesis asymptotically follows the \(\chi^{2}\) distribution with the number of degrees of freedom equal to the number of parameters tested. The significance of an individual \(j\)-the elements of the vector \(\hat{\beta}_{g}\) can be tested with
\[
T_{j}^{2}=\hat{\beta}_{g}^{2}(j) \operatorname{var}_{\hat{\beta}_{g}}^{-1}(j j)
\]
where \(\hat{\beta}_{g}^{2}(j)\) is the square of the \(j\)-th element of the vector of estimates \(\hat{\beta}_{g}\), and \(\operatorname{var}_{\hat{\beta}_{g}}^{-1}(j j)\) corresponds to the \(j\)-th diagonal element of \(\boldsymbol{v a r}_{\hat{\beta}_{g}}^{-1}\). The latter statistics asymptotically follows \(\chi_{1}^{2}\).

\section*{Estimation of the kinship matrix}

The relationship matrix \(\boldsymbol{\Phi}\) used in estimation of the linear mixed model for pedigree data is twice the matrix containing the coefficients of kinship between all pairs of individuals under consideration. This coefficient is defined as the probability that two gametes randomly sampled from each member of the pair are identical-by-descent (IBD), that is they are copies of exactly the same ancestral allele. The expectation of kinship can be estimated from pedigree data using standard methods, for example the kinship for two outbred sibs is \(1 / 4\), for grandchild-grandparent is \(1 / 8\), etc. For an outbred person, the kinship coefficient is \(1 / 2\) - that is two gametes sampled from this person at random are IBD only if the same gamete is sampled. However, if the person is inbred, there is a chance that a maternal and paternal chromosomes are also IBD. The probability of this is characterized by kinship between individual's parents, which is defined as the individual's inbreeding coefficient, \(F\). In this case, the kinship coefficient for the individual is \(F+1 / 2\). Similar logic applies to computation of the kinship coefficient for other types of pairs in inbred pedigrees.

The kinship matrix can be computed using the pedigree data using standard methods. However, in many cases, pedigree information may be absent, incomplete, or not reliable. Moreover, the estimates obtained using pedigree data reflect the expectation of the kinship, while the true realization of kinship may vary around this expectation. In presence of genomic data it may therefore be desirable to estimate the kinship coefficient from these, and not from pedigree. It can be demonstrated that unbiased and positive semi-definite estimator of the kinship matrix can be obtained (Astle and Balding, 2010; Amin et al., 2007) by computing the kinship coefficients between individuals \(i\) and \(j\) with
\[
\hat{K}_{i j}=\frac{1}{L} \sum_{l=1}^{L} \frac{\left(g_{l, i}-p_{l}\right)\left(g_{l, j}-p_{l}\right)}{p_{l}\left(1-p_{l}\right)}
\]
where \(L\) is the number of loci, \(p_{l}\) is the allelic frequency at \(l\)-th locus and \(g_{l, j}\) is the genotype of \(j\)-th person at the \(l\)-th locus, coded as \(0,1 / 2\), and 1 , corresponding to the homozygous, heterozygous, and other type of homozygous genotype. The frequency is computed for the allele which, when homozygous, corresponds to the genotype coded as " 1 ".

\subsection*{8.8 How to cite}

If you used ProbABEL-package for your analysis please give a link to the GenABEL project home page
http://www.genabel.org/
and cite the ProbABEL-package paper to give us some credit:
Aulchenko YS, Struchalin MV, van Duijn CM.
ProbABEL package for genome-wide association analysis of imputed
data.
BMC Bioinformatics. 2010, 11:134.
A proper reference may look like

For the analysis of imputed data, we used the ProbABEL-package from the GenABEL suite of programs (Aulchenko et al., 2010).

If you have used the Cox proportional hazard model, please mention the R package survival by Thomas Lumley. Additionally to the above citation, please tell that

The Cox proportional hazards model implemented in ProbABEL-package makes use of the source code of the R package "survival" as implemented by T. Lumley.

\section*{Chapter 9}

\section*{Analysis of imputed data: an example}

In this chapter, you will perform an analysis of imputed data set. In this set of 120 individuals, 4500 SNPs are imputed based on information on 500 directly typed SNPs. You will first analyse 500 directly typed SNPs and then proceed to the analysis of imputed data. Finally, you will have a possibility to compare your results to the results of analysis in case all 5000 SNPs were directly typed.

\subsection*{9.1 Analysis of 500 directly typed SNPs}

Load the GenABEL-package library and load the data set we will use:
```

> library(GenABEL)
> load("RData/ImputedDataAnalysis.RData")
> ls()

```
[1] "df500" "df5k" "map5k" "rcT"
Here, df500 contains the data including 500 directly typed SNPs, and rcT is the vector containing the value of the trait of interest:
> nids(df500)
[1] 120
> nsnps(df500)
[1] 500
> length (rcT)
[1] 120
> \(r\) cT[1:10]
[1] -0.5560057 1.1798113 \(0.2721125 \quad 0.2174227-0.8193852-1.8739403\)
[7] \(0.9530623 \quad 0.9022811-1.0906900 \quad 0.5575454\)

In all analysis that follow, do disregard the Genomic Control and GCcorrected results: as we will analyse a small region with strong association, the GC can not be applied.

Let us start with analysis of directly typed SNPs. For that, we will use mlreg function of GenABEL-package. This function implements ML-regression and Wald test of siginificanc \(\epsilon^{11}\). This will later on allow us direct comparison with the results of ProbABEL-package, which implements the same testing procedure.

We can run regression of rcT on SNPs region-wise using
```

> qts500 <- mlreg(rcT~1,df500)
> qts500[1:5,]

|  | Chromosome | Position | Strand A1 | A2 | N | effB | se_effB |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| rs6139074 | 20 | 11244 | + | A | C | 120 | 0.488853649 | 0.2079789 |
| rs13043000 | 20 | 13288 | + | G | T | 120 | -0.002890489 | 0.4394487 |
| rs6037629 | 20 | 43093 | + | T | G | 120 | 0.504885204 | 0.4040614 |
| rs6052070 | 20 | 44931 | + | A | G | 120 | 0.171428327 | 0.3037772 |
| rs6116135 | 20 | 46930 | + | G | A | 120 | -0.239668333 | 0.4235491 |
|  | chi2.1df | P1df | Pc1df | effAB | effBB | chi2.2df | P2df |  |
| rs6139074 | $5.524833 e+00$ | 0.0187484 | 0.2123725 | NA | NA | NA | NA |  |
| rs1304300 | $4.326395 e-05$ | 0.9947519 | 0.9972156 | NA | NA | NA | NA |  |
| rs6037629 | $1.561315 e+00$ | 0.2114728 | 0.5073673 | NA | NA | NA | NA |  |
| rs6052070 | $3.184599 e-01$ | 0.5725346 | 0.7646316 | NA | NA | NA | NA |  |
| rs6116135 | $3.201945 e-01$ | 0.5714908 | 0.7640104 | NA | NA | NA | NA |  |

```

The summary for the SNPs, which show most significant association can be produced with
```

> bestHits500 <- descriptives.scan(qts500,top=10)
Summary for top 10 results, sorted by P1df
> bestHits500

```

rs6039167 1.480274e-14 4.512105e-05 NA NA NA NA
rs7261762 4.948399e-12 \(2.477531 \mathrm{e}-04\) NA NA NA NA
rs511582 1.601368e-07 5.429559e-03 NA NA NA NA
rs967789 1.885672e-06 1.146299e-02 NA NA NA NA

\footnotetext{
\({ }^{1}\) In general the score test may be preferred becuse it is faster and more robust
}
mlreg(rcT 1, df500)

Figure 9.1: Manhattan plot for 500 directly typed SNPs
\begin{tabular}{lllllll}
rs642758 & \(3.978434 \mathrm{e}-06\) & \(1.439751 \mathrm{e}-02\) & NA & NA & NA & NA \\
rs676749 & \(4.556610 \mathrm{e}-06\) & \(1.500792 \mathrm{e}-02\) & NA & NA & NA & NA \\
rs577116 & \(4.823944 \mathrm{e}-06\) & \(1.527219 \mathrm{e}-02\) & NA & NA & NA & NA \\
rs570673 & \(9.780761 \mathrm{e}-06\) & \(1.897119 \mathrm{e}-02\) & NA & NA & NA & NA \\
rs6112914 & \(1.210181 \mathrm{e}-05\) & \(2.025583 \mathrm{e}-02\) & NA & NA & NA & NA \\
rs6106161 & \(1.018509 \mathrm{e}-04\) & \(3.922563 \mathrm{e}-02\) & NA & NA & NA & NA \\
& & & & & \\
and the plot of the results with & & & &
\end{tabular}
```

> plot(qts500)
> abline(h=-log10(5e-8))

```
(see figure 9.1).
Finally, we can produce descriptive statistics for the SNPs, which demonstrated genome-wide significance:
```

> gwsSnps500 <- rownames(bestHits500)[bestHits500\$P1df<=6e-8]
> gwsSnps500
[1] "rs6039167" "rs7261762"
> summary(gtdata(df500[,gwsSnps500 ]))
rs6039167 20 846271 + G A 120 1 0.012500000 117

```
```

rs7261762 20 853448 + A G 120 0.008333333 118
P.12 P. 22 Pexact Fmax Plrt
rs6039167 3 0 1 -0.012658228 0.8454919
rs7261762 2 0 1 -0.008403361 0.8968501

```

\section*{Exercise 1.}

It is known that rare variation in presence of outliers can generate spurious associations. Do you believe this is true association in this particular case? What you can do to check whether this is true association or not?

\subsection*{9.2 Analysis of imputed data with ProbABEL-package}

Here, you will analyse imputed data. In RData directory, you will find the necessary files: mach1.mldose.fvi and mach1.mldose.fvd (these files represent mldose data produced by mach1, converted into DatABEL-package format \({ }^{2}\)) and mach1. out.mlinfo, which contains information for the imputed SNPs generated in the process of imputations (such as 'Rsq', etc.).

We will start with producing a phenotypic data file for the use with ProbABEL-package:
```

> write.table(data.frame(id=idnames(df500),rcT=rcT),

+ file="rcT.PHE",quote=F,row.names=F)

```
next, try command 'system("head rcT.PHE")' to check few first lines of the file.

At this moment, leave \(R\) (or, rather, start new console!), copy the mach-files to the working directory with
```

yourname@server> cp RData/mach1* .

```
and run ProbABEL-package analysis with
```

yourname@server> palinear --pheno rcT.PHE --info mach1.out.mlinfo /

```
 --dose mach1.mldose.fvi

Do not forget to check that you start analysis in right directory, i.e. all files (rcT.PHE, mach1.out.mlinfo, mach1.mldose.fvi, mach1.mldose.fvd) are present in the working directory (use command 'ls' from the console).

Now, you can return to \(R\) and load the analysis results:
```

> qtsPal <- read.table("regression_add.out.txt",head=T,strings=F)
> qtsPal[1:5,]
name A1 A2 Freq1 MAF Quality Rsq n Mean_predictor_allele
1 rs4814683 T G 0.4921 0.4921 0.7334 0.5650 120 0.492087
2 rs6076506 T G 0.7723 0.2277 0.6511 0.2415 120 0.772271
3 rs6139074 C A 0.3384 0.3384 0.9904 0.9803 120 0.338387
4 rs1418258 T C 0.5009 0.4991 0.7208 0.5474 120 0.500917
5 rs7274499 C A 0.9745 0.0255 0.9505 0.1011 120 0.974450

```

\footnotetext{
\({ }^{2}\) using mach2databel
}
```

beta_SNP_add sebeta_SNP_add loglik
0.618307 0.269166-114.266
0.722713 0.499781-115.837
0.501472 0.210870-114.082
0.636760 0.273391-114.194
1.348270 2.085770-116.679

```

As you see, there is not \(P\)-value produced in the ProbABEL-package output, and we need to compute it:
```

> qtsPal$Chisq <- (qtsPal$beta/qtsPal$sebeta)^2
> qtsPal$"P-value" <- pchisq(qtsPal\$Chisq,1,low=F)
> qtsPal[1:5,]

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline name & A1 & A2 & Freq1 & MAF & Quality & Rsq & n & Mean_predictor_allele \\
\hline 1 rs 4814683 & T & G & 0.4921 & 0.4921 & 0.7334 & 0.5650 & 120 & 0.492087 \\
\hline 2 rs6076506 & T & G & 0.7723 & 0.2277 & 0.6511 & 0.2415 & 120 & 0.772271 \\
\hline 3 rs6139074 & C & A & 0.3384 & 0.3384 & 0.9904 & 0.9803 & 120 & 0.338387 \\
\hline 4 rs1418258 & T & C & 0.5009 & 0.4991 & 0.7208 & 0.5474 & 120 & 0.500917 \\
\hline 5 rs7274499 & C & A & 0.9745 & 0.0255 & 0.9505 & 0.1011 & 120 & 0.974450 \\
\hline
\end{tabular}
 beta_SNP_add sebeta_SNP_add loglik Chisq P-value
\(\begin{array}{llllllllll}1 & 0.618307 & 0.269166 & -114.266 & 5.2767671 & 0.02161184\end{array}\)
\(2 \quad 0.722713 \quad 0.499781-115.837 \quad 2.0910877 \quad 0.14816055\)
\(\begin{array}{llllllll}3 & 0.501472 & 0.210870 & -114.082 & 5.6554059 & 0.01740165\end{array}\)
\(4 \quad 0.636760 \quad 0.273391-114.194 \quad 5.42479240 .01985280\)
\(5 \quad 1.348270 \quad 2.085770-116.679 \quad 0.41785050 .51801156\)

Let us have a look at the top 20 associated SNPs:
```

> qtsPal[order(qtsPal\$Chisq,decreasing=T)[1:20],]

```
\begin{tabular}{lrrrrrrrrrr}
& \multicolumn{4}{c}{ name } & A1 & A2 & Freq1 & MAF & Quality & Rsq
\end{tabular} n Mean_predictor_allele
\begin{tabular}{lrrrrrrrr}
1560 & rs6033304 & A & C 0.8234 & 0.1766 & 0.7408 & 0.2813 & 120 & \\
beta_SNP_add & sebeta_SNP_add & loglik & Chisq & P-value & 0.823429 \\
1009 & 5.98851 & 0.781065 & -92.6360 & 58.78455 & \(1.759171 \mathrm{e}-14\) & \\
1022 & 38.75330 & 5.101300 & -93.0016 & 57.71061 & \(3.036607 \mathrm{e}-14\) & \\
1026 & 7.39562 & 0.977268 & -93.1526 & 57.26929 & \(3.800428 \mathrm{e}-14\) & \\
1025 & 7.12447 & 0.984098 & -94.8389 & 52.41172 & \(4.500298 \mathrm{e}-13\) & \\
1024 & 6.85041 & 0.977608 & -96.0155 & 49.10250 & \(2.429299 \mathrm{e}-12\) & \\
4009 & 1.29428 & 0.185797 & -96.2227 & 48.52651 & \(3.258536 \mathrm{e}-12\) & \\
1023 & 6.80755 & 0.977629 & -96.2366 & 48.48792 & \(3.323302 \mathrm{e}-12\) & \\
2973 & 4.88622 & 0.721348 & -97.1826 & 45.88348 & \(1.254997 \mathrm{e}-11\) & \\
2969 & 4.89489 & 0.722872 & -97.1940 & 45.85251 & \(1.275000 \mathrm{e}-11\) & \\
3877 & 1.29728 & 0.192726 & -97.3933 & 45.30925 & \(1.682530 \mathrm{e}-11\) & \\
1017 & 728.01600 & 108.683000 & -97.5547 & 44.87026 & \(2.105310 \mathrm{e}-11\) & \\
3880 & 1.26975 & 0.192071 & -97.9861 & 43.70316 & \(3.821541 \mathrm{e}-11\) & \\
3886 & 1.25994 & 0.190625 & -97.9929 & 43.68577 & \(3.855647 \mathrm{e}-11\) & \\
3958 & 1.21385 & 0.184428 & -98.1290 & 43.31879 & \(4.650954 \mathrm{e}-11\) & \\
4027 & 1.98273 & 0.339011 & -101.6180 & 34.20579 & \(4.958132 \mathrm{e}-09\) & \\
3884 & 1.14070 & 0.199652 & -102.2370 & 32.64341 & \(1.107140 \mathrm{e}-08\) & \\
1018 & 2.12435 & 0.376830 & -102.5820 & 31.78053 & \(1.726140 \mathrm{e}-08\) & \\
4032 & 2.33945 & 0.427909 & -103.3440 & 29.88992 & \(4.572850 \mathrm{e}-08\) & \\
4029 & 2.36276 & 0.435773 & -103.5440 & 29.39805 & \(5.893679 \mathrm{e}-08\) & \\
1560 & 2.39452 & 0.451563 & -104.0670 & 28.11902 & \(1.140790 \mathrm{e}-07\) &
\end{tabular}
and produce the plot of the results with
```

> plot(map5k,-log10(qtsPal[,"P-value"]))
> abline(h=-log10(5e-8))

```
(here, map5k contains map information for all 5000 SNPs).
To compare with the results obtained using 500 directly typed SNPs only, we can add the points with
```

> points(map(qts500),-log10(qts500[,"P1df"]),col="red",pch=19,cex=0.5)

```
(see figure 9.2).
Now, we can also check different characteristics of the SNPs, which are claimed to be significant in our analysis:
```

> gwsSnpsImp <- qtsPal\$name[which(qtsPal[,"P-value"]<=5e-8)]
> gwsSnpsImp

```
```

[1] "rs6039167" "rs553378" "rs554362" "rs7273309" "rs7261762" "rs7267882"
[7] "rs8123328" "rs7265788" "rs6047425" "rs6035871" "rs2325971" "rs873711"
[13] "rs6051434" "rs6037425" "rs6037443" "rs566570" "rs6076466" "rs2326056"
> mlinfo <- read.table("mach1.out.mlinfo",head=T,strings=F)
> mlinfo[mlinfo\$SNP %in% gwsSnpsImp,]

|  | SNP |  |  |  | Al1 | Al2 | Freq1 | MAF |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | Quality Rsq

```


Figure 9.2: Manhattan plot for imputed (black empty circles) and 500 directly typed (red solid circles) SNPs
\begin{tabular}{|c|c|c|c|c|c|}
\hline 309 & C & T 0.9985 & 015 & 0.9970 & 96 \\
\hline 1023 rs7261762 & A & G 0.9913 & 0.0087 & 0.9991 & 0.9472 \\
\hline 1024 rs7267882 & G & A 0.9911 & 0.0089 & 0.9986 & 0.9230 \\
\hline 1025 rs8123328 & G & T 0.9902 & 0.0098 & 0.9964 & 0.8126 \\
\hline 1026 rs7265788 & A & G 0.9886 & 0.0114 & 0.9929 & 0.6884 \\
\hline 2969 rs6047425 & A & G 0.9388 & 0.0612 & 0.8964 & 0.2573 \\
\hline 2973 rs6035871 & A & G 0.9387 & 0.0613 & 0.8962 & 0.2582 \\
\hline 3877 rs2325971 & T & C 0.5811 & 0.4189 & 0.8526 & 0.7807 \\
\hline 3880 rs873711 & A & G 0.5888 & 0.4112 & 0.8597 & 0.7934 \\
\hline 3884 rs6051434 & G & T 0.5186 & 0.4814 & 0.8427 & 0.7732 \\
\hline 3886 rs6037425 & G & C 0.5871 & 0.4129 & 0.8651 & 0.8034 \\
\hline 3958 rs6037443 & A & G 0.4975 & 0.4975 & 0.8918 & 0.8340 \\
\hline 4009 rs566570 & C & T 0.5307 & 0.4693 & 0.8814 & 0.8074 \\
\hline 4027 rs6076466 & T & C 0.7040 & 0.2960 & 0.6570 & 0.3365 \\
\hline 4032 rs2326056 & C & A 0.7338 & 0.2662 & 0.6422 & . 2403 \\
\hline
\end{tabular}

\section*{Exercise 2.}

Please classify the associations obtained into 'true' and 'false' (meaning 'I believe it' and 'I do not believe'). Of cause ultimate answer is replications. Still, the object df5k provides genotypes for all 5000 SNPs, directly typed! So,

Figure 9.3: Cross-plot of the results from analysis of imputed and directly typed data (see answers to exercises).
you can run analysis, and cross-check which SNPs are confirmed as significant. Make a cross table: SNPs you thought were truly associated vs. SNPs indeed associated in directly typed data set.

\subsection*{9.3 Analysis of imputed data with MixABEL-package}

In case you are interested in quantitative traits, MixABEL-package provides much faster and more flexible analysis tools, compared to the ProbABEL-package \({ }^{3}\).

Here the above analysis is repeated using MixABEL-package:
```

> library(DatABEL)
DatABEL v. 0.9-2 (October 17, 2010) loaded
> library(MixABEL)
MixABEL v 0.1-1 (February 23, 2011) loaded
> imp5k <- databel("mach1.mldose")
> qtsImp <- GWFGLS(rcT~}\mp@subsup{}{~}{NNP,geno=imp5k,data=NULL)
> qtsImp[order(qtsImp[,"Chisq"],decreasing=T)[1:20],]

```

\footnotetext{
\({ }^{3}\) However, at the moment MixABEL-package misses functionality to analyse binary and time-till-event traits
}
\begin{tabular}{lrrrrrrr}
& n & Chisq & df & P-value & beta_SNP & se_SNP & mean_SNP \\
rs6039167 & 120 & 58.78462 & 1 & \(1.759110 \mathrm{e}-14\) & 5.988511 & 0.7810647 & 1.9750750 \\
rs7273309 & 120 & 57.71070 & 1 & \(3.036458 \mathrm{e}-14\) & 38.753300 & 5.1012957 & 1.9971000 \\
rs5265788 & 120 & 57.26926 & 1 & \(3.800491 \mathrm{e}-14\) & 7.395619 & 0.9772682 & 1.9770917 \\
rs8123328 & 120 & 52.41165 & 1 & \(4.500458 \mathrm{e}-13\) & 7.124468 & 0.9840984 & 1.9804917 \\
rs7267882 & 120 & 49.10249 & 1 & \(2.429317 \mathrm{e}-12\) & 6.850411 & 0.9776083 & 1.9823333 \\
rs566570 & 120 & 48.52652 & 1 & \(3.258526 \mathrm{e}-12\) & 1.294281 & 0.1857972 & 1.0614250 \\
rs7261762 & 120 & 48.48790 & 1 & \(3.323324 \mathrm{e}-12\) & 6.807552 & 0.9776294 & 1.9826917 \\
rs6035871 & 120 & 45.88351 & 1 & \(1.254980 \mathrm{e}-11\) & 4.886221 & 0.7213479 & 1.8773917 \\
rs6047425 & 120 & 45.85245 & 1 & \(1.275033 \mathrm{e}-11\) & 4.894889 & 0.7228723 & 1.8775333 \\
rs2325971 & 120 & 45.30891 & 1 & \(1.682820 \mathrm{e}-11\) & 1.297276 & 0.1927261 & 1.1620833 \\
rs55378 & 120 & 44.87029 & 1 & \(2.105276 \mathrm{e}-11\) & 728.016460 & 108.6830307 & 1.9974083 \\
rs8737111 & 120 & 43.70346 & 1 & \(3.820958 \mathrm{e}-11\) & 1.269752 & 0.1920707 & 1.1775000 \\
rs6037425 & 120 & 43.68526 & 1 & \(3.856660 \mathrm{e}-11\) & 1.259935 & 0.1906254 & 1.1742500 \\
rs6037443 & 120 & 43.31893 & 1 & \(4.650617 \mathrm{e}-11\) & 1.213849 & 0.1844276 & 0.9948917 \\
rs6076466 & 120 & 34.20582 & 1 & \(4.958055 \mathrm{e}-09\) & 1.982730 & 0.3390108 & 1.4078750 \\
rs6051434 & 120 & 32.64344 & 1 & \(1.107127 \mathrm{e}-08\) & 1.140700 & 0.1996519 & 1.0372417 \\
rs554362 & 120 & 31.78053 & 1 & \(1.726146 \mathrm{e}-08\) & 2.124350 & 0.3768300 & 1.2992083 \\
rs2326056 & 120 & 29.88994 & 1 & \(4.572800 \mathrm{e}-08\) & 2.339450 & 0.4279088 & 1.4675333 \\
rs11697448 & 120 & 29.39813 & 1 & \(5.893442 \mathrm{e}-08\) & 2.362763 & 0.4357729 & 1.4827917 \\
rs6033304 & 120 & 28.11911 & 1 & \(1.140738 \mathrm{e}-07\) & 2.394524 & 0.4515630 & 1.6468583
\end{tabular}
```

> plot(map5k,-log10(qtsImp[,"P-value"]))
> abline(h=-log10(5e-8))
> gwsSnpsImp <- rownames(qtsImp)[which(qtsImp[,"P-value"]<=6e-8)]
> mlinfo <- read.table("mach1.out.mlinfo",head=T,strings=F)
> mlinfo[mlinfo\$SNP %in% gwsSnpsImp,]

```

SNP Al1 Al2 Freq1 MAF Quality Rsq
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & rs6039167 & G & A 0.987 & 0.0125 & 0.9995 & \\
\hline & 553378 & G & A 0.9987 & 0.0013 & 0.9974 & 0.0005 \\
\hline 8 & 362 & A & G & 0.3504 & 0.5748 & \\
\hline 22 & 30 & C & T & 0.0015 & 0 & \\
\hline 3 & rs7261762 & A & G & 0.0087 & 0.9991 & \\
\hline 4 & 7267882 & G & A 0.99 & 0.0089 & 0.9986 & 0.9230 \\
\hline & 8123328 & G & T & 0.009 & 0.99 & \\
\hline 6 & 88 & A & G & 0.011 & 0. & \\
\hline 9 & rs6047425 & A & G & 0.061 & 0.8964 & \\
\hline 3 & rs6035 & A & G & 061 & 0.896 & 0.2582 \\
\hline 7 & rs2325971 & T & C 0.58 & 418 & 0.852 & 0.7807 \\
\hline 0 & 87 & A & G 0.5 & . 411 & 0. & 0.7934 \\
\hline 84 & rs605143 & G & T 0.51 & 0.48 & 0.842 & 0. \\
\hline 886 & rs6037425 & G & C 0.58 & 0. & 0.86 & \\
\hline 3958 & rs6037443 & A & G 0.497 & 0.4975 & 0.8918 & 0.8340 \\
\hline 4009 & rs566570 & C & T 0.530 & 0.4693 & 0.8814 & \\
\hline 4027 & rs6076466 & T & C 0.7040 & 0.2960 & 0.6570 & 0.3365 \\
\hline 29 & rs11697448 & G & A 0.74 & 0.2586 & 0.6464 & . 2 \\
\hline & & & & & & \\
\hline
\end{tabular}

\subsection*{9.4 Answers to exercises}

Answer (Ex. 1) - Firstly, you can check (by producing a cross-plot of genotype vs. phenotype) if association is indeed due to extreme phenotypic outliers. A related question is whether the distribution is skewed. Additionally, a permutation-based test can help establishing correct p-value, taking into account the nature of the data in question.
However, to give an ultimate answer, a replication study is needed, in which these rare SNPs are to be typed in a large independent sample.

Answer (Ex. 2) - Here is the sequence of commands leading you to the answer:
```

> qts5k <- mlreg(rcT~1,df5k)
> bestHits5k <- descriptives.scan(qts5k,top=20)

```

Summary for top 20 results, sorted by P1df
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & Chromosome & Position & Strand & A1 & A2 & N & effB & se_effB & chi2.1df \\
\hline rs566570 & 20 & 2965113 & + & T & C 12 & 20 & 1.341584 & 0.1585342 & 71.61267 \\
\hline rs6039167 & 20 & 846271 & + & G & A 12 & 20 & -5.945198 & 0.7731855 & 59.12420 \\
\hline rs6037443 & 20 & 2909408 & + & G & A 12 & 20 & 1.194178 & 0.1628897 & 53.74655 \\
\hline rs7261762 & 20 & 853448 & + & A & G 12 & 20 & -6.733516 & 0.9748760 & 47.70732 \\
\hline rs554362 & 20 & 850002 & + & A & G 12 & 120 & -5.431215 & 0.8045925 & 45.56613 \\
\hline rs2104741 & 20 & 787070 & + & G & A 12 & 20 & -9.203756 & 1.3888630 & 43.91485 \\
\hline rs7273309 & 20 & 853154 & + & C & T 12 & 120 & -9.203756 & 1.3888630 & 43.91485 \\
\hline rs7267882 & 20 & 853785 & + & G & A 12 & 20 & -9.203756 & 1.3888630 & 43.91485 \\
\hline rs8123328 & 20 & 855045 & + & G & T 12 & 20 & -9.203756 & 1.3888630 & 43.91485 \\
\hline rs7265788 & 20 & 855426 & + & A & G 12 & 20 & -9.203756 & 1.3888630 & 43.91485 \\
\hline rs7263171 & 20 & 855655 & + & C & T 12 & 120 & -9.203756 & 1.3888630 & 43.91485 \\
\hline rs6110342 & 20 & 1458950 & + & T & G 12 & 20 & -9.203756 & 1.3888630 & 43.91485 \\
\hline rs6105340 & 20 & 1493635 & + & G & A 12 & 20 & -9.203756 & 1.3888630 & 43.91485 \\
\hline rs11905071 & 20 & 1557640 & + & T & C 12 & 20 & -9.203756 & 1.3888630 & 43.91485 \\
\hline rs6080013 & 20 & 1590861 & + & G & A 12 & 20 & -9.203756 & 1.3888630 & 43.91485 \\
\hline rs6074978 & 20 & 1595216 & + & T & C 12 & 20 & -9.203756 & 1.3888630 & 43.91485 \\
\hline rs2325971 & 20 & 2774477 & + & T & C 12 & 20 & -1.055991 & 0.1697536 & 38.69752 \\
\hline rs873711 & 20 & 2775468 & + & A & G 12 & 20 & -1.055991 & 0.1697536 & 38.69752 \\
\hline rs6037425 & 20 & 2785379 & + & G & C 12 & 20 & -1.055991 & 0.1697536 & 38.69752 \\
\hline rs6051434 & 20 & 2781237 & + & T & G 12 & 20 & 0.938854 & 0.1769196 & 28.16076 \\
\hline & P1df & & Pc1df & effab & eff & \(f B B\) & chi2.2df & P2df & \\
\hline rs566570 & \(2.618695 \mathrm{e}-17\) & 75.55149 & 96e-06 & N & & NA & NA & NA & \\
\hline rs6039167 & \(1.480274 \mathrm{e}-14\) & 43.66378 & \(81 \mathrm{e}-05\) & N & & NA & NA & NA & \\
\hline rs6037443 & \(2.280947 \mathrm{e}-13\) & 38.30144 & 45e-05 & N & & NA & NA & NA & \\
\hline rs7261762 & \(4.948399 \mathrm{e}-12\) & 22.09040 & 09e-04 & N & & NA & NA & NA & \\
\hline rs554362 & \(1.475718 \mathrm{e}-11\) & 12.90452 & 23e-04 & N & & NA & NA & NA & \\
\hline rs2104741 & \(3.429767 \mathrm{e}-11\) & 13.74536 & 69e-04 & N & & NA & NA & NA & \\
\hline rs7273309 & \(3.429767 \mathrm{e}-11\) & 13.74536 & 69e-04 & N & & NA & NA & NA & \\
\hline rs7267882 & \(3.429767 \mathrm{e}-11\) & 13.74536 & 69e-04 & N & & NA & NA & NA & \\
\hline rs8123328 & 3.429767e-11 & 13.74536 & 69e-04 & N & & NA & NA & NA & \\
\hline rs7265788 & \(3.429767 \mathrm{e}-11\) & 13.74536 & 69e-04 & N & & NA & NA & NA & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline rs7263171 & \(3.429767 \mathrm{e}-11\) & \(3.745369 \mathrm{e}-04\) & NA & NA & NA & NA \\
\hline rs6110342 & 3.429767e-11 & \(3.745369 \mathrm{e}-04\) & NA & NA & NA & NA \\
\hline rs6105340 & 3.429767e-11 & \(3.745369 \mathrm{e}-04\) & NA & NA & NA & NA \\
\hline rs11905071 & 3.429767e-11 & \(3.745369 \mathrm{e}-04\) & NA & NA & NA & NA \\
\hline rs6080013 & \(3.429767 \mathrm{e}-11\) & \(3.745369 \mathrm{e}-04\) & NA & NA & NA & NA \\
\hline rs6074978 & 3.429767e-11 & 3.745369e-04 & NA & NA & NA & NA \\
\hline rs2325971 & \(4.948386 \mathrm{e}-10\) & 8.395801e-04 & NA & NA & NA & NA \\
\hline rs873711 & \(4.948386 \mathrm{e}-10\) & 8.395801e-04 & NA & NA & NA & NA \\
\hline rs6037425 & \(4.948386 \mathrm{e}-10\) & 8.395801e-04 & NA & NA & NA & NA \\
\hline rs6051434 & \(1.116452 \mathrm{e}-07\) & \(4.389549 \mathrm{e}-03\) & NA & NA & NA & NA \\
\hline \multicolumn{7}{|l|}{> plot (qts5k)} \\
\hline \multicolumn{7}{|l|}{> abline (\(\mathrm{h}=-\log 10(5 e-8)\))} \\
\hline \multicolumn{7}{|l|}{> gwsSnps5k <- rownames(bestHits5k) [bestHits5k\$P1df<=6e-8]
> summary(gtdata(df5k[,gwsSnps5k]))} \\
\hline
\end{tabular}
Q. 2
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Chrom & mosome & Posi & ition & Strand & d A1 & A2 & NoMea & asured & CallRate & Q. 2 \\
\hline rs566570 & & 20 & & 65113 & & & C & & 120 & & 10.495833333 \\
\hline rs6039167 & & 20 & & 46271 & & \(+\mathrm{G}\) & & & 120 & & 0.012500000 \\
\hline rs6037443 & & 20 & & 09408 & & \(+\mathrm{G}\) & A & & 120 & & 0.491666667 \\
\hline rs7261762 & & 20 & & 53448 & & \(+\mathrm{A}\) & G & & 120 & 1 & 10.008333333 \\
\hline rs554362 & & 20 & & 50002 & & \(+\mathrm{A}\) & G & & 120 & 1 & 10.012500000 \\
\hline rs2104741 & & 20 & & 87070 & & + G & A & & 120 & 1 & 10.004166667 \\
\hline rs7273309 & & 20 & & 53154 & & + C & T & & 120 & 1 & 10.004166667 \\
\hline rs7267882 & & 20 & & 53785 & & + G & A & & 120 & & 10.004166667 \\
\hline rs8123328 & & 20 & & 55045 & & \(+\mathrm{G}\) & T & & 120 & 1 & 10.004166667 \\
\hline rs7265788 & & 20 & & 55426 & & & G & & 120 & 1 & 10.004166667 \\
\hline rs7263171 & & 20 & & 55655 & & C & T & & 120 & 1 & 10.004166667 \\
\hline rs6110342 & & 20 & & 58950 & & \(+\mathrm{T}\) & G & & 120 & & 0.004166667 \\
\hline rs6105340 & & 20 & & 93635 & & \(+\mathrm{G}\) & A & & 120 & 1 & 10.004166667 \\
\hline rs11905071 & & 20 & & 57640 & & \(+\mathrm{T}\) & C & & 120 & 1 & 10.004166667 \\
\hline rs6080013 & & 20 & & 90861 & & + G & A & & 120 & 1 & 0.004166667 \\
\hline rs6074978 & & 20 & & 95216 & & T & & & 120 & & 0.004166667 \\
\hline rs2325971 & & 20 & & 74477 & & \(+\mathrm{T}\) & C & & 120 & & 0.470833333 \\
\hline rs873711 & & 20 & & 75468 & & + A & G & & 120 & 1 & 10.470833333 \\
\hline rs6037425 & & 20 & & 85379 & & \(+\mathrm{G}\) & C & & 120 & 1 & 0.470833333 \\
\hline & P. 11 & P. 12 & P. 22 & & xact & & & Fmax & & Plrt & \\
\hline rs566570 & 33 & 55 & & 0.364 & 8758 & 0.08 & 8326 & 69672 & 0.3614 & 4010 & \\
\hline rs6039167 & 117 & 3 & & 1.000 & 0000-0. & -0.01 & 1265 & 58228 & 0.8454 & 4919 & \\
\hline rs6037443 & 35 & 52 & 33 & 0.146 & 7972 & 0.13 & 3309 & 92526 & 0.1442 & 2654 & \\
\hline rs7261762 & 118 & 2 & & 1.000 & 0000-0. & -0.00 & 0840 & 03361 & 0.8968 & 8501 & \\
\hline rs554362 & 117 & 3 & & 1.000 & 0000 - & -0.01 & 1265 & 58228 & 0.8454 & 4919 & \\
\hline rs2104741 & 119 & 1 & & 1.000 & 0000 - & -0.00 & 0418 & 84100 & 0.9484 & 4250 & \\
\hline rs7273309 & 119 & 1 & & 1.0000 & 0000 & -0.00 & 0418 & 84100 & 0.9484 & 4250 & \\
\hline rs7267882 & 119 & 1 & & 1.000 & 0000 & -0.00 & 0418 & 84100 & 0.9484 & 4250 & \\
\hline rs8123328 & 119 & 1 & & 1.0000 & 00000 & -0.00 & 0418 & 84100 & 0.9484 & 4250 & \\
\hline rs7265788 & 119 & 1 & & 1.000 & 0000 & -0.00 & 0418 & 84100 & 0.9484 & 4250 & \\
\hline rs7263171 & 119 & 1 & 0 & 1.000 & 0000 & -0.00 & 0418 & 84100 & 0.9484 & 4250 & \\
\hline rs6110342 & 119 & 1 & & 1.0000 & 0000 & -0.00 & 0418 & 84100 & 0.9484 & 4250 & \\
\hline rs6105340 & 119 & 1 & & 1.000 & 0000 & -0.00 & 0418 & 84100 & 0.9484 & 4250 & \\
\hline rs11905071 & 119 & 1 & & 1.000 & 0000 & -0.00 & 0418 & 84100 & 0.948 & 4250 & \\
\hline
\end{tabular}
```

| rs6080013 | 119 | 1 | 0 | 1.0000000 | -0.004184100 | 0.9484250 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| rs6074978 | 119 | 1 | 0 | 1.0000000 | -0.004184100 | 0.9484250 |
| rs2325971 | 38 | 51 | 31 | 0.1032427 | 0.147097763 | 0.1065638 |
| rs873711 | 38 | 51 | 31 | 0.1032427 | 0.147097763 | 0.1065638 |
| rs6037425 | 38 | 51 | 31 | 0.1032427 | 0.147097763 | 0.1065638 |

> plot(-log10(qts5k[,"P1df"]),-log10(qtsPal[,"P-value"]))
> abline(h=-log10(5e-8))
> abline(v=-log10(5e-8))
> directNotImp <- gwsSnps5k[!(gwsSnps5k %in% gwsSnpsImp)]
> directNotImp

```
```

[1] "rs2104741" "rs7263171" "rs6110342" "rs6105340" "rs11905071"
[6] "rs6080013" "rs6074978"

```
```

> imputeNotDir <- gwsSnpsImp[!(gwsSnpsImp %in% gwsSnps5k)]
> imputeNotDir
[1] "rs553378" "rs6047425" "rs6035871" "rs6051434" "rs6076466" "rs2326056"
> inBoth <- gwsSnps5k[gwsSnps5k %in% gwsSnpsImp]
> inBoth

```
 [1] "rs566570" "rs6039167" "rs6037443" "rs7261762" "rs554362" "rs7273309"
[7] "rs7267882" "rs8123328" "rs7265788" "rs2325971" "rs873711" "rs6037425"
> summary (gtdata(df5k[,directNotImp]))
 Chromosome Position Strand A1 A2 NoMeasured CallRate Q.2
\begin{tabular}{lllllllll}
rs2104741 & 20 & 787070 & + & \(G\) & \(A\) & 120 & 1 & 0.004166667 \\
rs7263171 & 20 & 855655 & + & \(C\) & \(T\) & 120 & 1 & 0.004166667 \\
rs6110342 & 20 & 1458950 & + & \(T\) & \(G\) & 120 & 1 & 0.004166667 \\
rs6105340 & 20 & 1493635 & + & \(G\) & A & 120 & 1 & 0.004166667 \\
rs11905071 & 20 & 1557640 & + & T & C & 120 & 1 & 0.004166667 \\
rs6080013 & 20 & 1590861 & + & \(G\) & A & 120 & 1 & 0.004166667 \\
rs6074978 & 20 & 1595216 & + & \(T\) & \(C\) & 120 & 1 & 0.004166667
\end{tabular}
\begin{tabular}{lllllll}
\(\operatorname{rs} 2104741\) & 119 & 1 & 0 & 1 & -0.0041841 & 0.948425 \\
\(r s 7263171\) & 119 & 1 & 0 & 1 & -0.0041841 & 0.948425 \\
\(r s 6110342\) & 119 & 1 & 0 & 1 & -0.0041841 & 0.948425 \\
\(r s 6105340\) & 119 & 1 & 0 & 1 & -0.0041841 & 0.948425 \\
\(r s 11905071\) & 119 & 1 & 0 & 1 & -0.0041841 & 0.948425 \\
\(r s 6080013\) & 119 & 1 & 0 & 1 & -0.0041841 & 0.948425 \\
\(r s 6074978\) & 119 & 1 & 0 & 1 & -0.0041841 & 0.948425
\end{tabular}
> mlinfo[which(mlinfo\$SNP \%in\% directNotImp),]
 SNP Al1 Al2 Freq1 MAF Quality Rsq
871 rs2104741 G A \(0.95620 .0438 \quad 0.91450 .0679\)
1027 rs7263171 C T \(0.8639 \quad 0.1361 \quad 0.9246 \quad 0.7898\)
1978 rs6110342 T G \(0.9160 \quad 0.0840 \quad 0.8472 \quad 0.1967\)
2028 rs6105340 G A \(0.8790 \quad 0.1210 \quad 0.7849 \quad 0.2076\)
2064 rs11905071 T C \(0.88460 .1154 \quad 0.79890 .1890\)
2111 rs6080013 G A \(0.95770 .0423 \quad 0.9342 \quad 0.3869\)
2118 rs6074978 T C \(0.95760 .0424 \quad 0.9340 \quad 0.3851\)
> summary(gtdata(df5k[,imputeNotDir]))

Chromosome Position Strand A1 A2 NoMeasured CallRate Q.2 P. 11
\begin{tabular}{lrrrrrllll}
rs553378 & 20 & 849882 & + & G & A & 120 & 1 & 0.02500000 & 114 \\
rs6047425 & 20 & 2141014 & + & A & G & 120 & 1 & 0.07083333 & 104 \\
rs6035871 & 20 & 2143364 & + & A & G & 120 & 1 & 0.07083333 & 104 \\
rs6051434 & 20 & 2781237 & + & T & G & 120 & 1 & 0.47500000 & 37 \\
rs6076466 & 20 & 2982048 & + & T & C & 120 & 1 & 0.22916667 & 71 \\
rs2326056 & 20 & 2985607 & + & C & A & 120 & 1 & 0.22500000 & 72
\end{tabular}
P. 12 P. 22 Pexact Fmax Plrt
rs553378 \(6 \quad 0 \quad 1.0000000\)-0.025641026 0.6948707
\(\begin{array}{llllll}\text { rs6047425 } & 15 & 1 & 0.4561335 & 0.050382485 & 0.6092978\end{array}\)
\(\begin{array}{llllll}\text { rs6035871 } & 15 & 1 & 0.4561335 & 0.050382485 & 0.6092978\end{array}\)
\(\begin{array}{llllll}\text { rs6051434 } & 52 & 31 & 0.1473878 & 0.131161236 & 0.1502658\end{array}\)
rs6076466 \(43 \quad 61.0000000-0.0142506140 .8754486\) rs2326056 4261.0000000 -0.003584229 0.9686478 > mlinfo[which(mlinfo\$SNP \%in\% imputeNotDir),]

SNP Al1 Al2 Freq1 MAF Quality Rsq
1017 rs553378 G A \(0.99870 .0013 \quad 0.99740 .0005\)

2969 rs6047425 A G \(0.93880 .0612 \quad 0.89640 .2573\)
2973 rs6035871 A G \(0.93870 .0613 \quad 0.89620 .2582\)
3884 rs 6051434 G T 0.51860 .48140 .84270 .7732
\(4027 \mathrm{rs} 6076466 \mathrm{~T} \quad \mathrm{C} 0.70400 .2960 \quad 0.6570 \quad 0.3365\)
4032 rs2326056 C A \(0.7338 \quad 0.2662 \quad 0.64220 .2403\)
> summary (gtdata(df5k[,inBoth]))
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Chrom & nosome & Position & Strand & A1 & A2 & NoMeasured & CallRate & Q. 2 & P. 11 \\
\hline rs566570 & & 20 & 2965113 & + & & C & 120 & & 10.495833333 & 33 \\
\hline rs6039167 & & 20 & 846271 & + & G & A & 120 & & 10.012500000 & 117 \\
\hline rs6037443 & & 20 & 2909408 & + & G & A & 120 & & 10.491666667 & 35 \\
\hline rs7261762 & & 20 & 853448 & + & A & G & 120 & & 10.008333333 & 118 \\
\hline rs554362 & & 20 & 850002 & + & A & G & 120 & & 10.012500000 & 117 \\
\hline rs7273309 & & 20 & 853154 & + & C & T & 120 & & 10.004166667 & 119 \\
\hline rs7267882 & & 20 & 853785 & + & G & A & 120 & & 10.004166667 & 119 \\
\hline rs8123328 & & 20 & 855045 & + & G & T & 120 & & 10.004166667 & 119 \\
\hline rs7265788 & & 20 & 855426 & + & A & G & 120 & & 10.004166667 & 119 \\
\hline rs2325971 & & 20 & 2774477 & + & T & C & 120 & & 10.470833333 & 38 \\
\hline rs873711 & & 20 & 2775468 & + & A & G & 120 & & 10.470833333 & 38 \\
\hline rs6037425 & & 20 & 2785379 & + & G & C & 120 & & 10.470833333 & 38 \\
\hline & P. 12 & P. 22 & Pexact & & & nax & Plrt & & & \\
\hline rs566570 & 55 & 32 & 0.3648758 & 0.0832 & 2696 & & 0.3614010 & & & \\
\hline rs6039167 & 3 & 0 & 1.0000000 & -0.0126 & 6582 & & 0.8454919 & & & \\
\hline rs6037443 & 52 & 33 & 0.1467972 & 0.1330 & 0925 & & 0.1442654 & & & \\
\hline rs7261762 & 2 & 0 & 1.0000000 & -0.008403 & 4033 & & 0.8968501 & & & \\
\hline rs554362 & 3 & 0 & 1.0000000 & -0.0126 & 6582 & & 0.8454919 & & & \\
\hline rs7273309 & 1 & 0 & 1.0000000 & -0.004 & 41841 & & 0.9484250 & & & \\
\hline rs7267882 & 1 & 0 & 1.0000000 & -0.0041 & 1841 & & 0.9484250 & & & \\
\hline rs8123328 & 1 & 0 & 1.0000000 & -0.004 & 1841 & & 0.9484250 & & & \\
\hline rs7265788 & 1 & 0 & 1.0000000 & -0.004 & 1841 & 100 & 0.9484250 & & & \\
\hline rs2325971 & 51 & 31 & 0.1032427 & 0.1470 & 0977 & 63 & 0.1065638 & & & \\
\hline rs873711 & 51 & 31 & 0.1032427 & 0.1470 & 0977 & 63 & 0.1065638 & & & \\
\hline rs6037425 & 51 & 31 & 0.1032427 & 0.1470 & 0977 & 763 & 0.1065638 & & & \\
\hline
\end{tabular}
```

> mlinfo[which(mlinfo\$SNP %in% inBoth),]
SNP Al1 Al2 Freq1 MAF Quality Rsq
1009 rs6039167 G A $0.98750 .0125 \quad 0.9995 \quad 0.9800$
1018 rs554362 A G $0.64960 .3504 \quad 0.57480 .2481$
1022 rs7273309 C T $0.99850 .0015 \quad 0.99700 .1896$
1023 rs7261762 A G $0.99130 .0087 \quad 0.99910 .9472$
1024 rs7267882 G A $0.99110 .0089 \quad 0.99860 .9230$
1025 rs8123328 G T 0.99020 .0098 0.9964 0.8126
1026 rs7265788 A G $0.98860 .0114 \quad 0.9929 \quad 0.6884$
3877 rs2325971 T C $0.58110 .4189 \quad 0.8526 \quad 0.7807$
3880 rs873711 A G $0.58880 .4112 \quad 0.8597 \quad 0.7934$
3886 rs6037425 G C $0.58710 .4129 \quad 0.86510 .8034$

$$
3958 \text { rs6037443 A G } 0.49750 .4975 \quad 0.89180 .8340
$$

4009 rs566570 C T $0.53070 .4693 \quad 0.88140 .8074$

```

\section*{Chapter 10}

\section*{Meta-analysis of GWA scans}

\subsection*{10.1 Standard meta-analysis methods}

Imagine you are interested in the effect of a certain polymorphism onto a particular disease. After scanning literature, you find some studies that implicate certain allele as significantly increasing the risk of the disease, but you will typically find also that other studies were inconclusive (no significant association), and that even some of the studies implicated the same allele as "protective". Your gut feeling may be that the allele is indeed the risk one, because you feel that the studies contradicting to this hypothesis were based on small number of subjects; however, how do you quantify this feeling? In this situation you need to perform meta-analysis of available data to come up with the joint effect size estimate and P -value, as based on all available data.

Let us first consider a situation when you are interested in the effect of the allele on a quantitative phenotype, expressed as a coefficient of regression of the trait onto the number of this allele in the genotype. Under a favorable scenario, from every individual study you would know the estimate of this regression coefficient, and the standard error of the estimate (or, equivalently, the \(P\)-value or the test statistics value for association).

One of approaches frequently used in meta-analysis of the data coming from a number of independent studies is the inverse variance method. In essence, this method is equivalent to combining likelihoods coming from separate studies, using quadratic approximation. Denote coefficients of regression estimated in \(N\) studies as \(\beta_{i}\), and associated squared standard errors of the estimates as \(s_{i}^{2}\) where \(i \in 1,2, \ldots, N\). Note that the regression coefficient should be reported on the same scale, e.g. centimeters, meters, or using observations reported on the standard normal scale. Define weights for individual studies as
\[
w_{i}=\frac{1}{s_{i}^{2}}
\]

Then the pooled estimate of the regression coefficient is
\[
\beta=\frac{\sum_{i=1}^{N} w_{i} \beta_{i}}{\sum_{i=1}^{N} w_{i}}
\]

As you can see, the weights have straightforward interpretation: the bigger the weight of the study (meaning the small is the standard error in the study), the larger is the contribution from this study onto the pooled estimate.

The standard error of the pooled estimate is computed as
\[
s^{2}=\frac{1}{\sum_{i=1}^{N} w_{i}}
\]
and the \(\chi^{2}\)-test for association is computed in standard manner as
\[
T^{2}=\frac{\beta^{2}}{s^{2}}=\frac{\left(\sum_{i=1}^{N} w_{i} \beta_{i}\right)^{2}}{\sum_{i=1}^{N} w_{i}}
\]
or, alternatively, the Z-test is
\[
Z=\frac{\beta}{s}=\frac{\sum_{i=1}^{N} w_{i} \beta_{i}}{\sqrt{\sum_{i=1}^{N} w_{i}}}
\]

Let us try to do meta-analysis using the inverse variance pooling method. Imagine we have information from four different studies reporting effect and the standard error of the same allele:

Table 10.1: Estimated regression coefficients from four studies
\begin{tabular}{lcccc}
\hline Study & \(n\) & \(\beta\) & \(s_{\beta}\) & \(\chi^{2}\) \\
\hline 1 & 225 & 0.16 & 0.07 & 5.224 \\
2 & 560 & 0.091 & 0.042 & 4.694 \\
3 & 437 & 0.072 & 0.048 & 2.25 \\
4 & 89 & -0.03 & 0.12 & 0.062 \\
\hline Total & 1311 & \(?\) & \(?\) & \(?\) \\
\hline
\end{tabular}

Let us try to access the joint significance of the association using these data. First, let us define a vector of regression coefficients and squared standard errors:
```

> beta <- c(0.16,0.091,0.072,-0.03)
> s <- c(0.07,0.042,0.048,0.12)
> s2 <- s*s
> s2

```
[1] 0.0049000 .0017640 .0023040 .014400
Compute the weight for individual studies as
```

> w <- 1/s2
> w

```
[1] \(204.08163566 .89342434 .02778 \quad 69.44444\)
Estimate pooled regression coefficient as
```

> pbeta <- sum(w*beta)/sum(w)
> pbeta

```
[1] 0.08898527
and pooled squared standard error as
```

> ps2 <- 1/sum(w)
> ps 2

```
[1] 0.0007846539
To access significance of association in meta-analysis, let us compute \(\chi^{2}\) test statistics and the \(P-\) value with
```

> pchi2 <- pbeta*pbeta/ps2

```
> pchi2
[1] 10.09155
```

> ppvalue <- 1. - pchisq(pchi2,1)

```
> ppvalue
[1] 0.001489504
We conclude that there is a significant association in meta-analysis.
There is an important effect which should be considered when doing metaanalysis of published data. Given numerous polymorphisms available in human genome, a particular polymorphism usually becomes a focus of interest only when it was shown to be significantly associated in some study which reports it. Put it other way around: only when a significant association was detected and reported, more studies are likely to be performed on the same polymorphism. This first report, however, is not guaranteed to demonstrate a true association: it may well report a false-positive, or, even in presence of association, it is likely to over-estimate the effect of the polymorphism. Thus there is a positive bias in literature reports, and this bias is particularly strong for the first report, a phenomenon frequently referenced to as "champion's" or "winner's curse".

The observations we have just considered are quite typical in that the first study, where the association was originally discovered, reports the biggest effect and most significant effect, while the follow-up studies suggest smaller effect.

Therefore, when you meta-analyse data from publications it is always good idea to exclude the first report (in case it is positive - and it is always positive!) and check if significant association is still observed. Let us try to do that:
```

> beta <- beta[2:4]
> s2 <- s2[2:4]
> w <- w[2:4]
> pbeta <- sum(w*beta)/sum(w)
> pbeta
[1] 0.07544522
> ps2 <- 1/sum(w)
> ps2
[1] 0.0009342602

```
```

> pchi2 <- pbeta*pbeta/ps2
> pchi2

```
[1] 6.092501
```

> ppvalue <- 1. - pchisq(pchi2,1)
> ppvalue

```

\section*{[1] 0.01357568}

Indeed, when the first "champion" report is excluded, the overall evidence is decreased and results become less significant, though still pointing to the same direction.

When binary traits are studied, and results are reported as Odds Ratios with \(P-\) values, it is also possible to apply inverse variance method. For this, you need to transform your Odds Ratios using natural logarithm, and, on this scale, estimate the standard error. Generic inverse variance pooling may be applied to the data transformed this way; the final results are back-transformed onto Odds Ratio scale using exponentiation.

Let us consider a simple example. Let Odds Ratios and \(\chi^{2}\) test statistics values coming from four studies of a binary phenotype are as following: \(\theta_{1}=1.5\) \(\left(\chi^{2}=5.1\right), \theta_{2}=1.3\left(\chi^{2}=2.2\right), \theta_{3}=0.9\left(\chi^{2}=0.5\right), \theta_{4}=1.2\left(\chi^{2}=3.1\right)\).

Let us first transform the Odds Ratio to the logarithmic scale with
```

> or <- c(1.5,1.3,0.9,1.2)
> lnor <- log(or)
> lnor
[1] $0.4054651 \quad 0.2623643-0.10536050 .1823216$

```

To compute standard errors from known \(\chi^{2}\) values, one can use simple relation
\[
\chi^{2}=\frac{\beta^{2}}{s^{2}}
\]
and thus
\[
s^{2}=\frac{\beta^{2}}{\chi^{2}}
\]

Thus to compute the square standard errors corresponding to the log-Odds Ratio, we can use
```

> chi2or <- c(5.1,2.2,0.5,3.1)
> s2lnor <- lnor*lnor/chi2or
> s2lnor

```

\section*{[1] 0.032235680 .031288640 .022201680 .01072295}

Now we can combine log-Odds Ratios and corresponding standard errors using inverse variance method:
```

> w <- 1/s2lnor
> plnor <- sum(w*lnor)/sum(w)
> plnor

```
```

[1] 0.1650462
> ps2 <- 1/sum(w)
> ps2
[1] 0.004968165
> pchi2 <- plnor*plnor/ps2
> pchi2
[1] 5.482958

```
```

> ppval <- 1.-pchisq(pchi2,1)

```
> ppval <- 1.-pchisq(pchi2,1)
> ppval
[1] 0.01920274
```

And the corresponding estimate of pooled Odds Ratio is

```
> exp(plnor)
```

[1] 1.179448
and $95 \%$ confidence interval is

```
> exp(plnor-1.96*sqrt(ps2))
```

[1] 1.02726
> $\exp ($ plnor $+1.96 *$ sqrt (ps2))

## [1] 1.354181

Some times, effects are reported on different scales, and/or there may be suspect that these effects are not translatable across studies because of the differences in experimental design or for some other reasons. In this case, it may be better to poll the data without use of the effect estimate in exact manner, based only on the sign of association and its significance. This can be done by pooling Z-score values. Z-score refers to the test statistics, which has standard normal distribution under the null and can be derived e.g. by dividing estimate of the regression coefficient onto its standard error:

$$
Z_{i}=\frac{\beta_{i}}{s_{i}}
$$

The Z-score pooling methods can be derived from the inverse variance pooling by exploiting the fact that generally standard error of the estimate is proportional to $1 / \sqrt{n}$, where $n$ is the number of observations used for estimation. Therefore individual scores are assigned weights which are proportional to the square root of number of independent observations used in individual study, $w_{i}=\sqrt{n_{i}}$. The pooled Z-score statistics is computed as

$$
Z=\frac{\sum_{i=0}^{N} w_{i} Z_{i}}{\sqrt{\sum_{i=0}^{N} w_{i}^{2}}}
$$

We can now repeat the analysis of our first data set using Z-score pooling method. First, our data from table 10.1 are

```
> n <- c(225,560,437,89)
> beta <- c(0.16,0.091,0.072,-0.03)
> s <- c(0.07,0.042,0.048,0.12)
```

The Z-scores and weights are are:

```
> z <- beta/s
> z
[1] 2.285714 2.166667 1.500000 -0.250000
> w <- sqrt(n)
> W
```

[1] $15.00000023 .66431920 .904545 \quad 9.433981$
The pooled estimate of Z-score is

```
> pz <- sum(w*z)/sqrt(sum(w^2))
> pz
```

[1] 3.163875
and corresponding $P-$ value is

```
> 1.-pchisq(pz*pz,1)
```

[1] 0.001556839
which is almost the same $P$ - value we have obtained previously using the inverse variance method. Note, however, that now we do not know the "pooled" estimate of the regression coefficient.

Other important aspects of meta-analysis, such as heterogeneity, and a wide range of methods different from the inverse variance and Z-score based methods are not covered here, and we refer the reader to more epidemiologically-oriented literature for a better review.

### 10.2 Exercise: meta-analysis of literature data

In this exercise, you will perform meta-analysis of results collected from literature. These results resemble these obtained for association analysis between Pro12Ala polymorphism of the PPAR-GenABEL-packagemma gene and type 2 diabetes. The data collected from literature are presented in the table 10.2 .

As you can see, only the original study report significant association, while other four are insignificant and one point in opposite direction.

Answer the following questions:
Exercise 8 Perform meta-analysis of the data presented in table 10.2. Which allele is the risk one? Is this risk significant? What is pooled Odds Ratio and $95 \%$ confidence interval? Do analysis using at least two methods. Which method is better (best) in this situation? Why?

Exercise 9 Perform meta-analsys excluding the original report (study 1). Is there still significant association between Pro12Ala and diabetes?

Table 10.2: Summary of six studies of association between T2D and Pro12Ala polymorphism of the PPAR-GenABEL-packagemma gene. $n$ : number of subjects; effective allele: the allele for which the OR was estimated.

| Study | Effective allele | $n$ | $O R_{E}$ | $P-$ value |
| :--- | :---: | :---: | :---: | :---: |
| 1 | Ala | 221 | 0.67 | 0.013 |
| 2 | Pro | 306 | 0.93 | 0.60 |
| 3 | Pro | 71 | 1.08 | 0.84 |
| 4 | Ala | 164 | 0.83 | 0.40 |
| 5 | Pro | 242 | 1.22 | 0.25 |
| 6 | Pro | 471 | 1.23 | 0.07 |

### 10.3 Reporting GWA results for future metaanalysis

In this section, we will discuss specifics of GWA analysis when meta-analysis is aimed at later stage. In order to perform meta-analysis at later stage, using either inverse variance or Z-score based method, you generally need to report only effect estimates, standard errors of The estimates (or, equivalently, $P-$ values or test statistics values), and number of observations used for estimation.

It is also clear that it is crucial to know for which allele the effect is reported, and this is the point where meta-analysis of genetic data may be very confusing. Generally, one may think that reporting what couple of nucleotide bases correspond to the polymorphism under the study and defining what allele was used as reference in the regression model may be enough. This, however, is not true for certain class of polymorphisms and may be a source of great confusion.

Consider a DNA molecule; as you know it is made of two complementary strands (forward or " + " and reverse or "-"). As you may guess, depending on the strand, what is an "A/G" polymorphism when reported on " + " strand becomes "T/C" polymorphism on the "-" strand (using complementarity rule $\mathrm{A}<->\mathrm{T}$ and $\mathrm{G}<->\mathrm{C}$ ). This is not a big problem for most of the polymorphism classes, because if say you know that for a first study $\beta_{1}$ is reported for the " G " allele of the "A/G" polymorphism and in the second study $\beta_{2}$ is the estimate of the effect "C" allele of the same polymorphism, but coded as "T/C" (thus other strand), you can easily spot that and say the "C" is the same as " G " in this situation, and pool the two betas straightforwardly.

However, for two types of polymorphisms, "A/T" and "G/C", where you can not get away without knowing what the strand was: what is reported as the effect of " $T$ " in "A/T" polymorphism in study one; and seemingly corresponding effect of " $T$ " in "A/T" polymorphism in study two may be apparently reports for two opposite alleles, if strands used for reporting in two studies were different.

The story may become even more complex, because the forward/reverse orientation depends on the genomic build ${ }^{1}$

Thus if you want to pool your results with the results of others, there are quite a few SNP characteristics which are absolutely crucial to report, namely, the nucleotide bases describing the polymorphism, with indication which one was used as reference, and which one as "effective", strand, genomic build, and only

[^9]than the effect estimate, standard error of the effect, and number of observations used to do estimation.

Other characteristics which are also recommended for reporting because they describe the quality characteristics of the sample and/or provide redundant information, which is good for double checks. Such characteristics include: frequency of the effective or reference allele, call rate, P-value for Hardy-Weinberg equlibrium and may be some parameter describing what is the direction of deviation from HWE (e.g. $F_{\max }$ ). When reporting results for imputed SNPs, more quality control characteristics should be included, suh as average maximal posterior probability, $R^{2}$, etc.

Let us start with arranging two data sets which could then be used for metaanalysis. Basically, we will use cleaned data from the GWA exercise you did in section 5 ('Genome-wide association analysis', page 101), and split that is two parts.

If you did not do this yet, start R and load GenABEL-package library, which you will need it to work with GWA-data

```
> library(GenABEL)
```

Load the data with
> load("data2.RData")
and then split it in two parts:

```
> nids(data2)
```

[1] 124

```
> mdta1 <- data2[1:40,]
> mdta2 <- data2[41:nids(data2),]
```

We will analyse body mass index. If you pooling results of analysis of studies which are designed in approximately the same manner, you may think of reporting the effect estimates on the same scale and use of the inverse variance method for meta-analysis.

However, in meta-analysis of multiple data sets different individual studies are likely to assess different population, will use different designs, measure different covariates, and so on. Therefore you should think of some standardisation of the outcome variable (or apply Z-score method).

Therefore for the purpose of future meta-analysis, it becomes conventional to analyse pre-adjusted data which are scaled to Standard Normal (mean of zero and variance of unity). Note that this argument applies only to meta-analysis you may and should report effects on the original scale (e.g. in centimeters and grams) in analysis of individual studies, in order to have better interpretability.

Moreover, in meta-analysis you heavily rely on the large numbers approximation when estimating $P$-values; while for individual study you can always apply empirical, e.g. permutation-based, procedures to derive the correct $P$-value whatever is the distribution of the trait, in meta-analysis the Normality assumption becomes crucial, and you do not want few outliers spoiling your results by screwing up $P$-values. Therefore some transformation improving normality is
desirable. Note that transformation to Standard Normal does not improve the fit to normality; to do that other transformation should be applied. Probably the most famous transformations are log- and square root ones, then one may think of Box-Cox transformation. At the same time there is a transformation, called a Rank Transformation ro Normality which guarantees perfect fit to Normal in absence of heavy ties ${ }^{2}$. We advocate the use of Rank Transformation to Normal for meta-analysis purposes.

GenABEL-package implements the ztransform function for the purposes of Z-transformation. This function takes two (actually three - see help for details) arguments: formula (or just the variable name) and data. ztransform function will perform (generalised) linear regression using the specified formula, and will transform the residuals from analysis onto Z-scale by subtracting the mean and division by the standard deviation.

Let us consider what this function does practically. Let us first transform BMI from the first set without using covariates:

```
> zbmiO <- ztransform(bmi,mdta1)
```

The histogram of the transformed variable and scatter-plot of raw against transformed BMI is given at figure 10.1, column 1. Note that the fit to Normality is not improved by this transformation; with the original BMI, the Shapiro test for deviation from normality gives

```
> shapiro.test(phdata(mdta1)$bmi)
 Shapiro-Wilk normality test
data: phdata(mdta1)$bmi
W = 0.9328, p-value = 0.0199
```

with identical results from the transformed variable:

```
> shapiro.test(zbmiO)
 Shapiro-Wilk normality test
data: zbmi0
W = 0.9328, p-value = 0.0199
```

This is quite natural: as you can note from scatter-plot in column 1 of figure 10.1. only the centering and the spread of the scales are different for X (original $\overline{\mathrm{BMI}}$ ) and $\mathrm{Y}(\mathrm{x} 0)$, otherwise there is an exact linear correspondence between the two.

We can also do transformation using sex and age-adjusted residuals with

```
> zbmi1 <- ztransform(bmi ~sex+age,mdta1)
```

The scatter-plot of raw against transformed BMI is given at figure 10.1, column 2. Note that this transformation may slightly change the fit to Normal, which happens because we factor out the effects of sex and age:

```
> shapiro.test(zbmi1)
```

[^10]```
    Shapiro-Wilk normality test
data: zbmi1
W = 0.9263, p-value = 0.01224
```

From the scatter-plot in column 2 of figure 10.1 , it is quite clear what happens: the residuals from linear regression are not corresponding to the original BMI in exact linear manner.

A similar function, which performs rank-transformation to normality, is named rntransform. For example if we want to adjust BMI for sex and age and rank-transform the residuals to Normal, we can use

```
> rnbmi1 <- rntransform(bmi~sex+age,mdta1)
```

This transformation, however, indeed improves the fit to Normal:

```
> shapiro.test(rnbmi1)
```

 Shapiro-Wilk normality test
 data: rnbmi1
$\mathrm{W}=0.999$, p -value $=1$

In essence, the $P-$ value of 1 means perfect fit to Normal - and this is what should have occurred when this transformation is used on the data without ties. Perfectly Normal distribution of the transformed trait may be enjoyed at the histogram presented at column 3 of figure 10.1

Let us analyse Rank-Normal-transformed, sex and age-adjusted BMI in the two data sets, using qtscore function. Analysis of the first study is done with

```
> qts1 <- qtscore(rnbmi1,mdta1)
```

and analysis of the second study is done with

```
> zbmi2 <- ztransform(bmi~sex+age,mdta2)
> qts2 <- qtscore(zbmi2,mdta2)
```

The analysis looks very simple - is not it? However, the real difficulty did not start yet: now we need to extract coding, reference allele, strand, etc. otherwise we can not do right meta-analysis later on!

Let us assume that you want to summarise the GW results from additive 1 d.f. test using following variables (as, e.g., requested by consortium):

- name: SNP name

- chromosome: chromosome number
- position: physical position of the SNP
- refallele: reference allele
- codedallele: coded (effect) allele
- strand: strand
- refallfreq: frequency of the reference allele

Figure 10.1: Histogram of transformed BMI and scatter-plots of the raw BMI against transformed BMI. Column 1: Z-transformation without covariates. Column 2: Z-transformation with adjustment for age and sex. Column 3: Ranktransformation to normality, after adjustment for sex and age.

- n: number of people with data available for this SNP test
- beta: estimate of the effect of the allele
- se_beta: standard error of the effect estimate
- p: P-value for the test
- p_corr: corrected P-value (we will use Genomic Control)
- call: SNP call rate
- phwe: P-value from the exact test for HWE

Let us look what we get as an output from qtscore analysis:

```
> results(qts1)[1:2,]
```

	Chromosome	Position	Strand A1 A2	N	effB	se_effB	chi2.1df		
rs1646456	1	653	+	C	G	40	0.1768955	0.2560635	0.4772414
rs4435802	1	5291	+	C	A	40	-0.4064900	0.4095768	0.9849838
	P1df	effAB	effBB	chi2.2df	P2df	Pc1df			
rs1646456	0.4896745	0.09703712	0.4909062	0.6323627	0.7289272	0.4896745			
rs4435802	0.3209715	-0.40649004		NA	0.9849838	0.3209715	0.3209715		

You can see that most infromation is already present in the output, though called using names which are different from these requested. However, we miss reference allele frequency, SNP call rate and P-value from the Hardy-Weinberg equilibrium test. These however can be computed using the summary function:

```
> # for data part 1:
> sum1 <- summary(gtdata(mdta1))
> sum1[1:2,]
```


	Chromosome	Position	Strand A1	1 A2	NoMe		CallRate	Q. 2	P. 11
rs1646456	1	653	+	C G		83	0.9880952	0.33734940	36
rs4435802	1	5291	+	C A		82	0.9761905	0.07926829	69
	P. 12 P. 22 Pexact Fmax				Plrt				
rs1646456	389	1 -0	. 02402597	0.82	26397				
rs4435802	130	$1-0$. 08609272	0.28	89791				

Note, however, that we now got frequency of the effective (or coded) allele, not the frequency of the reference allele! The quantity we need can be easily computed, though:

```
> # for data part 1
> refallfreq1 <- 1 - sum1[,"Q.2"]
> #... and for data part 2
> refallfreq2 <- 1 - sum2[,"Q.2"]
```

At this moment we can arrange the required data frame:

```
> mdf1 <- data.frame(name=snpnames(qts1),chromosome=chromosome(qts1),
+ position=map(qts1),refallele=refallele(qts1),
+ codedallele=effallele(qts1),strand = strand(qts1),
+ refallelefreq = refallfreq1,n=qts1[,"N"],
+ beta=qts1[,"effB"],
+ se_beta=qts1[,"se_effB"],p=qts1[,"P1df"],
+ p_corr=qts1[,"Pc1df"],call = sum1[,"CallRate"],
+ phwe = sum1[,"Pexact"], stringsAsFactors = FALSE)
```

note the last argument - stringsAsFactors = FALSE. I suggest you use that by default when constructing a new data frame - unless you are sure that you can work out your way later on with strings saved as factors.

Let us inspect the first 5 raws of the resulting output:

```
> mdf1[1:5,]
```


However, it is not recommended that you perform above-described reporting actions unless you develop your own format. In case if you plan to use MetABEL-package for meta-analysis, you best use formetascore function, which basically performs operations similar to described, and reports results in format compatible with MetABEL-package.

Thus, if you plan to use MetABEL-package for meta-analysis, required tables can be generated with single command:

```
> mdf1 <- formetascore(bmi~sex+age,mdta1,transform=rntransform, verbosity = 2 )
```

You can see that results are the same as previously:

```
> mdf1[1:5,]
```

name chromosome position strand allele1 allele2 build							
rs1646456	rs1646456	1	65	53	C	G unkn	nown
rs4435802	rs4435802	1	529	91	C	A unkn	nown
rs946364	rs946364	1	853	33	T	C unkn	nown
rs299251	rs299251	1	1073	37	A	G unkn	nown
rs2456488	rs2456488	1	1177	79	G	C unkn	nown
	effallele	effallelefreq	n	beta	sebeta		p pgc
rs1646456	G	0.33750000	40	0.1768955	0.2560635	5 0.4896745	0.4896745
rs4435802	A	0.08750000	40	-0.4064900	0.4095768	80.3209715	0.3209715
rs946364	C	0.27631579	38	0.2944870	0.2752734	4 0.2847102	0.2847102
rs299251	G	0.03846154	39	0.4958353	0.5989959	90.4077965	0.4077965
rs2456488	C	0.33750000	40	0.1145684	0.2271545	50.6140062	0.6140062
	lambda.estimate lambda.se lambda.iz0 lambda.iz2 pexhwe call						
rs1646456		1	NA	1.006539		10.4775382	1.000
rs4435802		1 ,	NA	1.006539		11.0000000	1.000
rs946364		1	NA	1.006539		10.6911168	0.950
rs299251		1	NA	1.006539		11.0000000	0.975
rs2456488		1	NA	1.006539		10.7320709	1.000

To write all the data to a file, we can use standard R write.csv function:

```
> write.csv(mdf1,file="RData/part1.rnbmisexage.csv",row.names=F)
```

Similar analysis is applied to the second data set:

```
mdf2 <- formetascore(bmi ~sex+age,mdta2,transform=rntransform, verbosity = 2 )
```

We can inspect the first five lines of the output with

```
> mdf2[1:5,]
```

| | name | chromosome position | strand | allele1 | allele2 | build |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| rs1646456 | rs1646456 | 1 | 653 | + | C | G unknown |
| rs4435802 | rs4435802 | 1 | 5291 | + | C | A unknown |
| rs946364 | rs946364 | 1 | 8533 | - | T | C unknown |
| rs299251 | rs299251 | 1 | 10737 | + | A | G unknown |
| rs2456488 | rs2456488 | 1 | 11779 | + | G | C unknown |
| | effallele effallelefreq | n | beta | sebeta | p | |
| rs1646456 | G | 0.32926829 | 82 | -0.04879397 | 0.1663650 | 0.76929696 |
| rs4435802 | A | 0.08024691 | 81 | 0.37724197 | 0.2984226 | 0.20618701 |
| rs946364 | C | 0.25903614 | 83 | -0.14414880 | 0.1790329 | 0.42073156 |
| rs299251 | G | 0.04216867 | 83 | -0.69920378 | 0.3919648 | 0.07444912 |
| rs2456488 | C | 0.34146341 | 82 | -0.23105805 | 0.1520352 | 0.12856957 |

pgc lambda
$\begin{array}{llllll}\text { rs1646456 } 0.77676571 & 1.070017 & 0.0009650323 & 1.036357 & 1.027149\end{array}$
$\begin{array}{llllll}\text { rs4435802 } 0.22168453 & 1.070017 & 0.0009650323 & 1.036357 & 1.027149\end{array}$
$\begin{array}{llllll}\text { rs946364 } & 0.43635427 & 1.070017 & 0.0009650323 & 1.036357 & 1.027149\end{array}$
$\begin{array}{llllll}r s 299251 & 0.08461892 & 1.070017 & 0.0009650323 & 1.036357 & 1.027149\end{array}$
$\begin{array}{llllll}r s 2456488 & 0.14177789 & 1.070017 & 0.0009650323 & 1.036357 & 1.027149\end{array}$
pexhwe call
rs1646456 0.80389960 .9879518
rs4435802 1.00000000 .9759036
rs946364 1.00000001 .0000000
rs299251 1.00000001 .0000000
rs2456488 0.46853970 .9879518

Let us write the data to a file

```
> write.csv(mdf2,file="RData/part2.rnbmisexage.csv",row.names=F)
```

Finally let us analyse and save results for another data set, ge03d2c:

```
> data(ge03d2c)
mdf3 <- formetascore(bmi~sex+age,ge03d2c,transform=rntransform, verbosity = 2 )
> write.csv(mdf3,file="RData/part3.rnbmisexage.csv",row.names=F)
```


10.4 Meta-analysis with MetABEL-package

Now we are ready to meta-analyse GWA data coming from three studies. For this we will need to use MetABEL-package package, implementing simple metaanalysis functions for GWA data. Start with loading the package:

```
> library(MetABEL)
```

We will first meta-analyse the three studies using the data frames generated in previous section, $\operatorname{mdf} 1, \operatorname{mdf} 2$ and $\operatorname{mdf} 3$. For this we will use the core function of MetABEL-package, metagwa.tables. This function takes four arguments: two data frames with results from individual studies, and two arguments supplying the study names. Pooling of multiple studies is possible by sequential application of this function.

Let us pool two first data frames:

```
> pooled <- metagwa.tables(mdf1,mdf2,name.x="Part1",name.y="Part2")
analysing ...
Lambda Part1 = 0.9499903
Lambda Part2 = 1.098705
Corrected Lambda Part1 = 0.9499903
Corrected Lambda Part2 = 1
Lambda POOLED data = 1.023276
... DONE
```

The pooled data frame contains results of meta-analysis and essential details of the original studies:

```
> pooled[1:5,]
```


If one needs to pool more studies, this data frame should be used as the first argument of the metagwa.tables, and name.x argument should take special value "POOLED":

```
> pooled <- metagwa.tables(pooled,mdf3,name.x="POOLED",name.y="mdf3")
NA for betas in both populaions
1 8 \text { SNPs removed}
```

```
analysing ...
Lambda mdf3 = 1.128096
Corrected Lambda mdf3 = 1
Lambda POOLED data = 1.340905
... DONE
> pooled[1:5,]
```


p
10.6215693
20.5199718
30.6632071
40.3278788
50.8360855

This procedure may become quite laborious if multiple studies are to be pooled. In this case, it is possible to run meta-analysis using data provided in files, by applying function metagwa.files. As the first argument, this function takes the path to the directory where the files with results of individual studies are stored. It is assumed that the file names are made of two parts: population/study name and an extension. Thus the second argument of the metagwa.files function is the vector with names of studies, and the third one provides extension. Other arguments, "maf", "call" and "phwe" provide the threshold for QC filtering of SNPs in individual studies.

The function does not return any value, but rather creates a new file named POOLEDextens, where "extens" is the argument supplied to the function, in the source directory. To run analysis on the three files in the directory "RData" we can use

```
> metagwa.files(dir="RData",pops=c("part1", "part2", "part3"), extens=".rnbmisexage.csv"
```

Population part1 , reading RData/part1.rnbmisexage.csv done
Dimesions after filters are 348220

```
population part2, reading RData/part2.rnbmisexage.csv done
Dimesions after filters are 3530 20
analysing ...
Lambda part1 = 0.9493588
Lambda part2 = 1.095788
Corrected Lambda part1 = 0.9493588
Corrected Lambda part2 = 1
Lambda POOLED data = 1.024196
... DONE
Dimesions after pooling are 3533 20
population part3, reading RData/part3.rnbmisexage.csv done
Dimesions after filters are 7444 20
analysing ...
Lambda part3 = 1.12461
Corrected Lambda part3 = 1
Lambda POOLED data = 1.345936
... DONE
Dimesions after pooling are 7444 22
$analysed.pops
[1] "part1" "part2" "part3"
```

extra arguments regulate the SNP exclusion criteria: maf $=0.01$ tells to exclude SNPs with minor allele frequency less then 0.5%, call $=0.95$ tells to drop SNPs with call rate less than 95%, and phwe $=1 . \mathrm{e}-8$ instructs to exclude SNPs with HWE P-value $\leq 10^{-8}$.

Now we can read and inspect the results of meta-analysis with:

```
> poolf <- read.csv("RData/POOLED.rnbmisexage.csv",strings=F)
> poolf[1:5,]
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1 rs1000909 & - & A & G & G & 2 & 8531681 & 190 \\
\hline 2 rs1006092 & - & T & G & G & X & 13527448 & 190 \\
\hline 3 rs 100616 & - & G & C & C & 1 & 1911712 & 310 \\
\hline 4 rs 1006497 & + & T & G & G & 1 & 2658810 & 315 \\
\hline 5 rs1010481 & + & A & C & C & & 8409087 & 190 \\
\hline beta & & & & & & we obet & par \\
\hline
\end{tabular}
1 -0.08504871 0.13198426 0.8157895 0.9793814 2.8521518 NA
2-0.03712065 0.08510711 0.5078947 0.9793814 6.8378385 NA
3 0.11825684 0.12070003 0.1241935 0.9780568 6.5922479 0.08819818
4-0.02359567 0.11424656 0.1603175 0.9937465 0.2313494 -0.25425751
5-0.03241475 0.12358721 0.2657895 0.9793814 0.0000000 NA
    obetapart2 obetapart3 osepart1 osepart2 osepart3 chi2
        NA -0.085048708 NA NA 0.13198426 0.41523235
        NA -0.037120652 NA NA 0.08510711 0.19023899
        0.1230224623 0.121082405 0.3726827 0.2128792 0.15936396 0.95992605
        -0.0001117686 0.005382408 0.3498751 0.2354211 0.14085503 0.04265582
            NA -0.032414750 NA NA 0.12358721 0.06879205
            p
10.5193256
2 0.6627178
```

30.3272055
40.8363747
50.7931037

10.5 Answers to the exercise

Perform meta-analysis of the data presented in table 10.2 . Which allele is the risk one? Is this risk significant? What is pooled Odds Ratio and 95% confidence interval? Do analysis using at least two methods. Which method is better (best) in this situation? Why?

We first need to unify Odds Ratios by using the same effective allele. Let that be the "risk" allele, as may be guessed from a glance to the data, namely "Pro". When the effects are reported for the other, "Ala" allele, the corresponding ORs for the "Pro" allele can be found using simple relation $O R_{\text {Pro }}=1 / O R_{\text {Ala }}$.

Thus, the vector of Odds Ratios for "Pro" allele is

```
> or.pro <- c(1./.67,0.93,1.08,1./.83,1.22,1.23)
> or.pro
```

[1] 1.4925370 .9300001 .0800001 .2048191 .2200001 .230000
The corresponding P - values are

```
> p <- c(0.013,0.6,0.84,0.40,0.25,0.07)
Let us find log-ORs
```

```
> logor.pro <- log(or.pro)
```

> logor.pro <- log(or.pro)
> logor.pro
[1] 0.40047757 -0.07257069 0.07696104 0.18632958 0.19885086 0.20701417

```

Corresponding squared standard errors are
```

> s2 <- logor.pro*logor.pro/qchisq(1-p,1)
> s2

```
[1] 0.025997640 .019151210 .145310600 .049015140 .029881020 .01305349
and weights are
```

> w <- 1/s2
> w

```
```

[1] 38.465034 52.216009
6.881811 20.401860 33.466060 76.607876

```

Thus the pooled estimate of log-OR is
```

> p.logor.pro <- sum(w*logor.pro)/sum(w)
> p.logor.pro

```
[1] 0.1686548
and the standard error is
```

> p.s <- 1/sqrt(sum(w))

```
\(>p . s\)
[1] 0.06622101
Thus the pooled estimate of Odds Ratio from association between type 2 diabetes and "Ala" allele is
> exp(p.logor.pro)
[1] 1.183711
and the \(95 \%\) confidence interval is
```

> exp(p.logor.pro-1.96*p.s)

```
[1] 1.039627
```

> exp(p.logor.pro+1.96*p.s)

```
[1] 1.347765
The \(\chi^{2}\) test for association and corresponding \(P-\) value are
> p.chi2 <- (p.logor.pro/p.s)~2
> p.chi2
[1] 6.486429
```

> p.pval <- 1-pchisq(p.chi2,1)
> p.pval

```
[1] 0.01087011
Z-score pooling though may be more appropriate method for such differentially designed studies (e.g. control groups are very different). To get Z-score pooling working, we need first find Z-scores from P-values
```

>p<-c(0.013,0.6,0.84,0.40,0.25,0.07)
> z<- sqrt(qchisq(1-p,1))
> z

```
[1] 2.48376930 .52440050 .20189350 .84162121 .15034941 .8119107
and assign the right sign (let "+" is for the risk effect of "Pro").
```

> effsig <- c(1,-1,1,1,1,1)
> z <- z*effsig
> z

```
[1] \(2.4837693-0.52440050 .2018935 \quad 0.8416212 \quad 1.1503494 \quad 1.8119107\)
Now, we need to assign weights to the studies as
```

> n <- c(221,306,71, 164,242,471)
> W <- sqrt(n)

```
ane the pooled estimate of Z and corresponding \(P\) - value are
```

> zpoo <- sum(W*z)/sqrt(sum(\mp@subsup{w}{}{\wedge}2))
> zpoo
[1] 2.537333
> 1-pchisq(zpoo*zpoo,1)
[1] 0.01117008

```

As you can see the results are almost identical to the previous obtained with inverse variance pooling.

\subsection*{10.5.1 Exercise 9:}

Perform meta-analsys excluding the original report (study 1). Is there still significant association between Pro12Ala and diabetes?

The answer to this exercise can be obtained in exactly the same manner, as for the previous one, limiting our consideration to the last five studies.

Thus, the vector of Odds Ratios for "Pro" allele is
```

> or.pro <- c(0.93,1.08,1./.83,1.22,1.23)
> or.pro

```
[1] 0.9300001 .0800001 .2048191 .2200001 .230000
The corresponding \(P\) - values are
```

> p <- c(0.6,0.84,0.40,0.25,0.07)

```

Let us find log-ORs
```

> logor.pro <- log(or.pro)

```
> logor.pro
\(\left[\begin{array}{llllll}{[1] ~-0.07257069} & 0.07696104 & 0.18632958 & 0.19885086 & 0.20701417\end{array}\right.\)

Corresponding squared standard errors are
```

> s2 <- logor.pro*logor.pro/qchisq(1-p,1)
> s2

```
[1] 0.019151210 .145310600 .049015140 .029881020 .01305349
and weights are
```

> w <- 1/s2
> W

```
[1] 52.2160096 .88181120 .40186033 .46606076 .607876

Thus the pooled estimate of log-OR is
```

> p.logor.pro <- sum(w*logor.pro)/sum(w)
> p.logor.pro

```
[1] 0.1216172
and the standard error is
```

> p.s <- 1/sqrt(sum(w))

```
> p.s
[1] 0.07262917
Thus the pooled estimate of Odds Ratio from association between type 2 diabetes and "Ala" allele is
> exp(p.logor.pro)
[1] 1.129322
and the \(95 \%\) confidence interval is
> exp(p.logor.pro-1.96*p.s)
[1] 0.9794776
```

> exp(p.logor.pro+1.96*p.s)

```
[1] 1.30209
The \(\chi^{2}\) test for association and corresponding \(P\)-value are
```

> p.chi2 <- (p.logor.pro/p.s)^2

```
> p.chi2
[1] 2.803937
```

> p.pval <- 1-pchisq(p.chi2,1)
> p.pval
[1] 0.09403318

```

Z-score pooling though may be more appropriate method for such differentially designed studies (e.g. control groups are very different). To get Z-score pooling working, we need first find Z-scores from P-values
```

> p<- c(0.6,0.84,0.40,0.25,0.07)
> z <- sqrt(qchisq(1-p,1))
> z

```
[1] 0.52440050 .20189350 .84162121 .15034941 .8119107
and assign the right sign (let " + " is for the risk effect of "Pro").
```

> effsig <- c(-1,1,1,1,1)
> z <- z*effsig
> z

```
[1] \(-0.5244005 \quad 0.2018935 \quad 0.8416212 \quad 1.1503494 \quad 1.8119107\)

Now, we need to assign weights to the studies as
\(>n<-c(306,71,164,242,471)\)
> w <- sqrt(n)
ane the pooled estimate of Z and corresponding \(P-\) value are
> zpoo <- sum (W*z)/sqrt(sum(w^2))
> zpoo
[1] 1.709151
> 1-pchisq(zpoo*zpoo,1)
[1] 0.08742297
As you can see the results are almost identical to the previous obtained with inverse variance pooling.

\section*{Chapter 11}

\section*{Analysis of selected region}

Small data set 'srdta', which is part of the GenABEL-package library, will be used in this section. Start R and load the GenABEL-package and the data with
> library (GenABEL)
> data(srdta)

\subsection*{11.1 Exploring linkage disequilibrium}

See help for r2fast.

\subsection*{11.2 Haplotype analysis}

\section*{Use}
> gtforld <- as.hsgeno(srdta[,1:5])
to convert part of your SNPs to haplo.stats format.
You can also use interface function to do sliding widow analysis
> h2 <- scan.haplo("qt1~CRSNP",srdta,snps=c(1:5))

\subsection*{11.3 Analysis of interactions}

See help for scan.haplo.2D and scan.glm.2D

\section*{Appendix A}

\section*{Importing data to GenABEL-package}

As described in section 4.1, GenABEL-package gwaa.data-class consist of phenotypic data frame and an object of snp.data-class, which contains all genetic data. To import data to GenABEL-package, you need to prepare two files: one containing the phenotypic, and the other containing genotypic data.

The phenotype file relates study subject IDs with values of covariates and outcomes. In the phenotypic data file, the first line gives a description (variable name) of the data contained in a particular column; the names should better be unique, otherwise R will change them.

The first column of the phenotype file must contain the subjects' unique ID, named "id". The IDs listed here, and in the genotypic data file, must be the same. It is recommended that the id names are given in quotation marks (see example below), which will save you a possible troubles with e.g. leading zeros.

There also should also be a column named "sex" and giving sex information ( \(0=\) female, \(1=\) male \()\). Other columns in the file should contain phenotypic information.

Missing values should be coded with "NA"; binary traits should have values 0 or 1 .

All subjects present in the genotypic files must be listed in the phenotypic file as well, because sex information provided by the phenotypic file is an essential part of the genotypic QC procedure.

An example of few first lines of a phenotype file is as follows:
\begin{tabular}{llllll} 
id & sex & age & bt1 & qt & qt1 \\
"cd289982" & 0 & 30.33 & NA & NA & 3.93 \\
"cd325285" & 0 & 36.514 & 1 & 0.49 & 3.61 \\
"cd357273" & 1 & 37.811 & 0 & 1.65 & 5.30 \\
"cd872422" & 1 & 20.393 & 0 & 1.95 & 4.07 \\
"cd1005389" & 1 & 28.21 & 1 & 0.35 & 3.90
\end{tabular}

This file tells us that, for example, person 325286 is female ( 0 in second column), and she has " 1 " (usually this means a "case") value for the trait "bt1", so on. Person 289982 has measurements only for sex, age and qt1, while other measurements are missing (NA, Not Available).

If you need to add pehnotypes to a gwaa. data-class object already created, you can use function add.phdata. This function allows you to add variables contained in some data frame to the existing data@phdata object. The data frame to be added should contain "id" variable, identical to that existing in the object, and should not contain any othe variables with names identical to these already existing.

The second file you need should contains genotypic data. As described in section 4.1 (' General description of gwaa.data-class', page 77), GenABEL-package snp.data-class contains different types of information. For every SNP, information on map position, chromosome, and strand should be provided. For every person, every SNP genotype should be provided. GenABEL-package provides a number of function to convert these data from different formats to the internal GenABEL-package raw format. We will first consider our preferred format, which we informally call "Illumina"-like.

\section*{A. 1 Converting from preferred format}

We will consider use of convert.snp.illumina procedure; details of other procedures are given later. Note that what we call "illumina" format is not really a proprietary format from that company, it is just one of the possible text output format from the Illumina BeadStudio; similar formats are accepted/generated by HapMap and Affymetrix.

The file of the "Illumina" format contains SNPs in rows and IDs in columns. The first line is a "header", containing column names. The first three columns should contain information on SNP name, chromosome, and position. There is an optional (though highly recommended!) fourth column, containing strand information (acceptable codes: "+","-", "u", the last stands for "unknown"). After that column, each of the residual ones corresponds to an individual, with ID as the column name. Genotypes should be presented by two consecutive characters (no separator).

An example of few first lines of the "illumina" genotypic file is as follows:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline name & chr & pos & strand & "cd289982" & "cd325285" & "cd357273" & "cd872422" & "cd1005389" \\
\hline rs1001 & 1 & 1235 & \(+\) & AA & AG & AG & AA & GG \\
\hline rs6679 & 9 & 2344 & \(+\) & GT & GG & GG & TG & GG \\
\hline rs2401 & 22 & 3455 & + & AA & CC & CC & CC & AC \\
\hline rs123 & X & 32535 & - & TT & GT & TT & TT & TT \\
\hline rs6679 & XY & 2344 & - & GT & GG & GG & TG & GG \\
\hline rs876 & Y & 23556 & + & 00 & 00 & TT & GG & TT \\
\hline mitoA1 & mt & 24245 & - & AA & CC & 00 & 00 & 00 \\
\hline
\end{tabular}

It is clear that is not quite conventional Illumina file - because in BeadStudio the alleles are reported using the "top" strand; rather, this is an Affymetrix or HapMap-type of a file. Anyways, this file contains all required genotypic information, and this file format is the preferred one for import. Assume that the file with the genotypic data is called "gen0.illu", and is stored in the directory "RData".

First, start R and load GenABEL-package:

You can convert the data to GenABEL-package raw format by
```

> convert.snp.illumina(inf="RData/gen0.illu",out="RData/genOi.raw",strand="file")
Reading genotypes from file 'RData/gen0.illu' ...
Writing to file 'RData/gen0i.raw' ...
... done.

```

Here is the content of the converted file "gen0i.raw" - internal raw data representation:
```

\#GenABEL raw data version 0.1
"cd289982" "cd325285" "cd357273" "cd872422" "cd1005389"
rs1001 rs6679 rs2401 rs123 rs6679 rs876 mitoA1
1 9 22 X XY Y mt
1235 2344 3455 32535 2344 23556 24245
04 Oc Of 08 0c 08 Of
010101 02 02 01 02
69 c0
9640
d5 }8
6540
9640
0740
d0 00

```

Note the option strand="file" - it is telling GenABEL-package that strand information is provided in the file.

At this moment, you can load the data into GenABEL-package. Assume that the phenotypic file described above is called "phe0.dat" and the converted genotypic file in the raw GenABEL-package format is called "gen0i.raw". You can load the data using the command
```

> df <- load.gwaa.data(phe="RData/pheO.dat",gen="RData/gen0i.raw",force=T)
ids loaded...
marker names loaded...
chromosome data loaded...
map data loaded...
allele coding data loaded...
strand data loaded...
genotype data loaded...
snp.data object created...
assignment of gwaa.data object FORCED; X-errors were not checked!

```

The option "force=TRUE" tells that GenABEL-package should load the data even if it fins sex errors.

You can inspect the loaded data; let us first look into phenotypic data by by
```

> df@phdata

```
\begin{tabular}{lcrrrrr} 
& \multicolumn{2}{c}{ id } & sex & age & bt1 & qt \\
ct1 \\
cd289982 & cd289982 & 0 & 30.330 & NA & NA & 3.93 \\
cd325285 & cd325285 & 0 & 36.514 & 1 & 0.49 & 3.61 \\
cd357273 & cd357273 & 1 & 37.811 & 0 & 1.65 & 5.30 \\
cd872422 & cd872422 & 1 & 20.393 & 0 & 1.95 & 4.07 \\
\(c d 1005389\) & \(c d 1005389\) & 1 & 28.210 & 1 & 0.35 & 3.90
\end{tabular}
... and than check that the genotypes have imported right:
```

> gO <- as.character(df@gtdata)
> gO
rs1001 rs6679 rs2401 rs123 rs6679 rs876 mitoA1
cd289982 "A/A" "G/T" "A/A" "T/T" "G/T" NA "A/A"
cd325285 "A/G" "G/G" "C/C" "T/G" "G/G" NA "C/C"
cd357273 "A/G" "G/G" "C/C" "T/T" "G/G" "T/T" NA
cd872422 "A/A" "G/T" "C/C" "T/T" "G/T" "G/G" NA
cd1005389 "G/G" "G/G" "C/A" "T/T" "G/G" "T/T" NA
> as.character(df@gtdata@strand)
rs1001 rs6679 rs2401 rs123 rs6679 rs876 mitoA1
> as.character(df@gtdata@coding)
rs1001 rs6679 rs2401 rs123 rs6679 rs876 mitoA1
"AG" "GT" "CA" "TG" "GT" "TG" "CA"

```

In a real Illumina file, a coding on the TOP strand is supplied. Then, the file will normally look like
\begin{tabular}{lrrrrrrr} 
name & chr & pos & ccd289982" & "cd325285" & "cd357273" & "cd872422" & "cd1005389" \\
rs1001 & 1 & 1235 & AA & AG & AG & AA & GG \\
rs6679 & 9 & 2344 & GT & GG & GG & TG & GG \\
rs2401 & 22 & 3455 & AA & CC & CC & CC & AC \\
rs123 & X & 32535 & TT & GT & TT & TT & TT \\
rs6679 & XY & 2344 & GT & GG & GG & TG & GG \\
rs876 & Y & 23556 & 00 & 00 & TT & GG & TT \\
mitoA1 & mt & 24245 & AA & CC & 00 & 00 & 00 \\
and the conversion command will be
\end{tabular}
> convert.snp.illumina(inf="RData/gen0.illuwos",out="RData/gen0iwos.raw",strand="+")
Reading genotypes from file 'RData/gen0.illuwos' ...
Writing to file 'RData/gen0iwos.raw' ...
... done.
In this particular data set, after conversion, the " + " strand will actually mean not "forward", but TOP - something you should remember for this particular data. The resulting file will look like this:

You can load the data with
```

> df <- load.gwaa.data(phe="RData/phe0.dat",gen="RData/gen0iwos.raw",force=T)
ids loaded...
marker names loaded...
chromosome data loaded...
map data loaded...
allele coding data loaded...
strand data loaded...
genotype data loaded...
snp.data object created...
assignment of gwaa.data object FORCED; X-errors were not checked!
Obviously, the "strand" is always "+" (here it means TOP):
> g1 <- as.character(df@gtdata)
> g1
rs1001 rs6679 rs2401 rs123 rs6679 rs876 mitoA1
cd289982 "A/A" "G/T" "A/A" "T/T" "G/T" NA "A/A"
cd325285 "A/G" "G/G" "C/C" "T/G" "G/G" NA "C/C"
cd357273 "A/G" "G/G" "C/C" "T/T" "G/G" "T/T" NA
cd872422 "A/A" "G/T" "C/C" "T/T" "G/T" "G/G" NA
cd1005389 "G/G" "G/G" "C/A" "T/T" "G/G" "T/T" NA
> as.character(df@gtdata@strand)
rs1001 rs6679 rs2401 rs123 rs6679 rs876 mitoA1
"+" "+" "+" "+" "+" "+" "+"
> as.character(df@gtdata@coding)
rs1001 rs6679 rs2401 rs123 rs6679 rs876 mitoA1
"AG" "GT" "CA" "TG" "GT" "TG" "CA"

```

We can see that the genotypes are identical to ones we imported previously, as should be the case:
```

> g0 == g1

```
\begin{tabular}{lrrrrrrrr} 
& rs1001 & rs6679 & rs2401 & rs123 & rs6679 & rs876 & mitoA1 \\
cd289982 & TRUE & TRUE & TRUE & TRUE & TRUE & NA & TRUE \\
cd325285 & TRUE & TRUE & TRUE & TRUE & TRUE & NA & TRUE \\
cd357273 & TRUE & TRUE & TRUE & TRUE & TRUE & TRUE & NA \\
cd872422 & TRUE & TRUE & TRUE & TRUE & TRUE & TRUE & NA \\
cd1005389 & TRUE & TRUE & TRUE & TRUE & TRUE & TRUE & NA
\end{tabular}

\section*{A. 2 Converting PLINK tped files}

PLINK TPED (transposed-pedigree) format bears notable similarity to what we call "Illumina" format, with few exceptions: (1) there is no header line giving field names (and therefore IDs are stored in a separate file) (2) the first column gives chromosome, second - SNP name, third genetic map (usually kept as
zeroes), the fourth - physical position, and, starting with the fifth column, genotypic data are listed, (3) finally, within a genotypes, alleles are separated with a space. In TPED format, the data we already worked with would look like
\begin{tabular}{rrrrllllllllll}
1 & rs1001 & 0 & 1235 & A A & A & G & A & G & A A & G & G \\
9 & rs6679 & 0 & 2344 & G T & G & G & G & G & T & G & G & G \\
22 & rs2401 & 0 & 3455 & A A & C C & C C & C & C & A & C \\
X & rs123 & 0 & 32535 & T T & G T & T T & T T & T & T \\
XY & rs6679 & 0 & 2344 & G T & G & G & G & G & T & G & G & G \\
Y & rs876 & 0 & 23556 & 0 & 0 & 0 & 0 & T T & G & G & T & T \\
mt & mitoA1 & 0 & 24245 & A A & C C & 0 & 0 & 0 & 0 & 0 & 0
\end{tabular}

Obviously, a separate file is needed to keep correspondence between genotypes and IDs. This file emulated standard pedigree file without a header line. The file, conventionally called a TFAM-file, should contain six columns, corresponding to pedigree ID, ID, father, mother, sex, and affection. Only the second column is used by GenABEL-package - please make sure you use unique IDs. Consequently, it does not matter what pedigree ID, father/mother, sex, or affection status you assign in the file - the real information is coming from the phenotypic data file. The TFAM file for our data will look like this:
```

1 cd289982 0 0 1 0
1 cd325285 0 0 1 0
1 cd357273 0 0 1 0
1 cd872422 0 0 1 0
1 cd1005389 0 0 1 0

```

You can convert the data from PLINK TPED format to the GenABEL-package format using command convert.snp.tped:
```

> convert.snp.tped(tped="RData/gen0.tped",tfam="RData/gen0.tfam",out="RData/gen0tped.
Reading individual ids from file 'RData/gen0.tfam' ...
... done. Read 5 individual ids from file 'RData/gen0.tfam'
Reading genotypes from file 'RData/gen0.tped' ...
...done. Read 7 SNPs from file 'RData/gen0.tped'
Writing to file 'RData/gen0tped.raw' ...
... done.

```
and load the data with
```

> df <- load.gwaa.data(phe="RData/phe0.dat",gen="RData/gen0tped.raw",force=T)
ids loaded...
marker names loaded...
chromosome data loaded...
map data loaded...
allele coding data loaded...
strand data loaded...
genotype data loaded...
snp.data object created...
assignment of gwaa.data object FORCED; X-errors were not checked!

```
```

 Obviously, the "strand" is always "+" (meaning TOP):
 > g1 <- as.character(df@gtdata)
> g1
rs1001 rs6679 rs2401 rs123 rs6679 rs876 mitoA1
cd289982 "A/A" "G/T" "A/A" "T/T" "G/T" NA "A/A"
cd325285 "A/G" "G/G" "C/C" "T/G" "G/G" NA "C/C"
cd357273 "A/G" "G/G" "C/C" "T/T" "G/G" "T/T" NA
cd872422 "A/A" "G/T" "C/C" "T/T" "G/T" "G/G" NA
cd1005389 "G/G" "G/G" "C/A" "T/T" "G/G" "T/T" NA
> as.character(df@gtdata@strand)
rs1001 rs6679 rs2401 rs123 rs6679 rs876 mitoA1
"+" "+" "+" "+" "+" "+"
> as.character(df@gtdata@coding)
rs1001 rs6679 rs2401 rs123 rs6679 rs876 mitoA1
"AG" "GT" "CA" "TG" "GT" "TG" "CA"

```

We can see that the genotypes are identical to ones we imported previously, as should be the case:
```

> g0 == g1

| | rs1001 | rs6679 | rs2401 | rs123 | rs6679 | rs876 | mitoA1 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| cd289982 | TRUE | TRUE | TRUE | TRUE | TRUE | NA | TRUE |
| cd325285 | TRUE | TRUE | TRUE | TRUE | TRUE | NA | TRUE |
| cd357273 | TRUE | TRUE | TRUE | TRUE | TRUE | TRUE | NA |
| cd872422 | TRUE | TRUE | TRUE | TRUE | TRUE | TRUE | NA |
| cd1005389 | TRUE | TRUE | TRUE | TRUE | TRUE | TRUE | NA |

```

\section*{A. 3 Converting linkage-like files}

Linkage-like files, also known as pre-makeped files, or pedigree files, represent a historic format which dates back to the time when only few markers could be typed - thus the number of subjects was usually greater than the number of markers. In that situation, it was natural and obvious to keep IDs in rows and markers in columns. In the first six columns, standard linkage-like file would contain pedigree ID, ID, father's ID, mother's ID, sex (coded as \(1=\) male and \(2=\) female \()\), and affection status ( \(0=\) unknown, \(1=\) unaffected, \(2=\) affected \()\). In the following columns, genotypic information is provided. Alleles of the same genotype could be separated by a space, or by a slash ("/"). Thus the data we are working with could be presented as
```

1 cd289982 0 0 1 0 A A G T A A T T G T 0 0 A A
cd325285 0 0 1 0 A G G G C C G T G G O O C C
cd357273 0 0 1 0 A G G G C C T T G G T T O O
cd872422 0 0 1 0 A A T G C C T T T G G G 0 0
1 cd1005389 0 0 1 0 G G G G A C T T G G T T 0 0

```

As you can see, this file misses header line, and information what are the SNP names, position, etc. should be provided in a separate MAP-file. GenABEL-package accepts map in Merlin format, and an extended format. A map in Merlin format consist of header line, giving column names, and three columns with chromosome, name and position information, for example:
\begin{tabular}{lll} 
chr & name & pos \\
1 & rs1001 & 1235 \\
9 & rs6679 & 2344 \\
22 & rs2401 & 3455 \\
\(X\) & rs123 & 32535 \\
\(X Y\) & rs6679 & 2344 \\
\(Y\) & rs876 & 23556 \\
mt & mitoA1 & 24245
\end{tabular}

The data can be converted to the internal GenABEL-package format with
```

> convert.snp.ped(pedfile="RData/gen0.ped",mapfile="RData/map0.dat",out="RData/gen0pe
Reading map from file 'RData/map0.dat' ...
... done. Read positions of 7 markers from file 'RData/map0.dat'
Reading genotypes from file 'RData/gen0.ped' ...
...done. Read information for 5 people from file 'RData/gen0.ped'
Analysing marker information ...
Writing to file 'RData/gen0pedwos.raw' ...
... done.

```
and loaded with
```

> df <- load.gwaa.data(phe="RData/phe0.dat",gen="RData/gen0pedwos.raw",force=T)
ids loaded...
marker names loaded...
chromosome data loaded...
map data loaded...
allele coding data loaded...
strand data loaded...
genotype data loaded...
snp.data object created...
assignment of gwaa.data object FORCED; X-errors were not checked!

```

We can inspect the genotypic data and check that conversion results are identical to previous runs with
```

> g1 <- as.character(df@gtdata)
> g1

	rs1001	rs6679	rs2401	rs123	rs6679	rs876	mitoA1
cd289982	"A/A"	"G/T"	"A/A"	"T/T"	"G/T"	NA	"A/A"
cd325285	"A/G"	"G/G"	"C/C"	"T/G"	"G/G"	NA	"C/C"
cd357273	"A/G"	"G/G"	"C/C"	"T/T"	"G/G"	"T/T" NA	
cd872422	"A/A"	"G/T"	"C/C"	"T/T"	"G/T"	"G/G"	NA
cd1005389	"G/G"	"G/G"	"C/A"	"T/T"	"G/G"	"T/T"	NA

```
```

> as.character(df@gtdata@strand)
rs1001 rs6679 rs2401 rs123 rs6679 rs876 mitoA1
> as.character(df@gtdata@coding)
rs1001 rs6679 rs2401 rs123 rs6679 rs876 mitoA1
"AG" "GT" "CA" "TG" "GT" "TG" "CA"
> g0 == g1

| | rs1001 | rs6679 | rs2401 | rs123 | rs6679 | rs876 | mitoA1 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| cd289982 | TRUE | TRUE | TRUE | TRUE | TRUE | NA | TRUE |
| cd325285 | TRUE | TRUE | TRUE | TRUE | TRUE | NA | TRUE |
| cd357273 | TRUE | TRUE | TRUE | TRUE | TRUE | TRUE | NA |
| cd872422 | TRUE | TRUE | TRUE | TRUE | TRUE | TRUE | NA |
| cd1005389 | TRUE | TRUE | TRUE | TRUE | TRUE | TRUE | NA |

```

If you are willing to import strand information, you can make use of the extended map format. In this format the strand information is added to the map-file:
\begin{tabular}{lllll} 
chr & name & pos & \multicolumn{2}{l}{ strand coding } \\
1 & rs1001 & 1235 & + & AG \\
9 & rs6679 & 2344 & + & TG \\
22 & rs2401 & 3455 & + & AC \\
X & rs123 & 32535 & - & GT \\
XY & rs6679 & 2344 & - & GT \\
Y & rs876 & 23556 & + & GT \\
mt & mitoA1 & 24245 & - & AC
\end{tabular}

The data can be converted to the internal GenABEL-package format with
```

> convert.snp.ped(pedfile="RData/gen0.ped",mapfile="RData/emap0.dat",out="RData/gen0ped.raw",st

```
Reading map from file 'RData/emap0.dat' ...
... done. Read positions of 7 markers from file 'RData/emap0.dat'
Reading genotypes from file 'RData/gen0.ped' ...
...done. Read information for 5 people from file 'RData/gen0.ped'
Analysing marker information ...
Writing to file 'RData/genOped.raw' ...
... done.

Note that option strand==file was used to specify that the extended map format should be used. The data can be loaded with
```

> df <- load.gwaa.data(phe="RData/pheO.dat",gen="RData/gen0ped.raw",force=T)
ids loaded...
marker names loaded...
chromosome data loaded...
map data loaded...

```
```

allele coding data loaded...
strand data loaded...
genotype data loaded...
snp.data object created...
assignment of gwaa.data object FORCED; X-errors were not checked!

```

We can inspect the genotypic data and check that conversion results are identical to previous runs with
```

> g1 <- as.character(df@gtdata)
> g1

```
\begin{tabular}{llllllll} 
& rs1001 & rs6679 & rs2401 & rs123 & rs6679 & rs876 & mitoA1 \\
cd289982 & "A/A" & "G/T" & "A/A" & "T/T" & "G/T" & NA & "A/A" \\
cd325285 & "A/G" & "G/G" & "C/C" & "T/G" & "G/G" & NA & "C/C" \\
cd357273 & "A/G" & "G/G" & "C/C" & "T/T" & "G/G" & "T/T" & NA \\
cd872422 & "A/A" & "G/T" & "C/C" & "T/T" & "G/T" & "G/G" & NA \\
cd1005389 & "G/G" & "G/G" & "C/A" & "T/T" & "G/G" & "T/T" & NA
\end{tabular}
> as.character(df@gtdata@strand)
\(\begin{array}{rrrrrr}\text { rs1001 } & \text { rs6679 } & \text { rs2401 } & \text { rs123 } & \text { rs6679 } & \text { rs876 mitoA1 } \\ "+" ~ & \text { "+" } & \text { "+" } & \text { "-" } & \text { "-" } & \text { "+" }\end{array}\)
> as.character(df@gtdata@coding)
rs1001 rs6679 rs2401 rs123 rs6679 \(\begin{array}{rlll}\text { rs876 } & \text { mitoA1 }\end{array}\)
    "AG" "GT" "CA" "TG" "GT" "TG" "CA"
> g0 == g1
\begin{tabular}{lrrrrrrrr} 
& rs1001 & rs6679 & rs2401 & rs123 & rs6679 & rs876 & mitoA1 \\
cd289982 & TRUE & TRUE & TRUE & TRUE & TRUE & NA & TRUE \\
cd325285 & TRUE & TRUE & TRUE & TRUE & TRUE & NA & TRUE \\
cd357273 & TRUE & TRUE & TRUE & TRUE & TRUE & TRUE & NA \\
cd872422 & TRUE & TRUE & TRUE & TRUE & TRUE & TRUE & NA \\
cd1005389 & TRUE & TRUE & TRUE & TRUE & TRUE & TRUE & NA
\end{tabular}

\section*{A. 4 Converting from MACH format}

The data from MACH format can be converted by using convert.snp.mach. This function actually calls convert.snp.ped in specific format. MACH software is widely used for SNP imputations. For our needs we consider two files produced by MACH: pedigree file with (the imputed) genotypic data, and infofile, containing information about quality of imputations for particular SNP.

SEE HELP FOR convert.snp.mach for further details.

\section*{A. 5 Converting from text format}

\section*{Appendix B}

\section*{GenABEL internals}

\section*{B. 1 Internal structure of gwaa.data-class}

Start R and load GenABEL-package library using command
> library(GenABEL)
After that, load the data with the command
> data(srdta)
The object you have loaded, srdta, belongs to the gwaa.data class. This is a special class developed to facilitate GWA analysis.

In GWA analysis, different types of data are used. These include the phenotypic and genotypic data on the study participants and chromosome and location of every SNP. For every SNP, it is desirable to know the details of coding (what are alleles? - A, T, G, C? - and what is the strand - '+' or '-', 'top' or 'bot'? - this coding is for).

One could attempt to store all phenotypes and genotypes together in a single table, using, e.g. one row per study subject; than the columns will correspond to study phenotypes and SNPs. For a typical GWA data set, this would lead to a table of few thousands rows and few hundreds of thousands of columns. Such a format is generated when one downloads HapMap data for a region. To store GWA data in such tables internally, within R, proves to be inefficient. In GenABEL-package, special data class, gwaa.data-class is used to store GWA data. The structure of this data class is shown at the figure B. 1

An object of some class has "slots" which may contain actual data or objects of other classes. The information stored at a particular slot of an object can be accessed by command object@slot.

At the first level, a gwaa.data-class object has slot phdata, which contains all phenotypic information in a data frame (data.frame-class object). The rows of this data frame correspond to study subjects, and the columns correspond to the variables. There are two default variables, which are always present in phdata. The first of these is "id", which contains study subject identification code. This identification code can be arbitrary character, but every person must be coded with an unique ID. The second default variable is "sex", where males are coded with ones ("1") and females are coded with zero (" 0 "). It is important


Figure B.1: Structure of gwaa.data-class. In every box, first line contains the object and slot names, second line describes the class of this object, and third line describes what information is contained.
to understand that this data frame is not supposed to be directly modified by the user. In particular, it is extremely important to remember that one should not directly add subjects to the table, change the values of "id" and "sex", and change the order of subjects in phdata unless this one is really understands the way GenABEL-package works. One also should not run such data manipulation functions as merge, cbind and rbind - exactly because they may change the number of subjects or interfere with the order. On the other hand, it is OK to add more variables to the data frame through direct computations, for example, if one wishes to add computed body mass index, it is OK to run the command like
obj@phdata\$bmi <- obj@phdata\$weight/((obj@phdata\$height)2̂)
To add many variables to phdata, special GenABEL function add. phdata should be used.

The other slot of an object of gwaa.data-class is slot gtdata, which contains all GWA genetic information in an object of class snp. data class (figure B.1). This class, in turn, has slots nids, containing the number of study subjects, idnames, containing all ID names of these subjects, nsnps, containing the number of SNPs typed, snpnames, containing the SNP names, chromosome, containing the name of the chromosome the SNPs belong to and slot map with map position of SNPs, and slot male, containing the sex code for the subjects ( \(1=\) male, \(0=\) female). The latter is identical to the "sex" variable contained in the phdata, but is duplicated here because many operations with purely genetic data, in particular these concerning analysis of sex chromosomes, depend on the sex. The strand information is presented in the slot strand. GenABEL-package codes strand as "+" (forward), "-" (reverse) or "u" (unknown). Of cause, if you prefer top/bottom coding, this information may be stored in the same form you will just need to remember that "+" corresponds to e.g. "top", and "-" to "bottom" strand. The allelic coding is presented in slot coding. Coding for every allele is presented with a pair of characters, for example "AG". Thus, for such polymorphism, you may expect "AA", "AG" and "GG" genotypes to be found in population. The order (that is "AG" vs "GA") is important - the first allele reported is the one which will be used as a reference in association analysis, and thus the effects are reported for the second allele. To avoid memory overheads, the strand and coding information is internally stored as snp.strand-class and snp.coding-class. Information can be converted to human-readable format using as.character function.

If, for example, you would like to know, how many SNPs were included in the study (slot nsnps of the slot gtdata of srdta), you need to run command
```

> srdta@gtdata@nsnps

```
[1] 833

Thus, 833 SNPs were typed in the study. You can access information stored in any slot in this manner.

You may want to read the general GenABEL-package man page using help (GenABEL). To see help on gwaa.data-class, you can use help("gwaa.data-class") (mind the quotation marks!).

\section*{Summary:}
- An object of some class has "slots" which may contain actual data or objects of other classes. The information stored at a particular slot of an object can be accessed by command object@slot.
- GenABEL-package uses special data class, gwaa.data-class, to store GWA data.

\section*{Bibliography}

Amin, N., C. M. van Duijn, and Y. S. Aulchenko, 2007 A genomic background based method for association analysis in related individuals. PLoS One 2: e1274.

Astle, W. and D. J. Balding, (in press) Population structure and cryptic relatedness in genetic association studies. Statistical Science .

Aulchenko, Y. S., D.-J. de Koning, and C. Haley, 2007a Genomewide rapid association using mixed model and regression: a fast and simple method for genomewide pedigree-based quantitative trait loci association analysis. Genetics 177: 577-585.

Aulchenko, Y. S., S. Ripke, A. Isaacs, and C. M. van Duijn, 2007b Genabel: an r library for genome-wide association analysis. Bioinformatics 23: 1294-1296.

Aulchenko, Y. S. and M. V. Struchalin, submitted Probabel package for genome-wide association analysis of imputed data.

Bacanu, S. A., B. Devlin, and K. Roeder, 2000 The power of genomic control. Am J Hum Genet 66: 1933-1944.

Bacanu, S.-A., B. Devlin, and K. Roeder, 2002 Association studies for quantitative traits in structured populations. Genet Epidemiol 22: 78-93.

Boerwinkle, E., R. Chakraborty, and C. F. Sing, 1986 The use of measured genotype information in the analysis of quantitative phenotypes in man. i. models and analytical methods. Ann Hum Genet 50: 181-194.

Campbell, C. D., E. L. Ogburn, K. L. Lunetta, H. N. Lyon, M. L. Freedman, L. C. Groop, D. Altshuler, K. G. Ardlie, and J. N. Hirschhorn, 2005 Demonstrating stratification in a european american population. Nat Genet 37: 868-872.

Chen, W.-M. and G. R. Abecasis, 2007 Family-based association tests for genomewide association scans. Am J Hum Genet 81: 913-926.

Devlin, B. and K. Roeder, 1999 Genomic control for association studies. Biometrics 55: 997-1004.

Devlin, B., K. Roeder, and L. Wasserman, 2001 Genomic control, a new approach to genetic-based association studies. Theor Popul Biol 60: 155-166.

Fisher, R. A., 1918 The correlation between relatives on the supposition of mendelian inheritance. Trans R Soc Edinb 52: 399-433.

Freedman, M. L., D. Reich, K. L. Penney, G. J. McDonald, A. A. Mignault, N. Patterson, S. B. Gabriel, E. J. Topol, J. W. Smoller, C. N. Pato, M. T. Pato, T. L. Petryshen, L. N. Kolonel, E. S. Lander, P. Sklar, B. Henderson, J. N. Hirschhorn, and D. Altshuler, 2004 Assessing the impact of population stratification on genetic association studies. Nat Genet 36: 388-393.

Nelis, M., T. Esko, R. MÃd’gi, F. Zimprich, A. Zimprich, D. Toncheva, S. Karachanak, T. PiskÃąckovÃą, I. Balascĩák, L. Peltonen, E. Jakkula, K. RehnstrÃűm, M. Lathrop, S. Heath, P. Galan, S. Schreiber, T. Meitinger, A. Pfeufer, H.-E. Wichmann, B. Melegh, N. PolgÃąr, D. Toniolo, P. Gasparini, P. D'Adamo, J. Klovins, L. Nikitina-Zake, V. Kucinskas, J. Kasnauskiene, J. Lubinski, T. Debniak, S. Limborska, A. Khrunin, X. Estivill, R. Rabionet, S. Marsal, A. Juliâăh, S. E. Antonarakis, S. Deutsch, C. Borel, H. Attar, M. Gagnebin, M. Macek, M. Krawczak, M. Remm, and A. Metspalu, 2009 Genetic structure of europeans: a view from the north-east. PLoS One 4: e5472.

Novembre, J. and M. Stephens, 2008 Interpreting principal component analyses of spatial population genetic variation. Nat Genet 40: 646-649.

Pardo, L. M., I. MacKay, B. Oostra, C. M. van Duijn, and Y. S. Aulchenko, 2005 The effect of genetic drift in a young genetically isolated population. Ann Hum Genet 69: 288-295.

Patterson, N., A. L. Price, and D. Reich, 2006 Population structure and eigenanalysis. PLoS Genet 2: e190.

Price, A. L., N. J. Patterson, R. M. Plenge, M. E. Weinblatt, N. A. Shadick, and D. Reich, 2006 Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38: 904-909.

Rudan, I., N. Smolej-Narancic, H. Campbell, A. Carothers, A. Wright, B. Janicijevic, and P. Rudan, 2003 Inbreeding and the genetic complexity of human hypertension. Genetics 163: 1011-1021.

Ruiz-NARVÃĄEz, E., 2005 Is the ala12 variant of the pparg gene an "unthrifty allele"? J Med Genet 42: 547-550.

Sasieni, P. D., 1997 From genotypes to genes: doubling the sample size. Biometrics 53: 1253-1261.

Sladek, R., G. Rocheleau, J. Rung, C. Dina, L. Shen, D. Serre, P. Boutin, D. Vincent, A. Belisle, S. Hadjadj, B. Balkau, B. Heude, G. Charpentier, T. J. Hudson, A. Montpetit, A. V. Pshezhetsky, M. Prentki, B. I. Posner, D. J. Balding, D. Meyre, C. Polychronakos, and P. Froguel, 2007 A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445: 881-885.

Wahlund, S., 1928 Zusammensetzung von population und korrelationserscheinung vom standpunkt der vererbungslehre aus betrachtet. Hereditas 11: 65106.

Yu, J., G. Pressoir, W. H. Briggs, I. V. Bi, M. Yamasaki, J. F. Doebley, M. D. McMullen, B. S. Gaut, D. M. Nielsen, J. B. Holland, S. Kresovich, and E. S. Buckler, 2006 A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38: 203-208.

Zaykin, D. V., Z. Meng, and M. G. Ehm, 2006 Contrasting linkagedisequilibrium patterns between cases and controls as a novel associationmapping method. Am J Hum Genet 78: 737-746.

Zheng, G., B. Freidlin, Z. Li, and J. L. Gastwirth, 2005 Genomic control for association studies under various genetic models. Biometrics 61: 186-192.```


[^0]:    ${ }^{1}$ For complete list of arithmetic operations try help("+")

[^1]:    2 Actually, you can apply it to a longer vector too, and then the logical vector will be "expanded" to total length by repeating the original vector head-to-tail. However, we will not use this in our exercises.

[^2]:    ${ }^{3}$ Because it treats NAs for you

[^3]:    ${ }^{4}$ This may also be true for matrices; more fundamental difference is though that a matrix always contains variables of the same data type, e.g. character or numeric, while a data frame may contain variables of different types

[^4]:    ${ }^{5}$ and also a matrix

[^5]:    ${ }^{6}$ The same argument works for a number of $R$ statistical functions such as mean, median,
    var, etc

[^6]:    ${ }^{7}$ A hidden trick here is that arithmetic operations treat TRUE as one and FALSE as zero

[^7]:    ${ }^{1}$ brothers and sisters

[^8]:    ${ }^{2}$ For the case when some proportion, $a_{c}$, among cases comes from population $c$, and some proportion of controls, $u_{c}$, comes from population $c \operatorname{Var}(d)=2 p q F_{s t} \sum_{c}\left(a_{c}-u_{c}\right)^{2}$

[^9]:    ${ }^{1}$ There is alternative, top/bottom, strand designation, which does not depend on genomic build. However, it is not always used.

[^10]:    ${ }^{2}$ Ties are generated by the subjects with exactly the same trait values

