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ABSTRACT

For pedigree-based quantitative trait loci (QTL) association analysis, a range of methods utilizing
within-family variation such as transmission-disequilibrium test (TDT)-based methods have been developed.
In scenarios where stratification is not a concern, methods exploiting between-family variation in addition
to within-family variation, such as the measured genotype (MG) approach, have greater power.
Application of MG methods can be computationally demanding (especially for large pedigrees), making
genomewide scans practically infeasible. Here we suggest a novel approach for genomewide pedigree-
based quantitative trait loci (QTL) association analysis: genomewide rapid association using mixed model
and regression (GRAMMAR). The method first obtains residuals adjusted for family effects and
subsequently analyzes the association between these residuals and genetic polymorphisms using rapid
least-squares methods. At the final step, the selected polymorphisms may be followed up with the full
measured genotype (MG) analysis. In a simulation study, we compared type 1 error, power, and oper-
ational characteristics of the proposed method with those of MG and TDT-based approaches. For
moderately heritable (30%) traits in human pedigrees the power of the GRAMMAR and the MG
approaches is similar and is much higher than that of TDT-based approaches. When using tabulated
thresholds, the proposed method is less powerful than MG for very high heritabilities and pedigrees
including large sibships like those observed in livestock pedigrees. However, there is little or no difference
in empirical power of MG and the proposed method. In any scenario, GRAMMAR is much faster than MG
and enables rapid analysis of hundreds of thousands of markers.

MAPPING genes responsible for variation in quan-
titative traits (QTs) relevant to human health

and disease, such as blood pressure, glucose level, and
body composition, is a valuable approach to disentan-
gling complexity of common disorders (Rice et al. 2001;
Blangero 2004). In this context, association mapping,
also termed linkage-disequilibrium (LD) mapping has
the potential to be more powerful for QTL detection
and to map with higher resolution than classical link-
age analysis. In recent years, remarkable methodolog-
ical and technical progress has been achieved in the
area of LD mapping. Much emphasis has been placed
on LD mapping in unrelated cases and controls coming
from the general population and LD mapping of binary
and quantitative traits, using family data; see Forabosco

et al. (2005) for review. For pedigree-based QTL asso-
ciation analysis, a range of methods and software that
utilize information about transmission of alleles, such

as the orthogonal test for within-family variation (quan-
titative trait transmission disequilibrium test, QTDT)
(Abecasis et al. 2000) and the family-based association
test (FBAT) (Lange et al. 2002; Horvath et al. 2004)
have been developed. As these methods analyze within-
family variation, or association between the trait and
transmission of marker alleles, they are robust even
when population stratification is present.

Population stratification may be expected to be pre-
sent in general and recently admixed populations. At
the same time, study populations that have been care-
fully selected using stringent ethnic origin criteria and
study populations based on some special, genetically
isolated populations are under minimal risk of stratifi-
cation. Moreover, genetic stratification may be detected
using molecular markers (Pritchard et al. 2000; Falush

et al. 2003), and individuals that are likely to be genetic
‘‘outliers’’ may be excluded from further study, or
analysis may be adjusted for population substructure.

When ethnic stratification can be ruled out, the
measured genotype approach (Hopper and Mathews

1982; Boerwinkle et al. 1986; George and Elston

1987) or overall test of within- and between-family
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variation may serve as a powerful tool for QTL analysis
(Havill et al. 2005; Lange et al. 2005). In this approach,
a genetic polymorphism under study is included as a
fixed effect or covariate in a mixed model that includes
a polygenic component as a random effect and a likeli-
hood ratio (when using maximum likelihood) or the
Wald test ½when using restricted maximum likelihood
(REML)� is performed to assess significance of the effect
of the polymorphism.

Unfortunately, when analyzed pedigrees are large,
which is especially the case for genetically isolated
populations (Newman et al. 2001; Bourgain and Genin

2005; Pardo et al. 2005), or for some ethnic subgroups
(Charlesworth et al. 2005; Lehman et al. 2006), the
computations required for the measured genotype ap-
proach may be very time consuming. This stems from
the need to analyze a relatively complex mixed model
for each of many markers to be tested. Even testing the
effect of a single polymorphism may take from several
minutes to hours and therefore genomewide associa-
tion analysis takes significant computational resources
and would be practically infeasible when run on a single
computer. Moreover, even with small pedigrees, empir-
ical techniques such as permutation analysis and boot-
strapping cannot be applied to the data, as they do not
have an exchangeable structure: permutation of trait
values across the entire sample breaks both trait–marker
and trait–pedigree (due to polygenes) relationships.

In this study we explore alternative approaches to
pedigree-based QTL association analysis and we introduce
a new, fast, and simple method (GRAMMAR) that can
be applied using existing software and that will facilitate
whole-genome high-density single-nucleotide polymor-
phism (SNP) scans. We compare the power, type 1 error,
and operational characteristics of the new approach
to those of the measured genotypes and TDT-based
approaches.

MATERIALS AND METHODS

Proposed method: The simplest test for the effect of a SNP
or other marker that can be considered is a contrast of the
means of alternative genotype classes in a linear model. Such
an approach provides a very fast analysis, but in the context of
data from a pedigree or a number of families it ignores the
covariance between individuals that these relationships pro-
duce. Therefore, application of this method can lead to high
levels of false positive associations. The use of a mixed analysis
that models the polygenic relationships between individuals as
a random component (and can include additional random
components to allow for other features such as common family
environmental effects) can resolve this problem. However, this
modeling also greatly slows down the analysis. The basic idea
of the proposed method is to perform a single polygenic
analysis using the complete pedigree but ignoring marker
data. Subsequently, we use residuals from this analysis, which
are now adjusted for polygenic covariation and fixed effects, as
a novel quantitative trait for association analyses with each of
many markers using classical methods for unrelated individ-
uals (‘‘population-based design’’).

In the initial step, the data are analyzed under the mixed
model

yi ¼ m 1
X

j

bj cji 1 Gi 1 ei ; ð1Þ

where yi is the phenotype of the ith individual, cij is the value of
the jth covariate or fixed effect for the individual i, bj is an
estimate of the jth fixed effect or covariate, and Gi and ei are
random additive polygenic and residual effects, respectively.
The random effects are assumed to follow a multivariate normal
distribution with mean zero. The variance for the polygenic
effects is defined as Fs2

G, where F is the relationship matrix
and s2

G is the additive genetic variance due to polygenes. For
the residual random effects, the variance is defined as I s2

e,
where I is the identity matrix and s2

e is the residual variance.
The residuals from this analysis are given by

y*
i ¼ y � ðm̂ 1

X

j

b̂j cji 1 ĜiÞ ¼ êi ;

where b̂j is the estimate of the jth fixed effect and Ĝi is the
estimated contribution from the polygene (breeding value).

In the second step, these residuals are used as the de-
pendent trait in a simple linear regression for each SNP,

êi ¼ m 1 kgi 1 ei ; ð2Þ

where êi is the vector of residuals from (1), m is the mean, g is
the vector of genotypes at the marker under study, k is the
marker genotype effect, and e is the vector of random resid-
uals. We call this analytical approach GRAMMAR.

Subsequent to the GRAMMAR analysis, markers showing
test statistics greater than some predefined threshold are
selected for a final analysis using the measured genotype (MG)
model:

yi ¼ m 1 kgi 1
X

j

bj cji 1 Gi 1 ei : ð3Þ

The first step of the GRAMMAR approach, i.e., computation
of residuals from a polygenic model (1), is relatively slow
and takes from minutes to hours for very complex (tens of
thousands of members) pedigrees. However, fitting model (2)
can be performed at a rate of a few thousands of tests per
second. The subsequent MG analysis is the most time con-
suming, as it requires reevaluation of a number of polymor-
phisms in complete model (3), each taking minutes to hours
to run in complex pedigrees, although this step is applied to a
limited number of markers.

Simulations: Three pedigree structures were considered in
our simulation study:

1. Three hundred thirty seven nuclear pedigrees (NP): The
founders in each pedigree were assumed to be unrelated.
Each pedigree had three phenotyped and genotyped sib-
lings and thus a total of 1011 individuals were available for
analysis. This sample simulates a family-based study as typ-
ically performed in the general population.

2. Erasmus Rucphen family (ERF) (1010 pheno- and geno-
typed individuals in a single large complex pedigree, in-
cluding 9818 individuals in total): The pedigree spreads for
23 generations and includes thousands of loops. The phe-
notyped individuals are a part of the ERF study, performed
in a young genetically isolated Dutch population (Pardo

et al. 2005).
3. Idealized pig population (IPP): To test whether the method

is applicable to larger full- and half-sib family sizes, as com-
monly encountered in livestock studies, we simulated 10
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sires, each mated to 10 dams, 9 of which have 10 and 1 of
which has 11 measured offspring. Thus, each sire has 101
half-sib offspring in families of 10 full-sibs. The total
phenotyped population consists of 1010 individuals.

For each of these three pedigrees, we simulated genetic data
under several models. The single-nucleotide polymorphism
(SNP), which was analyzed for association, had a minor allele
frequency of either 10 or 50%. For studying the type 1 error,
this SNP was not involved in the control of the trait, while for
studying the statistical power this SNP explained 1, 2, or 3% of
the total trait variation and acted in an additive manner. The
total heritability of the trait was set to 30, 50, or 80%; this
heritability included the variation due to the QTL studied.

In addition, we simulated 7351 linked SNPs for the ERF
pedigree, to assess performance and power of different meth-
ods in a large-scale analysis. These SNPs are part of the
Affymetrix GeneChip Mapping 100,000 SNP set (Matsuzaki

et al. 2004), covering chromosome 1. In our simulations, we
used the genetic map and Caucasian allelic frequencies as
provided by Affymetrix. The total length of the map was 273 cM.
One of the SNPs, located at 108 cM, was chosen to explain 3%
of the QTL variation in our simulations. The residual heri-
tability was set to 27%. One hundred replicates were generated
and analyzed.

ANALYSIS

The data were analyzed using six methods:

1. Disregarding family structure (DFS): The correla-
tions between relatives were not accounted for; es-
sentially, pedigree-based data were treated as a sample
of unrelated individuals. Analysis under this model
was performed using the ‘‘lm’’ procedure of the freely
available R software, v. 2.1.1 (http://www.r-project.
org). The linear model included the trait value as an
outcome and SNP genotype as a covariate. The SNP
was coded as the number of rare allele copies (0, 1, or
2) across all methods.

2. Measured genotype (MG): We used restricted maximum
likelihood, as implemented in ASReml (Gilmour et al.
2002) software. The SNP to be tested was included as a
covariate in a polygenic model (3); heritability and
SNP effect were estimated jointly. The Wald test was
used to assess significance of the SNP effect.

3. MG–fixed heritability (FH): MG–FH is similar to MG,
with the exception that only the SNP effect was
estimated, while heritability was fixed at the estimate
obtained from analysis of trait and pedigree data.
This method has the potential to speed up compu-
tations; as in genomewide analysis, heritability would
be estimated only once and the fixed estimate used
for analysis of all SNPs.

4. GRAMMAR: As described in materials and methods,
residuals from a polygenic model were obtained using
ASReml according to model (1); these residuals were
used as an outcome variable for the lm procedure
according to model (2) and similar to DFS analysis.

5. QTDT: As implemented in the QTDT (Abecasis et al.
2000) software, the orthogonal test for within-family
association was used.

6. FBAT: As implemented in FBAT (Horvath et al.
2004; Lange et al. 2002) software, the ‘‘fbat’’ com-
mand with no further options was used.

For DFS and GRAMMAR we also derived empirical,
permutation-based P-values. For every simulated data
set, empirical P-values were obtained in the following
manner: Sampling without replacement was performed
1000 times and analysis was repeated for every permuted
set. The empirical P-value was defined as the proportion
of times the statistics obtained on permuted sets were
greater than or equal to the original statistics. For FBAT
we derived permutation P-values using 10,000 replicates
(the ‘‘hbat –p 10,000’’ command was used).

For studying the type 1 error, we generated and anal-
yzed 1000 replicates for all pedigree structures and all
scenarios. For studying the statistical power, we gener-
ated and analyzed 1000 replicates for the nuclear pedi-
grees and the IPP and 100 replicates for the ERF pedigree.

GRAMMAR followed by MG (GRAMMAR 1 MG) was
implemented for the analysis of the 7351 SNPs on the
ERF data. The power to achieve chromosome- and
genomewide significance was estimated as the propor-
tion of tests exceeding chi-square statistics of 20.22 (a¼
0.05/7351) and 24.37 (a ¼ 0.05/100,000). From the
earlier simulations, we determined the lower boundary
of the ratio between the noncentrality parameter (NCP)
of the MG and that of the GRAMMAR. For the full MG
reanalysis we selected the SNPs that generated test sta-
tistics greater than or equal to the genome- (chromo-
some)wide threshold, corrected for this deflation factor.

RESULTS

Table 1 shows the 95% quantile of the test statistics
distribution and the type 1 error (obtained by compar-
ison with tabulated thresholds corresponding to a ¼
0.05 and 0.01) for the evaluated methods. As expected,
the MG approach had a type 1 error that was close to the
prespecified a. The type 1 error of MG–FH was similar
to that of the MG (results not shown). The 95%
quantiles of the FBAT null distribution also followed
x2

d:f :¼1-distribution closely. The QTDT test was conser-
vative when heritability was high (h2 $ 0.5, Table 1).

When analysis was performed without correction for
family structure (DFS analysis), the 95% quantiles and
the type 1 error were markedly inflated. The type 1 error
was inflated more with higher heritabilities and larger
full-sib family sizes and reached 42% for IPP at herita-
bility of 80%. The GRAMMAR analysis exhibited the
opposite behavior: It was conservative and this tendency
was more pronounced for models with higher herita-
bility and larger full-sib family sizes.

Marker allele frequency did not affect the type 1 error
(results not shown). For methods where permutation
could be performed (GRAMMAR, DFS, and FBAT) the
empirical 95% quantiles obtained using permutation
within each set of data were very similar to the tabulated
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asymptotic values. Hence empirical type 1 errors de-
rived by comparison against these values were also very
similar to those derived by comparison to the asymptotic
values (supplemental Table 1 at http://www.genetics.
org/supplemental/).

Table 2 shows power of different approaches to detect
a QTL when using fixed thresholds following a x2

d:f :¼1-
distribution. It must be noted that, given the results of
type 1 error analysis, the power of conservative methods
(GRAMMAR and QTDT) is underestimated because the
same fixed threshold is used across all methods.

Among methods that did not show inflated type 1
errors, MG was most powerful and MG–FH had very
similar power (results not shown). The MG, MG–FH,
and GRAMMAR approaches outperform TDT-based
approaches under all scenarios studied. For example,
MG, MG–FH, and GRAMMAR had �80% power to
detect a QTL explaining 1% of variation at a¼ 0.05 in a
sample of nuclear families while QTDT had 45–47%
power and FBAT had 50–66% power with the same data
(Table 2). For all methods, the power to detect QTL
when SNP frequency was 0.5 did not differ notably from
the situation when the frequency was 0.1.

The power of MG also shows a weak, but consistent
trend to increase with higher heritability. Relative to MG,
GRAMMAR had lower power. Nonetheless, the GRAM-
MAR statistics show almost perfect ($0.99) correlation
with the MG statistics (Figure 1). Interestingly, for GRAM-
MAR the NCP was always lower than that from MG.

In Table 3, we show a more appropriate comparison
of statistical power between different methods, taking

account of their different null distributions. To com-
pute the empirical power, we used the 95% quantile of
the appropriate Monte Carlo-derived null distribution
(i.e., analysis of data sets generated under the null
hypothesis with polygenic effects but with no marker
effect) as a significance threshold, rather than the
tabulated x2

d:f :¼1-value. The empirical distributions were
computed for each combination of method and genetic
model using 1000 simulations (Table 1). As expected,
under these conditions that account for the bias in NCP,
GRAMMAR had power that was very similar to that of
the MG, while DFS was less powerful. Power of QTDT
and FBAT was much lower than that of MG under these
conditions, but power of QTDT became very similar to
that of FBAT. These results demonstrate the power of
the alternative analyses when compared to the appro-
priate null hypothesis distribution.

In Table 4, we show the average of the allelic effect
estimates resulting from three different analysis ap-
proaches (MG, GRAMMAR, and DFS). It can be seen
that both MG and DFS methods estimate the allelic ef-
fect rather well in an unbiased manner. On the contrary,
GRAMMAR analysis strongly underestimated the effect.
From Table 4, it is also clear that, compared to MG, the
DFS tends to underestimate the ‘‘true’’ (MG-derived)
standard errors, which is a consequence of its ignoring
the familial correlations. This explains why the DFS
method has increased type 1 error.

Finally, in Table 5 we show results of analysis of
performance and power of different methods (QTDT,
FBAT, DFS, and MG) in large-scale analysis using the

TABLE 1

Ninety-five percent quantiles of the distribution of the test statistics and type 1 error of measured genotype (MG),
GRAMMAR, disregarding-family-structure (DFS), QTDT, and FBAT analyses

Type 1 error at given threshold

Pedigree:a 95% quantile x2 $ 3.84 (a ¼ 0.05) x2 $ 6.63 (a ¼ 0.01)

h2b MG GRAMMAR DFS QTDT FBAT MG GRAMMAR DFS QTDT FBAT MG GRAMMAR DFS QTDT FBAT

NP
0.3 3.80 3.25 4.13 3.62 4.10 0.049 0.029 0.060 0.040 0.058 0.015 0.010 0.014 0.008 0.013
0.5 3.54 2.89 4.57 2.87 3.75 0.043 0.021 0.072 0.020 0.048 0.006 0.002 0.015 0.002 0.009
0.8 4.08 2.92 5.66 2.3 3.79 0.059 0.026 0.101 0.012 0.049 0.014 0.006 0.033 0.002 0.009

ERF
0.3 3.65 3.08 4.87 3.46 3.75 0.043 0.031 0.082 0.037 0.049 0.009 0.004 0.019 0.005 0.005
0.5 4.04 3.15 5.49 3.17 3.88 0.055 0.023 0.107 0.033 0.051 0.008 0.003 0.025 0.006 0.011
0.8 3.96 2.71 6.55 3.5 4.05 0.053 0.021 0.112 0.041 0.055 0.013 0.001 0.050 0.009 0.009

IPP
0.3 3.88 2.73 11.95 3.33 —c 0.053 0.019 0.264 0.035 — 0.012 0.003 0.149 0.008 —
0.5 4 2.58 18.41 2.84 — 0.055 0.012 0.385 0.028 — 0.011 0.004 0.242 0.005 —
0.8 3.8 2.27 23.92 2.43 — 0.050 0.012 0.421 0.019 — 0.012 0.000 0.302 0.000 —

Type 1 error significantly (P # 0.05) inflated is underlined and conservative is in italics. Score test of deviation of proportion
from a fixed value was used.

a Pedigree studied. NP, 337 nuclear pedigrees; ERF, large human pedigree; IPP, idealized pig population.
b Total heritability.
c This structure is not analyzable with FBAT.
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ERF pedigree and also evaluate the complete strategy of
GRAMMAR followed by MG proposed in materials and

methods. This procedure involved chromosomewise
GRAMMAR analysis first; then SNPs that passed a re-

laxed threshold of 14.14 (for chromosomewide signif-
icance analysis) and 17.04 (for genomewide) were
selected to be followed up with MG. These thresholds
were chosen on the basis of the observation that

TABLE 2

Mean x2-statistics (M[x2]) and proportion of results for which the test statistic was more than or equal to the tabular
critical value for measured genotype (MG), GRAMMAR, QTDT, and FBAT analyses

Proportion of simulations resulting in a x2 $

Pedigree: M½x2� 3.84 (a ¼ 0.05) 6.63 (a ¼ 0.01)

h2
QTL

a h2 MG GRAMMAR QTDT FBAT MG GRAMMAR QTDT FBAT MG GRAMMAR QTDT FBAT

NP
0.3 10.28 8.86 4.21 4.76 0.84 0.80 0.45 0.50 0.67 0.06 0.21 0.27

0.01 0.5 10.27 8.15 4.34 5.53 0.86 0.79 0.47 0.57 0.69 0.56 0.21 0.33
0.8 10.59 7.52 4.15 6.51 0.88 0.77 0.45 0.66 0.67 0.49 0.19 0.42
0.3 19.9 17.12 7.95 8.61 0.99 0.99 0.77 0.80 0.96 0.93 0.54 0.59

0.02 0.5 19.69 15.59 7.73 9.48 0.99 0.98 0.79 0.87 0.96 0.93 0.54 0.66
0.8 20.21 14.26 7.42 11.2 0.99 0.97 0.80 0.91 0.96 0.91 0.5 0.76
0.3 29.52 25.23 11.2 11.83 1.00 1.00 0.91 0.94 1.00 0.99 0.76 0.80

0.03 0.5 29.31 23.13 11.36 13.52 1.00 1.00 0.93 0.96 0.99 0.99 0.79 0.86
0.8 30.26 21.39 11.09 16.2 1.00 1.00 0.95 0.98 0.99 0.99 0.79 0.93

ERF
0.3 9.89 8.32 2.96 3.13 0.81 0.79 0.26 0.31 0.71 0.58 0.1 0.14

0.01 0.5 9.86 7.70 3.44 3.63 0.83 0.75 0.34 0.40 0.68 0.52 0.18 0.19
0.8 10.35 7.14 2.71 3.18 0.83 0.73 0.23 0.28 0.65 0.46 0.11 0.16

0.02 0.3 18.69 15.67 5.75 5.43 0.97 0.96 0.59 0.54 0.92 0.89 0.36 0.31
0.5 19.28 14.89 5.97 6.13 0.99 0.98 0.63 0.60 0.93 0.9 0.34 0.40
0.8 20.87 14.4 6.01 6.83 0.99 0.99 0.62 0.69 0.98 0.92 0.40 0.47

IPP
0.3 8.39 5.57 5.41 — 0.76 0.60 0.55 — 0.55 0.33 0.32 —

0.01 0.5 8.55 5.31 5.46 — 0.76 0.57 0.56 — 0.55 0.30 0.31 —
0.8 10.10 5.88 5.62 — 0.82 0.62 0.59 — 0.62 0.36 0.34 —
0.3 16.01 10.65 10.30 — 0.94 0.88 0.83 — 0.86 0.73 0.66 —

0.02 0.5 16.84 10.43 10.46 — 0.95 0.88 0.85 — 0.87 0.7 0.66 —
0.8 18.18 10.58 9.96 — 0.96 0.88 0.85 — 0.89 0.71 0.67 —

a Proportion of the trait variation, which is explained by the QTL.

Figure 1.—Scatterplot of the x2-
statistics coming from the measured-
genotype (MG) approach vs. x2-statistics
coming from GRAMMAR, QTDT, and
FBAT. The model assumes heritability
of 0.28 and a QTL explaining 0.02 of
the total variance. Results of analysis
of data from 337 sib-trios (A) and
ERF pedigree (B) are presented. The
dotted line represents a slope of unity.
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GRAMMAR test statistics would be up to 30% smaller
than the ‘‘gold standard’’ MG statistics (Table 2). The
power to achieve chromosome and genomewide signif-
icance was estimated as the proportion of tests exceed-
ing chi-square statistics of 20.22 (a ¼ 0.05/7351) and
24.37 (a ¼ 0.05/100,000), respectively.

Not surprisingly, the fastest method was our GRAM-
MAR approach, which required �17 min to complete
analysis of chromosome 1 (most of the time being taken
with the single analysis needed to preadjust the data);
the estimated time to complete a full genome scan was
55 min. In a GRAMMAR 1 MG chromosomewide
analysis the average number of SNPs that were taken
forward for analysis with MG at the final step was 1.53;
therefore average time to complete a GRAMMAR 1 MG
analysis was �40 min. However, the time for this
approach depends on the number of SNPs selected
from GRAMMAR and varied from 17 min (no SNPs
selected) to 1.5 hr (5 SNPs selected). FBAT required
20 min to analyze chromosome 1 (and thus �5 hr to
complete a genomewide scan); QTDT was notably
slower (.6 hr for chromosome 1 and an estimated 3.5
days to finish a genomewide scan). The time to finish a
single SNP- measured genotype analysis was 15 min, and
thus MG analysis of chromosome 1 would have required
76 days and the genomewide analysis time estimate is
�2.5 years.

All programs used a reasonable amount of memory,
with QTDT requiring a maximum amount of 559 MB.
Because the time to perform complete chromosome-
wide analysis was prohibitively long for MG, we approx-
imated the expected power of MG analytically. This
power may serve as a gold standard in our comparisons.
The QTDT and the FBAT demonstrated relatively low
power for chromosomewise and genomewise analysis.
The GRAMMAR approach had power that was lower
than that expected of MG. However, the application of
GRAMMAR 1 MG led to rather high power that was
close to that estimated for MG. Also, GRAMMAR and
the GRAMMAR 1 MG approaches proposed here out-
performed other methods in location accuracy.

DISCUSSION

In this work, we suggested a novel approach (GRAM-
MAR) for genomewide pedigree-based association analy-
sis. The method is based on obtaining residuals from
a polygenic model followed by association analysis of
these residuals with genetic polymorphisms using classical
methods for unrelated individuals. One can then follow
up selected polymorphisms with MG analysis as a final
step. We compared type 1 error, power, and operational
characteristics of the proposed methods with those of
MG- and TDT-based approaches (FBAT and QTDT).

TABLE 3

Empirical power for measured genotype (MG), GRAMMAR, disregarding-family-structure
(DFS), QTDT, and FBAT analyses

Pedigree: Analysis method

h2
QTL h2 MG GRAMMAR DFS QTDT FBAT

NP
0.01 0.3 0.85 0.85 0.84 0.47 0.48

0.5 0.87 0.87 0.82 0.57 0.59
0.8 0.86 0.86 0.75 0.67 0.66

0.02 0.3 0.99 0.99 0.99 0.78 0.78
0.5 0.99 0.99 0.99 0.88 0.87
0.8 0.99 0.99 0.96 0.92 0.91

0.03 0.3 1 1 1 0.92 0.92
0.5 1 1 1 0.96 0.96
0.8 1 1 0.99 0.98 0.98

ERF
0.01 0.3 0.82 0.81 0.83 0.31 0.32

0.5 0.80 0.80 0.75 0.42 0.40
0.8 0.82 0.86 0.74 0.29 0.27

0.02 0.3 0.97 0.98 0.95 0.64 0.54
0.5 0.99 0.99 0.99 0.67 0.60
0.8 0.99 0.99 0.96 0.68 0.68

IPP
0.01 0.3 0.76 0.73 0.42 0.61 —

0.5 0.74 0.73 0.28 0.67 —
0.8 0.82 0.81 0.27 0.75 —

0.02 0.3 0.94 0.95 0.69 0.86 —
0.5 0.95 0.94 0.53 0.91 —
0.8 0.96 0.95 0.42 0.94 —
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Our results indicate that the power of the MG ap-
proach is much higher than that of TDT-based ap-
proaches. Basically, when using the MG approach, the
sample size may be reduced to half or even one-third of
the sample required by a TDT-based approach to have
the same power. This is in line with theoretical consid-
erations (Hernández-Sánchez et al. 2003) and recent
findings of Havill et al. (2005).

GRAMMAR followed by MG leads to a mild reduction
of power when compared to MG, but substantially
(hundreds and thousands of times) outperforms MG
in terms of time required for analysis. Therefore we
recommend future use of GRAMMAR 1 MG in ge-
nomewide pedigree-based QTL association analysis. At
the final step, markers showing test statistics greater
than some predefined threshold are selected for a final

TABLE 5

Results of analysis of 7351 SNPs located at chromosome 1, using 100 simulations on ERF pedigree

Method Time RAM Accuracy PowerCHR1 AccuracyCHR1 PowerGW AccuracyGW

MG 76 daysa 32 — 0.77b — 0.62b —
GRAMMAR 17 minc 101 0.89 0.57 1.00 0.33 1.00
GRAMMAR1MG 40 mind 101 0.87 0.75 0.97 0.55 1.00
QTDT 6 hr 20 min 559 0.20 0.12 0.50 0.04 1.00
FBAT 20 min 142 0.08 0.02 0 0 —

QTL explains 3% of total variation, residual heritability set to 27%. Time, time to complete single chromosomewide analysis;
RAM, maximum amount of RAM memory (megabytes) required for analysis; Accuracy, proportion of simulations in which the
maximum test statistic was observed at the position of the SNP controlling QT variation. PowerCHR1 ½PowerGW�: proportion of
simulations in which chromosomewise (a¼ 0.05/7351) ½genomewise (a¼ 0.05/100000)� significance was achieved. AccuracyCHR1

(AccuracyGW): proportion of chromosomewide (genomewide) significant simulations for which the maximum test statistic was
observed at the position of the SNP controlling QT variation.

a Estimated assuming 15 min per MG analysis of a single marker.
b Power is estimated assuming that expected NCP for MG is 27.5.
c Fourteen min to estimate residuals and 3 min for analysis using R.
d Fourteen min to estimate residuals, 3 min for analysis using R, and 23 min on average to reanalyze selected SNPs with MG.

TABLE 4

Mean of the allelic effect estimates (± mean SE of the estimates) from measured genotype (MG), GRAMMAR, and
disregarding-family-structure (DFS) analyses

Pedigree: Analysis method

h2
QTL Simulated effect h2 MG GRAMMAR DFS

NP
0.01 0.3 0.234 6 0.077 0.149 6 0.053 0.235 6 0.074

0.236 0.5 0.237 6 0.078 0.106 6 0.039 0.236 6 0.074
0.8 0.238 6 0.077 0.044 6 0.017 0.236 6 0.074

0.02 0.3 0.334 6 0.077 0.213 6 0.053 0.334 6 0.074
0.333 0.5 0.336 6 0.078 0.149 6 0.039 0.336 6 0.074

0.8 0.334 6 0.077 0.062 6 0.017 0.336 6 0.074
0.03 0.3 0.408 6 0.077 0.259 6 0.053 0.409 6 0.073

0.408 0.5 0.411 6 0.078 0.183 6 0.039 0.411 6 0.073
0.8 0.411 6 0.076 0.076 6 0.017 0.412 6 0.073

ERF
0.01 0.3 0.236 6 0.079 0.149 6 0.054 0.239 6 0.075

0.236 0.5 0.237 6 0.081 0.105 6 0.041 0.240 6 0.077
0.8 0.234 6 0.078 0.044 6 0.018 0.247 6 0.073

0.02 0.3 0.333 6 0.082 0.209 6 0.056 0.333 6 0.077
0.333 0.5 0.336 6 0.079 0.150 6 0.040 0.340 6 0.074

0.8 0.344 6 0.078 0.068 6 0.018 0.343 6 0.075
IPP

0.01 0.3 0.235 6 0.089 0.125 6 0.058 0.236 6 0.071
0.236 0.5 0.237 6 0.088 0.093 6 0.043 0.235 6 0.067

0.8 0.238 6 0.082 0.044 6 0.019 0.237 6 0.060
0.02 0.3 0.334 6 0.089 0.178 6 0.058 0.332 6 0.076

0.333 0.5 0.335 6 0.087 0.131 6 0.043 0.335 6 0.074
0.8 0.329 6 0.083 0.058 6 0.019 0.325 6 0.069
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analysis using the MG model. The choice of this
threshold represents a balance between computational
time (the lower the threshold, the more markers are to
be followed up) and power (the higher the threshold,
the larger is the chance to miss a marker that would have
been significant in the MG analysis). It is not clear a
priori what threshold should be chosen. For the present
study, we estimated the ratio between the NCP of MG
and GRAMMAR and applied the same ratio to adjust
the threshold for selecting the SNPs for the full MG
reanalysis.

Interestingly, when applying thresholds that are ob-
tained under simulation of the null distribution, the
GRAMMAR approach has equivalent empirical power to
MG and the final step is required only to reestimate the
QTL effects. On the basis of this observation, a power-
ful approach to analysis of genomewide scans may be
proposed. In this approach, we suggest the following
procedure: (a) Simulate an unlinked trait with herita-
bility reflecting the one of the trait of interest, (b) per-
form genomewide analysis of this unlinked trait, (c) save
the minimal P-value, and (d) repeat a–c several hundred
times. The resulting set of minimal P-values provides an
empirical distribution from which the genomewide sig-
nificance threshold may be obtained.

The GRAMMAR approach has some additional ad-
vantages. After fitting the polygenetic model in stage1,
the residuals are free from familial correlations; there-
fore, the structure of the data becomes exchangeable.
This means that permutation techniques may be ap-
plied to derive empirical measures of significance. In
the analysis of data where adjacent SNPs are correlated
due to linkage disequilibrium, thresholds set via per-
mutation will account for these correlations and result
in less stringent thresholds than those set by Bonferroni
correction. Thus in practice, when very dense marker
maps are used, the GRAMMAR approach may be more
powerful than the MG approach where computational
requirements dictate that the threshold is set by
Bonferroni correction. Our experience shows that with
the GRAMMAR approach, derivation of empirical geno-
mewide significance based on 1000 permutations of a
genomewide scan including 100,000 SNPs will require
no more than a few hours if a fast implementation of a
score test (see, e.g., Schaid et al. 2002; Aulchenko et al.
2007) is used.

Another attractive feature of the GRAMMAR pro-
cedure is that a range of new methods developed for a
classical ‘‘unrelated individuals’’ design can be applied
at stage 2 of the analysis. In recent years, much progress
was made in the development of powerful methods and
software that are robust to possible allelic heterogeneity
through the utilization of haplotype clustering and pop-
ulation genetic coalescence modeling (Durrant et al.
2004; Zollner and Pritchard 2005). Although we
show that application of the GRAMMAR approach leads
to conservative results when using tabulated threshold

values, the benefits of using more advanced modeling
methods may outweigh this consideration.

Finally, the GRAMMAR approach was developed in
the framework of genetically homogeneous popula-
tions. It may be possible to apply the principles of the
approach more widely in association studies. Yu et al.
(2006) recently proposed unified models for association
studies where a fixed effect was fitted for population
structure and a random effect for marker-based relat-
edness. It would be worthwhile to explore GRAMMAR
approximations for these unified approaches.

We show that the GRAMMAR approach is conserva-
tive under the null hypothesis and becomes more so
with increased familial correlations. When a pedigree
includes large, closely related sibships (idealized pig
population), the NCP from the GRAMMAR approach
drops closely to that from TDT-based methods. Also,
there is a tendency that more NCP is lost with the
analysis of more heritable traits. Still, the GRAMMAR
approach would be a method of choice for analysis of
large human pedigrees such as ERF (with any heritabil-
ity, NCP from GRAMMAR was at least twice as high as
that from TDT-based methods). Moreover, the power of
this method compares well to that of the MG approach
when trait heritability is moderate (30%).

The power and type 1 error of the MG–FH approach
were very similar to those of the complete MG. In the
MG–FH approach, heritability is estimated only once,
and the fixed estimate is used in the genomewide SNP
analysis. This eliminates the necessity of joint estima-
tion of heritability and the SNP effect at every step and
speeds up the analysis. However, the throughput is in-
creased by five to six times only, as one iteration is still
required to estimate the SNP effect. Therefore, this
approach will not be feasible for genomewide analyses
in large pedigrees. However, this may be an interesting
approach to the analysis of regional data on a few
hundreds of SNPs. Moreover, implementation of this
approach within the framework of the score test, which
does not require estimation of the parameter tested,
may provide a fast and powerful alternative to our
GRAMMAR approach.

In Table 5, the power of the GRAMMAR approach to
achieve genomewide significance was relatively low (33%).
However, the pedigree used in simulations is part of a
pedigree including �3000 members. With a complete
pedigree of 3000 members the power to detect a SNP
explaining 3% of variation is .95%, and the power to
detect a SNP explaining 2% is .90%. With 10,000
individuals included in a GRAMMAR analysis one
would obtain .80% power to detect a SNP explaining
as little as 0.5% of a trait’s variation at a genomewide P-
value of 5%. Moreover, additional power is achieved by
using GRAMMAR followed by MG. Nowadays, studies
aimed at genomewide association analysis routinely
collect thousands of study subjects and active collabo-
ration and joint analysis of the data are becoming more
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and more common. In this context, the methods we
propose here will have power to detect QTL explaining
as little as 0.5–1% of trait variation.

To summarize, we developed a fast, simple, and power-
ful method for pedigree-based QTL association analysis.
The method’s power is close to that of the gold standard
measured genotype approach and is much higher than
the power of TDT-based approaches. Our method is
much faster than the measured genotype approach and it
makes possible the analysis of hundreds of thousands of
markers in a genomewide pedigree-based QTL associa-
tion analysis. It may allow the use of such computation-
ally extensive techniques as permutation analysis to set
significance thresholds and two-dimensional genomic
scans for interactions (Marchini et al. 2005).
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