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Abstract

The likelihood approach is common in linkage analysis of large extended pedigrees. Various peeling procedures, based on the conditional
independence of separate parts of a pedigree, are typically used for likelihood calculations. A peeling order may significantly affect the complexity
of such calculations, particularly for pedigrees with loops or when many pedigrees members have unknown genotypes. Several algorithms have
been proposed to address this problem for pedigrees with loops. However, the problem has not been solved for pedigrees without loops until now.

In this paper, we suggest a new graph theoretic algorithm for optimal selection of peeling order in zero-loop pedigrees with incomplete genotypic
information. It is especially useful when multiple likelihood calculation is needed, for example, when genetic parameters are estimated or linkage
with multiple marker loci is tested. The algorithm can be easily introduced into the existing software packages for linkage analysis based on the
Elston–Stewart algorithm for likelihood calculation.

The algorithm was implemented in a software package PedPeel, which is freely available at http://mga.bionet.nsc.ru/nlru/.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Large extended pedigrees comprise a valuable source of
information for genetic mapping of complex traits. The like-
lihood approach is common in linkage analysis of such data.
The likelihood of arbitrary pedigree can be written in a general
form as follows

LH =
∑

�G
P( �X| �G)P( �G),

where �X is a matrix of observed phenotypes for all pedigree
members and �G is a matrix of their unobserved genotypes,
and the summation is performed over all possible genotypic
configurations (Elston and Stewart, 1971). The complexity of
this formula calculation, or running time, is determined by
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the number of possible genotypic combinations and may be
written as

CC =
N∏

i=1

|gi|,

where N is the pedigree size and |gi| is a number of possible
genotypes for ith pedigree member. When the pedigree is large
or the number of possible genotypes is large, this estimate is
rather high for a practical use. Therefore, different “peeling”
algorithms, which reduce the running time, are used for like-
lihood calculation (Elston and Stewart, 1971; Cannings et al.,
1978; Lander and Green, 1987; Kruglyak et al., 1996). The idea
underlying the peeling procedures is based on the fact that some
portions of the likelihood function are conditionally indepen-
dent and thus the likelihood of these parts may be evaluated
sequentially. The memory space and running time necessary for
likelihood calculation heavily depend on a proper selection of
conditionally independent portions of the likelihood function
and on the order of their peeling.

Among existing algorithms, Elston–Stewart peeling algo-
rithm is optimal for pedigrees including hundreds of members
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(Elston and Stewart, 1971; Cannings et al., 1978). The algorithm
is suited for a step-by-step reduction of the pedigree size through
collapsing the genetic information about some pedigree mem-
bers onto other pedigree members. Within the framework of
Elston–Stewart algorithm, several algorithms for selection of
optimal peeling sequences were proposed (Cannings et al.,
1978; Harbron, 1995; Lange and Boehnke, 1983; Thomas, 1986;
Fernandez and Fernando, 2002). However, all of these algo-
rithms are applicable only to pedigrees with loops for calculation
of their exact likelihood. Until recently, it was believed that the
problem of determining the optimal peeling order is associ-
ated with looped pedigrees only. For pedigrees without loops
the effective peeling algorithms use nuclear pedigrees (NPs) as
conditionally independent portions of pedigree. In this case the
memory space is no more

∑N
i=1|gi| and running time is propor-

tional to the number of NPs in the pedigree. Therefore, it was
accepted that peeling order can be arbitrary when pedigree has
no loops. This conclusion is correct as long as the pedigree does
not include many members with unknown genotypes. The num-
ber of possible genotypes for such pedigree members may be
several orders of magnitude greater than for genotyped pedigree
members, and the optimal order of peelings plays a crucial role
in decreasing the running time of the algorithm.

In this paper, we suggest a new algorithm for optimal selec-
tion of peeling order in zero-loop pedigrees with incomplete
genotype information and test its efficiency using several large
pedigrees.

2. Peeling procedure

Any pedigree can be represented by a set of NPs, with two
NPs connected to each other by an individual belonging to both
of them (Fig. 1A–B). These individuals are called connectors.
An NP with a single connector is called a terminal NP. In pedi-
grees without loops every peeling operation condenses informa-
tion about terminal NP on genotypes of corresponding connec-
tor. As a result, the number of NPs in the pedigree is decreased by
one; for the NP adjacent to the peeled NP, the number of connec-
tors is decreased by one. If the number of an NP’s connectors
gets down to one, the NP becomes a terminal one. To calcu-
late the likelihood function for a large pedigree, all NPs must
be sequentially peeled. For zero-loop pedigree this can be done
using two NP peeling operations: peeling on a parent or peeling
on one of the offspring. What kind of peeling operation will be
used for given NP depends on the sequence of previous peelings.
Since different peeling operations have different complexity of
calculation, the optimal order of peelings plays a crucial role in
decreasing the running time of the likelihood calculation.

To compare the running time for different peeling operations,
lets consider a NP with a father (f), a mother (m) and a set of
children numbered from 1 to n. Let xi be phenotype and marker
genotypes for the ith member of the pedigree, let gi be the set of
possible genotypes of this member. The set of possible genotypes
consists of combinations of unobserved genotypes controlling
given trait and a known marker genotypes. If the individual is
not genotyped, a set of all possible marker genotypes has to be
considered.

2.1. Peeling NP on a parent

Without loss of generality we consider the situation that the
NP’s connector is the father. As a result of this peeling the infor-
mation about all members of the considered NP is condensed on
the connector under each of its possible genotypes:

Pr(Xf|gf) = Pr(xf, xm, x1, . . . , xn|gf) = Pr(xf|gf)

×
∑
gm

Pr(xm, gm)
n∏

i=1

∑
gi

Pr(gi|gf, gm)Pr(xi|gi). (1)

The running time for computing this formula is proportional to

CCpar = |gf||gm|
n∑

i=1

|gi|, (2)

where |gj| is a number of possible genotypes for jth individual.

2.2. Peeling NP on one of the offspring

Consider peeling on the child with number j. As a result of
this peeling the information about all NP members is condensed
on this child for each of its possible genotypes:

Pr(Xj, gj) = Pr(xf, xm, x1, . . . , xn, gj)

= Pr(xj, gj)
∑
gf

Pr(xf, gf)
∑
gm

Pr(xm, gm)

×
∏
i�=j

∑
gi

Pr(gi|gf, gm)Pr(xi|gi). (3)

The running time for this formula is proportional to

CCoff = |gf||gm||gj|
⎛
⎝∑

i�=j

|gi| + 1

⎞
⎠ . (4)

The difference between running times for these two peeling
operations is proportional to

CCpar − CCoff = |gf||gm|{|gj| − 1}
∑
i�=j

|gi|. (5)

This difference is non-negative because the number of possible
genotypes, |gi|, is positive for each pedigree member. This dif-
ference is zero, only if the NP has a single child or if a child,
who is NP’s connector, has one possible genotype. The differ-
ence between running times for two peeling operations may
be considerable. For example, when n = 5 and |g| = 10 for each
member of the NP, the running time given by (4) is eight times
greater than the one given by (2). In general, peeling on a parent
is more preferable than peeling on one of the offspring. There
are two special cases when optimal peeling operation may be
always used.

Case #1: Optimal peeling on a parent is always possible for any
terminal NP, having a parent as a connector.

Case #2: In any peeling order, the final NP can be always opti-
mally peeled on a parent.
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Fig. 1. Pedigree graph. (A) Initial pedigree; (B) the same pedigree represented as a set of nuclear pedigrees; (C) weighted pedigree graph (ci–j is the weight of edge
directed from Vi to Vj; bold arrow corresponds to preferable peeling on a parent; the potential final nodes are indicated by gray color); (D) rooted weighted tree with
V1 as a root.

When none of the pedigree’s NPs have both parents with the
ancestors, the likelihood may be optimally calculated using peel-
ings on a parent only. If there is an NP with both parents having
ancestors in the pedigree, the peeling on one of the offspring has
to be used. In this case we must select what kind of NPs will be
peeled on one of the offspring to ensure minimum running time
of the pedigree likelihood calculation.

3. Optimal peeling order

The order of peelings determines what kind of peeling oper-
ations is used for each NP. The running time for pedigree
likelihood calculation corresponding to a given peeling order
is calculated as a sum of the running times for peeling oper-
ations specified for each NP. An optimal peeling order is the
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one with minimum running time for pedigree likelihood calcu-
lation.

To select optimal peeling order, consider a pedigree with-
out loops as a directed graph G with NPs as vertices and with
weights assigned to directed edges. Every two adjacent vertices
corresponding to two NPs, NPi and NPj with connector ij, are
connected by two oppositely directed weighted edges (Fig. 1C).
The weights of directed edges NPi → NPj and NPj → NPi are
equal to the running time for peeling of NPi or NPj, respectively,
on connector ij given by (2) or (4).

Select one vertex, NPR, and create a simple weighted graph
T with NPs as vertices and two NPs connected by an edge if and
only if there is a directed edge between them in G. The weight
of edge between NPi and NPj in graph T is equal to the weight
of that edge between NPi and NPj in G, which is directed to
NPR. Observe that T is a rooted weighted tree with NPR as a
root (Fig. 1D).

Due to the structure of a graph G, each NP may be selected
as a root and the corresponding rooted tree can be created. The
peeling operation is equivalent to the cutting the leaf of T, i.e., a
vertex adjacent to only one vertex. The peeling algorithm begins
with the leaves and works up ending at the root. It is known that
there is a unique path between any vertex and the root in T
and the order of the leaves cutting is exclusively determined
by specifying the root vertex (West, 2001). Therefore, we can
calculate the running time, C, for the pedigree peeling as a sum
of the weights of all edges of T plus the running time for peeling
of root (final NP) given by (2). The rooted tree with minimum
C value corresponds to the optimal peeling order.

In general, any vertex must be considered as a potential root
and the values of C have to be calculated for all rooted tree
graphs T corresponding to G. However taking into account the
origin of the pedigree described by the graph G, several vertices
may be excluded from the set of potential roots. Only a vertex
corresponding to NP, where both parents have no ancestors, may
be considered as a potential root. Indeed, any terminal NP with a
parent having an ancestor may be peeled on this parent with the
optimal running time (case #1) and selecting the adjacent NP as
a root is more efficient. Moreover, last two NPs may be always
peeled on their parents (case #2) and the NP with offspring as a
connector must be final NP, or root. Thus, to select the optimal
order of pedigree peelings, we must compare the values of C for
those rooted tree graphs T, where the roots correspond to NPs
in which both parents have no ancestors.

4. Algorithm

The procedure for selecting the optimal order of peelings
may be summarized as follows. First, the pedigree is presented
as a directed graph G with NPs defined as vertices. Second, the
weight of each edge NPi → NPj of G is defined as a running
time for peeling NPi on connector ij given by (2) or (4). Third,
the set of potential roots is defined as a set of NPs where both
parents are ancestors of the pedigree. Finally, for each potential
root the rooted weighted tree graph T corresponding to G is
created and the total weight is calculated as a sum of weights of
all edges plus the running time for the root peeling given by (2).

The minimal total weight corresponds to the optimal rooted tree
graph.

We implemented this algorithm in a software package Ped-
Peel, which is freely available at http://mga.bionet.nsc.ru/nlru/.

5. Number of possible genotypes

The set of possible genotypes consists of combinations of
all possible unobserved genotypes controlling trait and known
marker genotype. In the simplest case of diallelic trait locus
(alleles A and a), the number of possible genotype combinations
equals to three for homozygous marker (AM1/AM1, AM1/aM1
and aM1/aM1) and four for heterozygous one (AM1/AM2,
AM1/aM2 AM2/aM1 and aM1/aM2). If the individual is not
genotyped, the set of possible marker genotypes includes all
possible genotypes. The number of these genotypes is equal to
0.5 h(h + 1), where h is the number of possible haplotypes cal-
culated as a product of the number of alleles controlling the trait
and polymorphic alleles of the marker loci. Based on the pedi-
gree data, some genotypes may be eliminated from the set of
possible genotypes (Lange and Goradia, 1987; O’Connell and
Weeks, 1999). However, when several generations of ancestors
are not measured, we have to consider the largest possible num-
ber of genotypes for the majority of these ancestors. This number
is 10 for diallelic marker, 55 for a marker with 5 alleles and 210
for a marker with 10 alleles.

6. Efficiency of the algorithm

To demonstrate the efficiency of our algorithm, we tested it
on the likelihood calculation for all possible peeling orders in
three large zero-loop pedigrees, which were produced from sev-
eral pedigrees with multiple loops by breaking all loops. The
origin of these pedigrees and selection of loop breakers were
described in our previous paper (Axenovich et al., submitted
for publication). The analyzed pedigrees differ by size and per-
centage of measured individuals (Table 1). We considered the
marker locus with five alleles. The number of possible geno-
types was assumed to be 4 for measured individuals and 55 for
non-measured ones.

Running times were calculated for all possible orders of peel-
ings, defined by selecting each NP as a root of the tree graph. The
distributions of the total running times for the three pedigrees are
shown in Table 1. In all cases, it was found that there is a unique
peeling order with minimum running time. Any other order gave
a value considerably larger than the optimal: 3.05 × 104 com-
pared to 6.53 × 104 for the human and 4.13 × 106 compared to
1.24 × 107 for the silver fox pedigrees. The arctic fox pedigree
provides the smallest difference between the optimal and the
second best value for the running time of a peeling algorithm.
However, the great part of distribution (333 of 359) was greater
than 6.56 × 106 whereas the minimum value was 4.60 × 106. It
means that the chance to select the peeling order with minimum
or nearly minimum running time under arbitrary selection of
peeling order is very small for all analyzed pedigrees. Table 1
shows that the average running time over all peeling orders is
1.80–3.18 times higher than the corresponding optimal value.
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Table 1
Pedigree structures and running time for likelihood calculation

Pedigree Number Running time

Individuals Measured NPs Maximum Mean ± S.E. Minimum (optimal peeling) Ratio of mean to optimal

Humana 114 112 39 6.760 × 104 6.557 ± 0.093 × 104 3.054 × 104 2.15
Silver foxb 1845 1056 788 1.335 × 107 1.311 ± 0.001 × 107 4.126 × 106 3.18
Arctic foxc 952 617 359 2.664 × 107 8.279 ± 0.229 × 106 4.604 × 106 1.80

a Zero-loop fragment of pedigree from Dutch genetically isolated population (Pardo et al., 2005).
b Zero-loop fragment of the silver fox pedigree formed on the base of the breeding records of Experimental Farm of the Institute of Cytology and Genetics,

Novosibirsk, Russia.
c Zero-loop fragment of the arctic fox pedigree formed on the base of the breeding records maintained at the Puskinsky fur farm, Moscow district, Russia (Axenovich

et al., 2007).

Thus, the proposed algorithm may lead up to three-fold decrease
of the running time.

Our algorithm can be easily introduced into those existing
software packages for linkage analysis, which are based on
the Elston–Stewart algorithm of likelihood calculation. Usually
a peeling order is defined in preliminary analysis of pedigree
structure and then this order is used for likelihood calculation.
The algorithm is especially useful when multiple likelihood
calculation is needed, for example, when the genetic parame-
ters are estimated or the linkage with multiple marker loci is
tested. Our algorithm was implemented in the software pack-
ages for segregation and linkage analysis, which are available
from http://mga.bionet.nsc.ru/.
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