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Confounding in GWAS

• Some factor is a confounder for genotypes and disease 
prevalence 

– Dark skin is more prevalent in Africans than in Europeans. The 
genotypic frequencies are also different between two populations. 

– A study of skin color, which would mix Africans and Europeans is 
likely to generate multiple false positives

• Other causes of genetic stratification are “cryptic” 
relations or systematic pedigree structure presented in a 
sample
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Skin color scan

GWAS of skin color using the HapMap data

GWAS without any association
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Consequences of stratification
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Pedigree is a major confounder
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Methods to deal with stratification

• Confounding: violates the ‘’null’’ assumption of 
independence between genotype and phenotype

• Structured association
– Scope: populations are well-defined, well-separated

• EIGENSTRAT
– Scope: populations may be less well-defined and separated

• Mixed models
– Scope: relatives, genetic isolates

• Genomic control
– Is NOT the method to explicitly correct for dependencies
– Scope: correcting residual, small degree of stratification
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Distribution of the test statistics 
under the null hypothesis

• 200 random SNPs

• In Linkage Equilibrium

• Not related to the disease

• No stratification

• The distribution of the test 
statistics for association is χ2

1 
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Idea of the genomic control

• There is stratification

• Assumption: 
stratification acts in the 
same manner across all 
loci

• This leads to uniform 
inflation of the test statistics

• The distribution of the test 
statistics is λ⋅χ2

1 (λ≥1)
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Genomic control

• Consider a test distributed as χ2
1 under the null (e.g. trend test)

• Compute the vector of test statistics {T2
1, T2

2, T2
3, … , T2

N-1, T2
N}

• Estimate λ as
– Median{T2

1, T2
2, T2

3, … , T2
N-1, T2

N} /0.455

– Slope of regression of observed onto expected

• The GC-corrected test statistics 
– T2/λ ~ χ2

1 

• In practice, all (or large proportion of) GW test are used to estimate 
λ 
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λ is dependent on sample size

• λ is related to non-centrality parameter, thus it grows with 
sample size. Therefore λ should be estimated per certain 
sample size. This is especially important if 
– SNP call rate is different between SNPs
– When reporting the results

• For QT analysis, λn = 1 + (λnref – 1) n/nref

	

 	

 	

 	

 where nref is the reference sample size

• For case/control design
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Few notes on GC

	
 When inflation is large (say, λ > 1.05) other, more 
powerful methods are to be used

	
 GC assumes that stratification acts in the same manner 
across all loci, which is not always true

	
 In present form, works only for additive model 

	
 Inflation factor λ depends on samples size. Thus 

	
 (1) Report of standardized values (say, per 1,000 cases and 
1,000 controls) is recommended

	
 (2) Special methods should be used when number of 
people typed for different SNPs is different
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Structured association (SA)

• Identify genetic populations (strata)

• Do stratified analysis; e.g. Cochran-Mantel-Haenszel test; 
or meta-analysis of results obtained in different strata

• Apply GC to correct for residual inflation (1 < λ < 1.05)

• Potential problems: strata not always known a priori or 
easily identified, they also may be not well-defined

Friday, October 21, 11



Adjust for strata?

• Inclusion of strata in your linear model 
• Y ~ mu + sex + age+ strata + snp

• accounts for the difference in means 

• This is NOT EXACTLY what is meant by stratified analysis, 
which also allows for different effects of nuisance covariates in 
different strata. You can do that by model

• Y ~ mu + strata*(sex + age) + snp
• Still, even this is not exactly the same, as stratified analysis 

allows for different residual variances across strata
• You can do that with Linear Mixed Models (LMM) or 

Generalized Estimating Equations (GEE)
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Estimation of genetic similarity

	

	
 Genomic estimate of kinship between i and j is computed 

with

	
 gik is the genotype (0, 0.5, 1) of the i-th person at k-th SNP

	
 pk is the frequency of “1” allele

	
 Basically, this matrix tells how similar are genomes of 
people involved
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Idea of Multidimensional Scaling

• Study of N subjects

• NxN matrix of pair-wise distances (0 = the same subject, 1 = very 
different)

• Multi-Dimensional (MD) scaling takes this matrix
– Returns coordinates for N points in a MD-space
– The vectors are called “Principal Axes of Variation” (or Principal 

Components)
– The distance between the points in this MD-space are as close as possible 

to the distances observed in the original NxN matrix 

• Classical MDS is also known as Principal Components Analysis
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Example CMDS

• Distance matrix

• Results of CMDS:
•          PC1    PC2
• ID1   0.00    0.29
• ID2  -0.25   -0.14
• ID3   0.25   -0.14
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ID1 ID2 ID3

ID1 0 0.1 0.1

ID2 0.1 0 0.1
ID3 0.1 0.1 0
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Example CMDS

• Distance matrix

• Results of CMDS:
•          PC1    PC2
• ID1   0.25    0.02
• ID2   0.25    0.09
• ID3   0.25   -0.11
• ID4  -0.75    0.00
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ID1 ID2 ID3 ID4

ID1 0 0.1 15 1.00

ID2 0.1 0 0.20 1.00
ID3 0.15 0.20 0 1.00

ID4 1.00 1.00 1.00 0

ID4
ID1

ID2

ID3
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PCA of genomic kinship
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YRI
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PCA of genomic kinship
between HapMap participants
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Idea of EIGENSTRAT method

• Estimate genetic relations between the study participants 
using genomic data, compute pair-wise distance matrix

• Extract 3 to 10 principal components (PC) of variation from 
this matrix

• In analysis of association, adjust both phenotypes and 
genotypes for these PCs (modification: include  principal 
axes of variation  as covariates in regression model)

• Apply GC to correct for residual inflation (1 < λ < 1.05)

• Problems with ES: accounts for mean, but not variance 
differences; does not work in case of strong relations 
(families, isolates)
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Summary: software & functions
• Genomic control: for additive models, implemented in any GWAS 

software, or do it yourself. For other models: we work on that … 
may be released late this year

• Stratified analysis: use any GWA software and then meta-analysis 
programs (METAL, MANTEL, metaMapper, GWAMA, MetABEL), or 
write custom scripts

• Genomic kinship matrix (base for EIGENSTRAT, PC-adjustment): 
PLINK’s ‘IBD’, GenABEL’s ibs() function

• EIGENSTRAT analysis: EIGENSTRAT, GenABEL’s egscore() function
• Adjustment for PCs: any GWA software supporting covariates
• Mixed-model based analysis: GenABEL’s mmscore & 

grammar, Merlin (but with pedigree…); grammar+ and FMM are 
going to be released later this year (MixABEL)
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