Linkage analysis: an overview

26.10.2009

Yurii Aulchenko, Erasmus MC Rotterdam

Outline

- Difference between linkage and association
- LOD score analysis
- Algorithms to compute LOD score

Linkage and association

- Sampling unit
 - Sib-pair
 - Family of arbitrary structure
 - A random person from population
- Association assumes that a particular allele is associated with the trait in all sampling units
- Linkage assumes that a particular allele is associated with the trait within the sampling unit, but the allele may be different across sampling units

Dense map, tight LD

- Classical situation for association mapping
- Association mapping successful

Linkage mapping possible (but potential problem with LD)

Sparse map, recombination

- Classical situation for linkage mapping
- Association mapping:
 - * If some LD retained, less powerful cf. scenario 1, but still possible
 - * No LD retained no power
- Linkage mapping is powerful

Allelic heterogeneity

- Association mapping:
 - * If some mutation is common, some power
 - * If mutations are "private", no power
- Linkage mapping is powerful (but potential problem with LD)

Linkage vs. association

"Fair" comparison is difficult because set-ups of linkage and association are different

Association: a common risk variant

- Common disease
- Collection of distantly related people (case/control sample)
- Dense marker set (array with 100s of 1000s of markers)

Linkage: rare, possibly heterogeneous mutation(s)

- Rare familial (form of) disease
- Small collection or even single extended family
- Sparse or thinned marker set (100s to few 1000s of markers)

Outline

- Difference between linkage and association
- LOD score analysis
- Algorithms to compute LOD score

LOD score

Data Y: pedigree, phenotypes, marker LOD score at location *d* is defined as

$$LOD(d) = \log_{10} \frac{L(Y \mid d, \omega)}{L(Y \mid d = \infty, \omega)} = \log_{10} \frac{P_1}{P_0}$$

 ω – the vector of genetic parameters (disease allele frequency, penetrances, ...)

- Estimated in segregation analysis
- ... or defined relatively arbitrarily

Results of two-point analysis

Single marker (two-point analysis): table of LODs across recombination fraction (θ)

	Theta							
Marker	0	0,01	0,05	0,1	0,2	0,3	0,4	0,5
D1S243	-inf	-4,96	-2,59	-1,56	-0,65	-0,25	-0,07	0
D1S468	-inf	-4,37	-1,94	-0,99	-0,28	-0,07	-0,03	0
D1S2795	-inf	1,84	2,21	2,09	1,54	0,89	0,32	0

Results of multipoint analysis

Significance of LOD score

LOD ≥ 3 is considered significant in single-marker analysis

For a genome scan (Lander & Kruglyak 1995)

- LOD > 3.3 is considered genome-wide significant (P<0.05)
- LOD > 1.9 is considered suggestive (expected to appear once per genome-scan)

- Threshold depends on design and marker density!
- Best derived using empirical techniques

1-LOD support interval (~ 90% CI)

Outline

- Difference between linkage and association
- LOD score analysis
- Algorithms to compute LOD score

Likelihood of pedigree data

$$L(Y) = \sum_{all G} P(Y|G)P(G)$$

where G is a matrix of underlying (unobserved) genotypes of pedigree members

Number of possible genotypic combinations:

```
Genotypes possible for founders

=((No. possible haplotypes)<sup>2</sup>) (No. of founders)

by

Number of inheritance patterns

= 2(No. meioses)
```

Computation time

Sibship of 5, trait locus + ...

```
■ 3 SNPs => 2 sec.
```

■ 7 SNPs => 4.5 hours

■ 10 SNPs => 5 years

Trait locus + 7 SNPs in a pedigree of ...

■ 6 sibs => 18 hours

■ 8 sibs => 12 days

■ 10 sibs $=> \frac{1}{2}$ year

Elston-Stewart algorithm

For parts of pedigree, compute probability conditional on all possible genotypes of members who connect this part to the rest

Computation time grows

- Linear with no. people
- Exponential with no. markers
- Exponential with no. of loops

Limit: 2-4 MS (or 5-20 SNPs) and 2-3 loops

Lander-Green algorithm

For particular marker (phenotype), compute probability for all pedigree members conditional on flanking genotypes

Computation time grows

- Exponential with pedigreebit-size = 2 x (no. non-founders) (no. founders)
- Linear with no. markers

Limit: bit-size 18 to 36

Markov Chain Monte-Carlo

A technique to compute approximate probabilities based on sampling from the model space

Computation time grows with

- Larger proportion of missing data
- Loops
- Denser marker maps

Limit: few hundreds of people and few dozens of loops (takes days to finish) using linkage panels

Results may depend on where you start to explore the space

Software

Elston-Stewart: Linkage, FastLINK, Vitesse, Superlink

Binary trait linkage analysis

Lander-Green: GH, Merlin, Allegro (LG)

- Binary trait linkage analysis
- IBD estimation

MCMC: SimWalk2

- Binary trait linkage analysis
- IBD estimation

MCMC: Loki

- Bayesian quantitative trait linkage analysis
- IBD estimation

Problems with dense marker sets

Standard linkage programs assume markers are in linkage equilibrium. Type 1 error increased if

- Markers are in LD
- There are founding pedigree members with missing genotypic data

Possible practical solutions

- Model LD implemented in Merlin; computationally complex, thus possible only for small pedigrees
- "Thinning" marker map (select markers not in LD) –implemented in MASEL